Free LATEX
ĐỀ LUYỆN THI THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001
Câu 1.√Hình nón có bán kính đáy
√ R, đường sinh l thì diện tích xung quanh của nó bằng
B. 2π l2 − R2 .
C. πRl.
D. 2πRl.
A. π l2 − R2 .
Câu 2. Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng
A. 2πR3 .
B. 4πR3 .
C. 6πR3 .
D. πR3 .
Câu 3. Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?
A. y = x2 − 2x + 2.
B. y = x3 .
C. y = −x4 + 3x2 − 2.
D. y = x3 − 2x2 + 3x + 2.
3
Câu 4. Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) và đáy
2
là đường trịn nằm hồn tồn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn
nhất. √
√
√
4 3π
2π
A.
.
B. √ .
C. 2 3π.
D. 4 3π.
3
3
Câu 5. Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − 5 = 0. Bán kính R
của (S) bằng bao nhiêu?
√
√
C. R = 29.
D. R = 9.
A. R = 3.
B. R = 21.
Câu 6. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
B. 1.
C. −6.
D. 0.
A. .
6
Câu 7. Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm
số y = 3x2 + log3 x + m là:
A. S = (−∞; 2).
B. S = (−∞; ln3).
C. S = [ -ln3; +∞).
D. S = [ 0; +∞).
Câu 8. Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD là hình bình hành. Hình chiếu vng góc của A′
lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc giữa mặt
bên (ABB′ A′ ) và mặt đáy bằng 450 . Tính thể tích khối tứ diện ACB′ D′ theo a.
A. 30a3 .
B. 20a3 .
C. 60a3 .
D. 100a3 .
Câu 9. Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − 1 = 0 và mặt phẳng
(P) : x + y − 3z + m − 1 = 0. Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường trịn có bán kính
lớn nhất.
A. m = −7.
B. m = 7.
C. m = 5.
D. m = 9.
Câu 10. Cho a, b là hai số thực dương bất kì. Mệnh đề nào dưới đây đúng?
a
ln a
.
A. ln(ab2 ) = ln a + (ln b)2 .
B. ln( ) =
b
ln b
2
C. ln(ab ) = ln a + 2 ln b.
D. ln(ab) = ln a. ln b .
Câu 11. Cho hình phẳng (H) giới hạn bởi các đường y = x2 ; y = 0; x = 2 Tính thể tích V của khối trịn
xoay tạo thành khi quay (H) quanh trục Ox.
8π
32π
32
8
A. V =
.
B. V =
.
C. V = .
D. V = .
3
5
5
3
Câu 12. Tìm tất cả các giá trị của tham số m để hàm số y = mx − sin xđồng biến trên R.
A. m > 1.
B. m ≥ 1.
C. m ≥ −1.
D. m ≥ 0.
√
Câu
√ 13. Cho hình chóp S .ABC có S A⊥(ABC). Tam giác ABC vuông cân tại B và S A = a 6, S B =
a 7. Tính góc giữa SC và mặt phẳng (ABC).
A. 1200 .
B. 600 .
C. 300 .
D. 450 .
Trang 1/5 Mã đề 001
√
Câu 14. Cho hàm số y = x− 2017 . Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm
số?
A. Khơng có tiệm cận ngang và có một tiệm cận đứng.
B. Có một tiệm cận ngang và một tiệm cận đứng. .
C. Có một tiệm cận ngang và khơng có tiệm cận đứng.
D. Khơng có tiệm cận.
Câu 15. Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2). Tìm tọa độ
điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450 .
A. C(1; 5; 3).
B. C(3; 7; 4).
C. C(−3; 1; 1).
D. C(5; 9; 5).
Câu 16. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4). Tìm tọa độ trung
điểm I của đoạn thẳng AB.
A. I(0; 1; −2).
B. I(1; 1; 2).
C. I(0; −1; 2).
D. I(0; 1; 2).
Câu 17. Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD là hình bình hành. Hình chiếu vng góc của A′
lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc giữa mặt
bên (ABB′ A′ ) và mặt đáy bằng 450 . Tính thể tích khối tứ diện ACB′ D′ theo a.
A. 100a3 .
B. 30a3 .
C. 20a3 .
D. 60a3 .
Câu 18. Cho 0 < a , 1; 0 < x , 2. Đẳng thức nào sau đây là sai?
A. loga x2 = 2loga x.
B. aloga x = x.
1
C. loga (x − 2)2 = 2loga (x − 2).
D. loga2 x = loga x .
2
Câu 19. Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (−2; 3; 1).
