TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {5; 3}.
D. {3; 3}.
Câu 2. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 9.
C. 13.
D. 0.
Câu 3. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
Câu 4. Dãy số nào có giới hạn bằng 0?
n3 − 3n
.
B. un = n2 − 4n.
A. un =
n+1
!n
6
C. un =
.
5
!n
−2
D. un =
.
3
2
Câu 5. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 8.
C. 5.
D. 6.
Câu 6. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 8%.
C. 0, 7%.
D. 0, 5%.
1
Câu 7. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.
x2 − 5x + 6
Câu 8. Tính giới hạn lim
x→2
x−2
A. 1.
B. 0.
C. −1.
D. 5.
[ = 60◦ , S O
Câu 9. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√
√ với mặt đáy và S O = a.√Khoảng cách từ A đến (S BC) bằng
√
2a 57
a 57
a 57
.
B.
.
C. a 57.
D.
.
A.
19
19
17
Câu 10. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 20.
C. 3, 55.
D. 24.
Câu 11. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp √
S .ABCD là
√ S H ⊥ (ABCD), S A =
3
3
3
4a 3
2a
2a 3
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 12. [2]√Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8
A. m = ± 3.
B. m = ± 2.
C. m = ±1.
D. m = ±3.
2x + 1
Câu 13. Tính giới hạn lim
x→+∞ x + 1
1
A. .
B. 2.
C. −1.
D. 1.
2
Câu 14. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 7.
B. 9.
C. 5.
D. 0.
Trang 1/10 Mã đề 1
Câu 15. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
A. 27.
B. 12.
C. 18.
D.
2
Câu 16. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
13
23
9
A. − .
B.
.
C. −
.
D.
.
16
100
100
25
Câu 17. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 4 mặt.
D. 3 mặt.
Câu 18. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 12.
B. 10.
C. 11.
D. 4.
Câu 19. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
18
6
9
15
x+1
bằng
Câu 20. Tính lim
x→−∞ 6x − 2
1
1
1
A. .
B. 1.
C. .
D. .
6
3
2
Câu 21. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m > 3.
D. m < 3.
Câu 22. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là
√
√
√
a3 6
a3 5
a3 15
3
.
B. a 6.
.
D.
.
C.
A.
3
3
3
Câu 23. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √
√
√
a3 3
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
8
4
4
12
Câu 24. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. 4.
D. .
8
4
2
Câu 25. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.
B. 1.
C. 0.
D. 2.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m ≤ 0.
D. m < 0 ∨ m = 4.
Câu 26. [1226d] Tìm tham số thực m để phương trình
A. m < 0.
B. m < 0 ∨ m > 4.
Trang 2/10 Mã đề 1
x−1 y z+1
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. −x + 6y + 4z + 5 = 0.
C. 10x − 7y + 13z + 3 = 0.
D. 2x − y + 2z − 1 = 0.
Câu 27. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
Câu 28. Phát biểu nào sau đây là sai?
1
= 0 với k > 1.
nk
1
C. lim un = c (Với un = c là hằng số).
D. lim √ = 0.
n
!
1
1
1
Câu 29. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. +∞.
B. 2.
C. .
D. .
2
2
A. lim qn = 1 với |q| > 1.
Câu 30. Hàm số y =
A. x = 3.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 2.
B. lim
C. x = 1.
Câu 31. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. −2 + 2 ln 2.
C. e.
√
Câu 32. Thể tích của khối lập phương
có
cạnh
bằng
a
2
√
3
√
2a 2
A. V = 2a3 .
B.
.
C. V = a3 2.
3
D. x = 0.
D. 1.
√
D. 2a3 2.
Câu 33. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng
√M + m
√
√
C. 8 3.
D. 7 3.
A. 16.
B. 8 2.
Câu 34. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≤ 3.
C. m > 3.
D. m ≥ 3.
Câu 35. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 36. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một mơn nằm cạnh nhau là
1
2
9
1
A.
.
B. .
C.
.
D. .
10
5
10
5
ln2 x
m
Câu 37. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 24.
C. S = 32.
D. S = 22.
x+2
Câu 38. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. 1.
C. 2.
D. Vô số.
Câu 39. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (1; −3).
