Tải bản đầy đủ (.pdf) (5 trang)

Đề kiểm tra thpt môn toán (552)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (125.53 KB, 5 trang )

Kiểm tra LATEX

ĐỀ KIỂM TRA THPT MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001

Câu 1. Cho lăng trụ đều ABC.A′ B′C ′ có tất cả các cạnh đều bằng a. Tính khoảng cách giữa hai đường
thẳng AB′ và BC ′ .


3a
5a
2a
a
A. √ .
.
C. √ .
.
B.
D.
2
3
5
5
Câu 2. Kết quả nào đúng?
R
R
sin3 x
A. sin2 x cos x = −


+ C.
B. sin2 x cos x = −cos2 x. sin x + C.
3
3
R
R
sin
x
C. sin2 x cos x =
+ C.
D. sin2 x cos x = cos2 x. sin x + C.
3
x
Câu 3. Giá trị nhỏ nhất của hàm số y = 2
trên tập xác định của nó là
x +1
1
1
B. min y = − .
C. min y = 0.
D. min y = −1.
A. min y = .
R
R
R
R
2
2
Câu 4. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3). Biết C là một
điểm trên mặt phẳng (P):x + z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN

để tứ giác ABCD là hình thoi. Tọa độ điểm C là:
21
C. C(6; −17; 21).
D. C(6; 21; 21).
A. C(20; 15; 7).
B. C(8; ; 19).
2
Câu 5. Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (−2; −3; −1).
B. M ′ (2; 3; 1).
C. M ′ (2; −3; −1).
D. M ′ (−2; 3; 1).
Câu 6. Đồ thị hàm số nào sau đây có vơ số đường tiệm cận đứng?
A. y = sin x.
B. y = x3 − 2x2 + 3x + 2.
3x + 1
.
D. y = tan x.
C. y =
x−1

x
Câu 7. Đồ thị hàm số y = ( 3 − 1) có dạng nào trong các hình H1, H2, H3, H4 sau đây?
A. (H3).
B. (H4).
C. (H1).
D. (H2) .
Câu 8. Cho 0 < a , 1; 0 < x , 2. Đẳng thức nào sau đây là sai?
A. loga x2 = 2loga x.

B. aloga x = x.
1
C. loga2 x = loga x.
D. loga (x − 2)2 = 2loga (x − 2).
2
Câu 9. Cho hàm số y = f (x) có đồ thị của y = f ′ (3 − 2x) như hình vẽ sau:









3
Có bao nhiêu giá trị nguyên của tham số m ∈ [−2021; 2021] để hàm số g(x) = f (

x + 2021x


+ m)

có ít nhất 5 điểm cực trị?
A. 2022.
B. 2021.

C. 2019.

D. 2020.


Câu 10. Cho hình chóp đều S .ABCD có cạnh đáy bằng a. Tính khoảng cách từ điểm A đến mặt phẳng
(S BD) theo a.


a 2
a
.
C. a 2.
D. .
A. 2a.
B.
2
2
Câu 11. Thiết diện qua trục của một hình nón là một tam giác đều cạnh có độ dài bằng a. Tính diện tích
tồn phần S tp của hình nón đó.
5
3
1
A. S tp = πa2 .
B. S tp = πa2 .
C. S tp = πa2 .
D. S tp = πa2 .
4
4
4
Trang 1/5 Mã đề 001




Câu 12. Cho hình thang cong (H) giới hạn bởi các đường y = x, y = 0, x = 0, x = 4. Đường thẳng
x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích là S 1 và S 2 như hình vẽ. Để S 1 = 4S 2 thì giá
trị k thuộc khoảng nào sau đây?
A. (3, 3; 3, 5)·.
B. (3, 1; 3, 3)·.
C. (3, 5; 3, 7)·.
D. (3, 7; 3, 9)·.
Câu 13. Cho đa giac đêu 12 đinh. Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac. Xac suât đê 3đinh
đươc chon tao thanh tam giac đêu la
1
1
1
1
B. P = .
C. P = .
D. P =
.
A. P = .
55
4
14
220
Câu 14. Điểm M trong hình vẽ bên dưới biểu thị cho số phức. Khi đó số phức w = 4z là
A. w = −8 − 12i.
B. w = −8 − 12i.
C. w = −8 + 12i.
D. w = 8 + 12i.
Câu 15. Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − 1 = 0. Một véc tơ pháp tuyến của (P)

−n = (1; −2; 3).