B. M ′ (−2; −3; −1).
C. M ′ (2; 3; 1).
D. M ′ (2; −3; −1).
Câu 20. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3). Biết C là
một điểm trên mặt phẳng (P):x + z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM,
AN để tứ giác ABCD là hình thoi. Tọa độ điểm C là:
21
C. C(20; 15; 7).
D. C(6; 21; 21).
A. C(6; −17; 21).
B. C(8; ; 19).
2
Câu 21. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
A. −6.
B.
.
C. 1.
D. 0.
6
ax + b
Câu 22. Cho hàm số y =
có đồ thị như hình vẽ bên. Kết luận nào sau đây là sai?
cx + d
A. ab < 0 .
B. ad > 0 .
C. ac < 0.
D. bc > 0 .
Câu R23. Kết quả nào đúng?
R
A. sin2 x cos x = cos2 x. sin x + C.
B. sin2 x cos x = −cos2 x. sin x + C.
R
R
sin3 x
sin3 x
+ C.
D. sin2 x cos x = −
+ C.
C. sin2 x cos x =
3
3
Câu 24. Phương trình tiếp tuyến với đồ thị hàm số y = log5 x tại điểm có hồnh độ x = 5 là:
x
1
x
1
A. y =
+1−
.
B. y =
−
.
5 ln 5
ln 5
5 ln 5 ln 5
x
1
x
C. y =
−1+
.
D. y =
+ 1.
5 ln 5
ln 5
5 ln 5
3
Câu 25. Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) và đáy
2
là đường trịn nằm hồn tồn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn
nhất.
√
√
√
2π
4 3π
A. √ .
B. 2 3π.
C.
.
D. 4 3π.
3
3
Trang 2/5 Mã đề 001
x2 + 2x
Câu 26. Khoảng cách giữa hai điểm cực trị của đồ thị hàm số y =
là:
x−1
√
√
√
√
A. −2 3.
B. 2 3.
C. 2 15.
D. 2 5.
√3
a2 b
Câu 27. Biết loga b = 2, loga c = 3 với a, b, c > 0; a , 1. Khi đó giá trị của loga (
) bằng
c
2
1
A. .
B. 5.
C. − .
D. 6.
3
3
Câu 28. Cho tam giác ABC vuông tại A, AB = a, BC = 2a. Tính thể tích khối nón nhận được khi quay
tam giác √
ABC quanh trục AB.
3
√
πa 3
.
B. πa3 .
C. 3πa3 .
D. πa3 3.
A.
3
Câu 29. Cho a > 1, a , 0 Tìm mệnh đề đúng trong các mệnh đề sau:
A. loga (xy) = loga x.loga y.
B. loga x có nghĩa với ∀x ∈ R.
C. loga 1 = a và loga a = 0.
D. loga xn = log 1 x , (x > 0, n , 0).
an
√
Câu 30. Cho hình chóp S .ABC có S A⊥(ABC), S A = a 3. Tam giác ABC vuông cân tại B, AC = 2a.
Thể tích khối chóp S .ABC là √
√
√
√
a3 3
a3 3
2a3 3
3
A. a 3 .
B.
.
C.
.
D.
.
3
6
3
Câu 31. Trong hệ tọa độ Oxyz, cho A(1;
kính AB có phương trình
√ 2; 3), B(−3; 0; 1). Mặt2 cầu đường
2
2
2
2
B. (x + 1) + (y − 1) + (z − 2)2 = 24.
A. (x + 1) + (y − 1) + (z − 2) = 6.
C. (x + 1)2 + (y − 1)2 + (z − 2)2 = 6.
D. (x − 1)2 + (y + 1)2 + (z + 2)2 = 6.
2x − 3
Câu 32. Với giá trị nào của tham số m thì hàm số y =
đạt giá trị lớn nhất trên đoạn [1; 3] bằng
x + m2
1
:
4
√
A. m = ±3.
B. m = ± 3.
C. m = ±1.
D. m = ±2.
Câu 33. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
.
C. −6.
D. 0.
A. 1.
B.
6
Câu 34. Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A. y = −x4 + 2x2 .
B. y = −2x4 + 4x2 .
C. y = −x4 + 2x2 + 8.
Câu 35. Tính đạo hàm của hàm số y = 5 x+cos3x
A. y′ = 5 x+cos3x ln 5 .
C. y′ = (1 + 3 sin 3x)5 x+cos3x ln 5 .
D. y = x3 − 3x2
.
B. y′ = (1 − sin 3x)5 x+cos3x ln 5 .
D. y′ = (1 − 3 sin 3x)5 x+cos3x ln 5.
Câu 36. Hàm số nào trong các hàm số sau đồng biến trên R.