C. (−1; −7).
D. (0; −2).
Trang 3/10 Mã đề 1
Câu 40. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là
√
a3 3
2a3 3
a3 3
.
B.
.
C.
.
A.
6
3
3
!x
1
1−x
Câu 41. [2] Tổng các nghiệm của phương trình 3 = 2 +
là
9
A. − log2 3.
B. 1 − log2 3.
C. log2 3.
n−1
Câu 42. Tính lim 2
n +2
A. 2.
B. 1.
C. 0.
√
√
⊥ (ABCD). Mặt bên (S CD)
√
D. a3 3.
D. − log3 2.
D. 3.
Câu 43. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
9
3
B. m ≥ 0.
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
A. 0 < m ≤ .
4
4
4
!
5 − 12x
Câu 44. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 3.
B. Vơ nghiệm.
C. 1.
D. 2.
2
2
Câu 45. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 13.
C. log2 13.
D. 2020.
Câu 46. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√
√ N, P bằng
√
√
14 3
20 3
.
B. 6 3.
C.
.
D. 8 3.
A.
3
3
x−2
Câu 47. Tính lim
x→+∞ x + 3
2
A. − .
B. 2.
C. −3.
D. 1.
3
Câu 48. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 14.
C. ln 12.
D. ln 10.
Câu 49. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = S h.
B. V = 3S h.
C. V = S h.
3
3
2
Câu 50. Hàm số y = x − 3x + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 3.
C. 1.
1
D. V = S h.
2
D. 0.
Câu 51. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 52. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
C. Khối lập phương.
D. Khối bát diện đều.
Câu 53. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (1; +∞).
log(mx)
Câu 54. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m = 4.
C. m < 0.
D. m < 0 ∨ m > 4.
Trang 4/10 Mã đề 1
Câu 55. Cho
√
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
B. |z| = 10.
C. |z| = 17.
D. |z| = 17.
A. |z| = 10.
log 2x
Câu 56. [3-1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 log 2x
1
1 − 4 ln 2x
1 − 2 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 =
.
D. y0 = 3
.
3
3
x
2x ln 10
2x ln 10
x ln 10
√
Câu 57. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. .
B. −3.
C. − .
D. 3.
3
3
[ = 60◦ , S O
Câu 58. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S
√
2a 57
a 57
a 57
.
B.
.
C.
.
D. a 57.
A.
17
19
19
Câu 59. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 60. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 8.
C. 10.
D. 6.
Câu 61. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 12 m.
C. 8 m.
D. 24 m.
2
Câu 62. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
là
cùng vng góc với đáy, S C = a 3. Thể tích khối chóp S .ABCD
√
√
3
3
a
a
3
a3 3
3
A. a .
B.
.
C.
.
D.
.
3
3
9
Câu 63. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 16 tháng.
C. 15 tháng.
D. 17 tháng.
Câu 64. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 2.
C. 5.
D. 3.
Câu 65. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m > 0.
C. m = 0.
D. m < 0.
Câu 66. Hàm số y = −x + 3x − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (−∞; 1).
C. R.
D. (0; 2).
3
2
Câu 67. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 68. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là
√
√
3
3
a 6
a3 3
a3 2
a 3
.
B.
.
C.
.
D.
.
A.
48
48
24
16
Câu 69. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
Trang 5/10 Mã đề 1
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
= 0.
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
√
Câu 70. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 2 nghiệm.
B. 3 nghiệm.
C. 1 nghiệm.
D. Vô nghiệm.
Câu 71.
Z Các khẳng định
Z nào sau đây là sai?
Z
C.
!0
f (x)dx = f (x).
f (x)dx, k là hằng số.
B.
Z
Z
Z
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
k f (x)dx = k
A.
Z
Câu 72. Khối lập phương thuộc loại
A. {5; 3}.
B. {3; 3}.
C. {3; 4}.
D. {4; 3}.
√
Câu 73. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√
√
√ tích khối chóp S .ABC3 √
a 6
a3 2
a3 6
a3 6
.
B.
.
C.
.
D.
.
A.
18
36
6
6
Câu 74. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac
3b + 2ac
3b + 2ac
.
B.
.
C.
.
D.
.
A.
c+3
c+2
c+1
c+2
π
Câu 75. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu thức T = a + b 3.