−n = (1; 2; 3).
−n = (1; −2; −1).
−n = (1; 3; −2).
A. →
B. →
C. →
D. →
ax + b
có đồ thị là đường cong trong hình vẽ bên. Tọa độ giao điểm của đồ thị
cx + d
hàm số đã cho và trục hoành là
A. (3; 0 ).
B. (0 ; 3). .
C. (2 ; 0).
D. (0 ; −2).

Câu 16. Cho hàm số y =

Câu 17. Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = 8 − 17i. Khi đó hiệu phần thực và phần ảo
của z là
A. 7.
B. 3.
C. −3.
D. −7.
4 − 2i (1 − i)(2 + i)
Câu 18. Phần thực của số phức z =
+

2−i
2 + 3i

29
11
29
11
A. − .
B. − .
C. .
D. .
13
13
13
13
Câu 19. Tìm số phức liên hợp của số phức z = i(3i + 1).
A. z = −3 − i.
B. z = 3 − i.
C. z = −3 + i.
D. z = 3 + i.
Câu 20. Trong các kết luận sau, kết luận nào sai
A. Mô-đun của số phức z là số thực dương.
C. Mô-đun của số phức z là số phức.

B. Mô-đun của số phức z là số thực không âm.
D. Mô-đun của số phức z là số thực.

4(−3 + i) (3 − i)2
Câu 21. Cho số phức z thỏa mãn z =
+
. Mô-đun của số phức w = z − iz + 1 là
−i



√ 1 − 2i

A. |w| = 4 5.
B. |w| = 6 3.
C. |w| = 48.
D. |w| = 85.





z2




Câu 22. Cho số phức z1 = 2 + 3i, z2 = 5 − i. Giá trị của biểu thức

z1 +


z1


C. 13.
D. 5.
A. 5.
B. 11.
Câu 23. Phần thực của số phức z = 1 + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 là

A. 21008 .
B. −21008 .
C. −21008 + 1.
D. −22016 .
(1 + i)(2 − i)
Câu 24. Mô-đun của số phức z =

1 + 3i


A. |z| = 2.
B. |z| = 5.
C. |z| = 1.
D. |z| = 5.
Câu 25. Cho hai
√ số phức z1 = 1 + i và z2√= 2 − 3i. Tính mơ-đun của số phức z1 + z2 .
B. |z1 + z2 | = 13.
C. |z1 + z2 | = 1.
D. |z1 + z2 | = 5.
A. |z1 + z2 | = 5.
Câu 26. Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với mọi x ∈ R. Hàm số đã cho đồng
biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (2; +∞).
C. (−∞; 1).
D. (1; 2).
R4
R4
R4
Câu 27. Nếu −1 f (x) = 2 và −1 g(x) = 3 thì −1 [ f (x) + g(x)] bằng

A. −1.
B. 5.
C. 1.
D. 6 .
Trang 2/5 Mã đề 001


Câu 28. Tập nghiệm của bất phương trình 2 x+1 < 4 là
A. (−∞; 1].
B. [1; +∞).
C. (1; +∞).

D. (−∞; 1).

Câu 29. Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 +
y2 + 24x)?
A. 48 .
B. 90 .
C. 89.
D. 49 .
Câu 30. Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời
tổng hai số ghi trên chúng là số chẵn bằng
9
1
18
4
B.
.
C. .

D. .
A. .
35
35
7
35
4
2
Câu 31. Cho hàm số y = ax + bx + c có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị
hàm số đã cho có tọa độ là
A. (1; 0).
B. (−1; 2).
C. (1; 2).
D. (0; 1).
Câu 32. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số
đã cho là
A. −1.
B. 2 .
C. 3 .
D. 0 .
Câu 33. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực
trị?
A. 15 .
B. 7.
C. 17.
D. 3.
Câu 34. Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2. Tìm giá trị lớn nhất của biểu thức
S = a√
+ 2b.




B. 15.
C. 5.
D. 10.
A. 2 5.
1
2
=
Câu 35. (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện +
z1 z2



×