Free LATEX
ĐỀ LUYỆN THI THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001
Câu 1. Tính diện tích S của hình phẳng được giới hạn bởi các đường y = x2 , y = −x
1
1
1
5
A. S = .
B. S = .
C. S = .
D. S = .
2
3
6
6
Câu 2. Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được
A. Đường trịn.
B. Đường parabol.
C. Đường hypebol.
D. Đường elip.
p
Câu 3. Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) 1 − y. Kết luận nào
sau đây là sai?
A. Nếu 0 < x < π thì y > 1 − 4π2 .
B. Nếux > 2 thìy < −15.
C. Nếu 0 < x < 1 thì y < −3.
D. Nếux = 1 thì y = −3.
Câu 4. Tính I =
R1 √3
7x + 1dx
0
20
60
21
45
.
B. I = .
C. I = .
D. I = .
28
7
28
8
Câu 5. Kết quả nào đúng?
R
R
sin3 x
A. sin2 x cos x =
+ C.
B. sin2 x cos x = −cos2 x. sin x + C.
3
3
R
R
sin
x
C. sin2 x cos x = −
+ C.
D. sin2 x cos x = cos2 x. sin x + C.
3
Câu 6. √Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó√bằng
A. 2π l2 − R2 .
B. 2πRl.
C. πRl.
D. π l2 − R2 .
√
x
Câu 7. Đồ thị hàm số y = ( 3 − 1) có dạng nào trong các hình H1, H2, H3, H4 sau đây?
A. (H1).
B. (H4).
C. (H2) .
D. (H3).
A. I =
Câu 8. Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =
x3 + 6x2 + mx − 2 đi qua điểm (11;1)?
A. m = 3.
B. m = −15.
C. m = 13.
D. m = −2.
Câu 9. Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng
biến thiên như hình bên. Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân
biệt.
S
S
7
7
7
A. ( ; +∞)
B. [22; +∞).
C. [ ; 2] [22; +∞).
D. ( ; 2] [22; +∞) .
4
4
4
.
Câu 10. Cho hình trụ có hai đáy là hai đường trịn (O; r) và (O′ ; r). Một hình nón có đỉnh O và có đáy là
hình trịn (O′ ; r). Mặt xung quanh của hình nón chia khối trụ thành hai phần. Gọi V1 là thể tích của khối
V1
nón, V2 là thể tích của phần cịn lại. Tính tỉ số .
V2
V1 1
V1 1
V1
V1 1
A.
= .
B.
= .
C.
= 1.
D.
= .
V2 6
V2 3
V2
V2 2
√
Câu 11. Tìm tất cả các khoảng đồng biến của hàm số y = x − 2 x + 2017.
1
1
A. (0; ).
B. (0; 1).
C. ( ; +∞).
D. (1; +∞) .
4
4
Câu 12. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x2 và đường thẳng y = x.
1
2
1
A. 1.
B. .
C. .
D. − .
6
3
6
Trang 1/5 Mã đề 001
Câu 13. Tính nguyên hàm
R
cos 3xdx.
1
1
C. − sin 3x + C.
D. −3 sin 3x + C.
A. 3 sin 3x + C.
B. sin 3x + C.
3
3
2x + 2017
Câu 14. Cho hàm số y =
(1). Mệnh đề nào dưới đây là đúng?
x
+ 1
A. Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và khơng có tiệm cận
đứng.
B. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng
x = −1, x = 1..
C. Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y = 2 và khơng có tiệm cận đứng.
D. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x = −1..
√ sin 2x
Câu 15. Giá trị lớn nhất của hàm số y = ( π)
trên R bằng?
√
A. 0.
B. 1.
C. π.
D. π.
a3
Câu 16. Cho hình chóp đều S .ABCD có cạnh đáy bằng a và thể tích bằng . Tìm góc giữa mặt bên và
6
mặt đáy của hình chóp đã cho.
A. 300 .
B. 1350 .
C. 600 .
D. 450 .
Câu 17. Tìm tất cả các giá trị của tham số m để hàm số y = (1 − m)x4 + 3x2 chỉ có cực tiểu mà khơng có
cực đại
A. m ≤ 1.
B. m ≥ 1.
C. m < 1.
D. m > 1.
Câu R18. Công thức nào sai?
A. R a x = a x . ln a + C.
C. cos x = sin x + C.
R
B. R sin x = − cos x + C.
D. e x = e x + C.
Câu 19. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Tọa độ của một
véc tơ pháp tuyến của (P) là
A. (2; −1; 2).
B. (−2; −1; 2).
C. (−2; 1; 2).
D. (2; −1; −2).
Câu 20. Tìm tất cả các giá trị của tham số m để hàm số y = xe−x + mx đồng biến trên R?
A. m > e2 .
B. m > 2.
C. m > 2e .
D. m ≥ e−2 .
Câu 21. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
A. .
B. 0.
C. −6.
D. 1.
6
Câu 22. Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =
x3 + 6x2 + mx − 2 đi qua điểm (11;1)?
A. m = −15.
B. m = −2.
C. m = 13.
D. m = 3.
Câu 23. Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y = −x2 + 2mx − 1 − 2m trên
đoạn [−1; 2] nhỏ hơn 2.
7
A. m ≥ 0.
B. m ∈ (−1; 2).
C. −1 < m < .
D. m ∈ (0; 2).
2
Câu 24. Kết quả nào đúng?
R
R
sin3 x
A. sin2 x cos x = −cos2 x. sin x + C.
B. sin2 x cos x =
+ C.
3
R
R
sin3 x
C. sin2 x cos x = cos2 x. sin x + C.
D. sin2 x cos x = −
+ C.
3
Câu 25. Hàm số nào sau đây khơng có cực trị?
A. y = x2 .
C. y = cos x.
B. y = x3 − 6x2 + 12x − 7.
D. y = x4 + 3x2 + 2.
Trang 2/5 Mã đề 001
Câu 26. Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2). Đường phân
giác trong góc A của tam giác ABC cắt mặt phẳng (P) : x + y + z − 6 = 0 tại điểm nào trong các điểm
sau đây:
A. (1; −2; 7).
B. (−2; 2; 6).
C. (−2; 3; 5).
D. (4; −6; 8).
Câu 27. Người ta cần cắt một tấm tôn có hình dạng là một elíp với độ dài trục lớn bằng 2a, độ dài trục
bé bằng 2b (a > b > 0) để được một tấm tơn có dạng hình chữ nhật nội tiếp elíp. Người ta gị tấm tơn
hình chữ nhật thu được thành một hình trụ khơng có đáy như hình bên. Tính thể tích lớn nhất có thể được
của khối trụ thu được.
4a2 b
2a2 b
4a2 b
2a2 b
B. √ .
C. √ .
D. √ .
A. √ .
3 3π
3 3π
3 2π
3 2π
1
1
1
Câu 28. Rút gọn biểu thức M =
+
+ ... +
ta được:
loga x loga2 x
logak x
k(k + 1)
k(k + 1)
4k(k + 1)
k(k + 1)
A. M =
.
B. M =
.
C. M =
.
D. M =
.
2loga x
loga x
loga x
3loga x
3 2
1
m
3
Câu 29. Xác định tập tất cả các giá trị của tham số m để phương trình