√
√
C. T = 4.
D. T = 2 3.
A. T = 2.
B. T = 3 3 + 1.
Câu 76.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 3.
B. 2.
C. 5.
D. 1.
√
2
Câu 77. [1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. 64.
D. Vô số.
Câu 78. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 3.
B. 1.
C. 2.
D. +∞.
2
2n − 1
Câu 79. Tính lim 6
3n + n4
2
A. 1.
B. .
C. 0.
D. 2.
3
Câu 80. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 40 .(3)10
C 20 .(3)30
C 10 .(3)40
C 20 .(3)20
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
2
2x
Câu 81. [2-c] Giá trị nhỏ nhất của hàm số y = (x − 2)e trên đoạn [−1; 2] là
A. −e2 .
B. −2e2 .
C. 2e2 .
D. 2e4 .
Câu 82. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
Trang 6/10 Mã đề 1
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.
B. 3.
C. 4.
Câu 83. [12214d] Với giá trị nào của m thì phương trình
A. 2 < m ≤ 3.
B. 0 < m ≤ 1.
Câu 84. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 5.
D. 2.
1
3|x−2|
= m − 2 có nghiệm
C. 0 ≤ m ≤ 1.
D. 2 ≤ m ≤ 3.
C. 2.
D. 4.
Câu 85.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
A.
.
B.
.
C.
.
2
4
12
√
√
x
+
3
+
6−x
Câu 86. Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
√
√
A. 2 + 3.
B. 2 3.
C. 3.
D.
3
.
4
√
D. 3 2.
d = 30◦ , biết S BC là tam giác đều
Câu 87. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
9
16
26
13
Câu 88. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R.
C. D = (0; +∞).
Câu 89. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 1.
B. f 0 (0) = 10.
C. f 0 (0) =
1
.
ln 10
D. D = R \ {1}.
D. f 0 (0) = ln 10.
Câu 90. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 10 năm.
D. 13 năm.
Câu 91. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 32π.
C. 8π.
D. 16π.
Câu 92. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
C. 4a.
A. 3a.
B.
2
1
Câu 93. [1] Giá trị của biểu thức log √3
bằng
10
1
A. −3.
B. 3.
C. − .
3
Câu 94. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
a3 5
a3 5
a3 5
A.
.
B.
.
C.
.
12
4
6
d = 120◦ .
= BC = 2a và ABC
D. 2a.
1
.
3
= 2a và tam giác S AD vuông
D.
√
a3 3
D.
.
12
Trang 7/10 Mã đề 1
!4x
!2−x
2
3
Câu 95. Tập các số x thỏa mãn
≤
là
#
" 3
! 2
2
2
B. − ; +∞ .
A. −∞; .
5
3
"
!
2
C.
; +∞ .
5
#
2
D. −∞; .
3
Câu 96. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
x−3
Câu 97. [1] Tính lim
bằng?
x→3 x + 3
A. 1.
B. −∞.
C. +∞.
D. 0.
Câu 98. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" đây?
!
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới
5
5
B. [3; 4).
C.
;3 .
D. (1; 2).
A. 2; .
2
2
√
ab.
Câu 99. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 100. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
√
4a3 3
8a3 3
a3 3
8a3 3
.
B.
.
C.
.
D.
.
A.
3
9
9
9
Câu 101. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
Câu 102. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. 1 + 2 sin 2x.
C. −1 + 2 sin 2x.
D. 1 − sin 2x.
Câu 103. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hồn nợ ở mỗi tháng là như nhau và ơng A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 2, 25 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 22 triệu đồng.
x3 − 1
Câu 104. Tính lim
x→1 x − 1
A. 0.
B. 3.
C. +∞.
D. −∞.
2
4
3
Câu 105. Cho z là nghiệm của phương trình
√
√ x + x + 1 = 0. Tính P = z + 2z − z
−1 + i 3
−1 − i 3
A. P = 2.
B. P =
.
C. P = 2i.
D. P =
.
2
2
5
Câu 106. Tính lim
n+3
A. 1.
B. 3.
C. 2.
D. 0.
Câu 107. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vơ nghiệm.
B. 2.
C. 1.
D. 3.
Câu 108. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 4 mặt.