A. y = x3 + 3x2 + 6x − 1.
B. y = x4 + 3x2 .
4x + 1
.
D. y = −x3 − x2 − 5x.
C. y =
x+2
−u = (2; 1; 3),→
−v = (−1; 4; 3). Tìm tọa độ của véc
Câu 37. Trong không gian với hệ trục tọa độ Oxyz cho →
−u + 3→
−v .
tơ 2→
−u + 3→
−v = (3; 14; 16).
−u + 3→
−v = (1; 14; 15).
A. 2→
B. 2→
−u + 3→
−v = (2; 14; 14).
−u + 3→
−v = (1; 13; 16).
C. 2→
D. 2→
Câu 38. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vng góc với mặt phẳng
(ABC),
√ S A = 2a. Gọi α là số đo góc giữa đường thẳng S√B và mp(S AC). Tính giá√trị sin α.
15
1
15
5
A.
.
B. .
C.
.
D.
.
5
2
10
3
Trang 3/5 Mã đề 001
Câu 39. Chọn mệnh đề đúng trong các mệnh đề sau:
R
R
e2x
2x
+ C.
B. 5 x dx =5 x + C .
A. e dx =
2
R
R
(2x + 1)3
C. sin xdx = cos x + C .
D. (2x + 1)2 dx =
+C .
3
Câu 40. Hàm số y = x3 − 3x2 + 1 có giá trị cực đại là:
A. 4.
B. −3.
C. 1.
D. 2.
Câu 41. Cho hàm số y = x2 − x + m có đồ thị là (C). Tìm tất cả các giá trị của tham số m để tiếp tuyến
của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2).
A. m = 4.
B. m = 2.
C. m = 3.
D. m = 1.
Câu 42. Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A(1; 2; 3)
−n (2; 1; −4).
và có một véc tơ pháp tuyến là →
A. 2x + y − 4z + 5 = 0.
B. −2x − y + 4z − 8 = 0.
C. 2x + y − 4z + 1 = 0.
D. 2x + y − 4z + 7 = 0.
Câu 43. Tìm tất cả các giá trị của tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhất và nhỏ nhất
trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b = −36.
A. m = 0 hoặc m = −10.
B. m = 4.
C. m = 0 hoặc m = −16.
D. m = 1.
cos x
π
Câu 44. Biết hàm F(x) là một nguyên hàm của hàm f (x) =
và F(− ) = π. Khi đó giá trị
sin x + 2 cos x
2
F(0) bằng:
6π
6π
1
3π
1
6π
A. .
B. ln 2 + .
C. ln 2 + .
D. ln 2 + .
5
5
4
2
5
5
2
x
Câu 45. Tính tích tất cả các nghiệm của phương trình (log2 (4x))2 + log2 ( ) = 8
8
1
1
1
1
A. .
B. .
C.
.
D. .
64
6
128
32
Câu 46. Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh
của hình √
nón đỉnh S và đáy là hình√trịn nội tiếp tứ giác ABCD
√
√ bằng
πa2 17
πa2 17
πa2 15
πa2 17
.
B.
.
C.
.
D.
.
A.
8
4
6
4
√
Câu 47. Cho bất phương trình 3 2(x−1)+1 − 3 x ≤ x2 − 4x + 3. Tìm mệnh đề đúng.
A. Bất phương trình đúng với mọi x ∈ [ 1; 3].
B. Bất phương trình đúng với mọi x ∈ (4; +∞).
C. Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
D. Bất phương trình vơ nghiệm.
Câu 48. Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + 1 có hai điểm
cực trị nằm về hai phía trục Ox.
1
A. m < −2.
B. m > 2 hoặc m < −1. C. m > 1 hoặc m < − . D. m > 1.
3
Câu 49. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x + y − 2z + 1 = 0.
A. (x − 1)2 + (y − 2)2 + (z − 4)2 = 1.
B. (x − 1)2 + (y + 2)2 + (z − 4)2 = 1.
C. (x − 1)2 + (y − 2)2 + (z − 4)2 = 2.
D. (x − 1)2 + (y − 2)2 + (z − 4)2 = 3.
Câu 50. Trong không gian với hệ trục tọa độ Oxyz, gọi (P)
√ là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)
3 2
và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng
. Giả sử phương trình mặt phẳng (P) có dạng
2
ax + by + cz + 2 = 0. Tính giá trị abc.
A. −4.
B. −2.
C. 4.
D. 2.
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001