D. 9 mặt.
Câu 109. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là 4, phần ảo là 1.
Trang 8/10 Mã đề 1
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 110. Cho hình chóp S .ABC có BAC
(ABC). Thể
√là
√ tích khối chóp S .ABC
√
3
3
√
a 3
a 2
a3 3
2
A.
.
B.
.
C. 2a 2.
D.
.
24
24
12
Câu 111. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 2.
B. +∞.
C. 0.
D. 1.
√
√
Câu 112. Phần thực
√ và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt l √
√
A. Phần thực là √2 − 1, phần ảo là −√ 3.
B. Phần thực là 1√− 2, phần ảo là −√ 3.
D. Phần thực là 2, phần ảo là 1 − 3.
C. Phần thực là 2 − 1, phần ảo là 3.
2
Câu 113. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 2 − log2 3.
C. 3 − log2 3.
D. 1 − log3 2.
Câu 114. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 3.
B. 2.
C. 7.
D. 1.
Câu 115. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d ⊥ P.
C. d song song với (P).
D. d nằm trên P hoặc d ⊥ P.
un
Câu 116. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. −∞.
C. 0.
D. +∞.
Câu 117. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối
√
√
√ chóp S .ABMN là 3 √
3
4a 3
a3 3
5a3 3
2a 3
.
B.
.
C.
.
D.
.
A.
3
3
2
3
Câu 118. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp đôi.
Câu 119. ZCho hai hàmZy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f (x)dx =
A. Nếu
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
0
D. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
6
Câu 120. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
. Tính
3x + 1
Z 1
f (x)dx.
0
A. 6.
B. 2.
Câu 121. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = x + ln x.
C. −1.
D. 4.
C. y0 = ln x − 1.
D. y0 = 1 − ln x.
Câu 122. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 6).
C. (2; 4; 4).
D. (2; 4; 3).
Trang 9/10 Mã đề 1
1
Câu 123. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. 1.
C. −2.
D. −1.
Câu 124. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. m > − .
C. m ≥ 0.
D. − < m < 0.
4
4
1
Câu 125. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = −ey + 1.
B. xy0 = ey + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.
Câu 126. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số mặt của khối chóp bằng 2n+1.
Câu 127. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 6.
C. y(−2) = −18.
D. y(−2) = 2.
Câu 128. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.
C. 9 cạnh.
D. 10 cạnh.
Câu 129. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) − g(x)] = a − b.
B. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
f (x) a
= .
D. lim [ f (x)g(x)] = ab.
C. lim
x→+∞
x→+∞ g(x)
b
Câu 130. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = [2; 1].
C. D = (−2; 1).
2
D. D = R \ {1; 2}.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
C
2.
D
3.
C
4.
D
5. A
C
7.
9.
B
D
B
C
15.
C
12.
B
14.
B
C
20. A
24.
25.
D
27.
B
26.
C
D
28. A
B
31.
D
22.
B
23. A
29.
8.
16.
18. A
21.
C
10. A
11.
13.
6.
30.
C
33. A
C
32.
D
34.
D
35.
C
36.
C
37.
C
38.
C
39.
D
40.
41. A
B
42.
C
C
43.
C
44.
45.
C
46.
B
48.
B
47.
D
49.
C
50.
D
51.
C
52.
D
53. A
54.
55. A
56.
57. A
58.
59.
62.
C
D
B
64. A
B
66.
65. A
67.
D
60.
B
61. A
63.
B
68. A
C
69. A
70. A
1
D
71.
72.
D
73. A
C
75.
77.
74.
B
76.
B
78.
B
79.
D
C
80. A
C
81. A
82.
83. A
84.
D
86.
D
85.
B
87.
D
88.
89.
D
90. A
92.
B
93.
B
94. A
95.
96. A
97.
98.
C
100.
C
101.
102.
C
103.
104.
B
C
B
D
99. A
B
B
D
105. A
106.
D
107.
C
108.
B
109.
C
110.
B
111.
C
112. A
114.
113.
118.
115.
B
116.
117.
C
B
120.
D
C
119. A
D
121. A
122.
B
123.
124.
B
125.
126. A
128.
B
D
130. A
2
C
D
127.
C
129.
C