Kiểm tra LATEX
ĐỀ KIỂM TRA THPT MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001
Câu 1.√ Bất đẳng thức
√ nào πsau đây là đúng?
e
A. ( √3 − 1) < ( √3 − 1) .
π
e
C. ( 3 + 1) > ( 3 + 1) .
B. 3π < 2π .
D. 3−e > 2−e .
Câu 2. Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?
A. y = x3 .
B. y = x2 − 2x + 2.
C. y = x3 − 2x2 + 3x + 2.
D. y = −x4 + 3x2 − 2.
Câu 3. Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (−2; 3; 1).
B. M ′ (2; −3; −1).
C. M ′ (2; 3; 1).
D. M ′ (−2; −3; −1).
Câu 4. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
A. .
B. −6.
C. 1.
D. 0.
6
Câu 5. Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =
x3 + 6x2 + mx − 2 đi qua điểm (11;1)?
A. m = 13.
B. m = −2.
C. m = 3.
D. m = −15.
π
π
π
x
và F( ) = √ . Tìm F( )
Câu 6. Biết F(x) là một nguyên hàm của hàm số f (x) =
2
cos x
3
4
3
π ln 2
π
π ln 2
π
π ln 2
π
π ln 2
π
.
B. F( ) = +
.
C. F( ) = −
.
D. F( ) = −
.
A. F( ) = +
4
3
2
4
4
2
4
4
2
4
3
2
Câu 7. Số nghiệm của phương trình 9 x + 5.3 x − 6 = 0 là
A. 0.
B. 1.
C. 2.
D. 4.
1
Câu 8. Kết luận nào sau đây về tính đơn điệu của hàm số y = là đúng?
x
A. Hàm số nghịch biến trên R.
B. Hàm số đồng biến trên R.
C. Hàm số nghịch biến trên (0; +∞).
D. Hàm số đồng biến trên (−∞; 0) ∪ (0; +∞).
Câu 9. Cho số phức z1 = 3 − 4i; z2 = 1 − i, phần ảo của số phức z1 .z2 bằng
A. 1.
B. 7.
C. −1.
D. −7.
−
→
Câu 10. Trong không gian Oxyz, cho hai mặt phẳng
√ (P) và (Q) lần lượt có hai vectơ pháp tuyến là nP và
3
−
−
→ −
→
Góc giữa hai mặt phẳng (P) và (Q) bằng.
n→
Q . Biết cosin góc giữa hai vectơ nP và nQ bằng −
2
◦
◦
A. 60 .
B. 30 .
C. 45◦ .
D. 90◦ .
Câu 11. Cân phân công 3 ban tư môt tô 10 ban đê lam trưc nhât. Hoi co bao nhiêu cach phân công khac
nhau.
3
A. 103 .
B. A310 .
C. C10
.
D. 310 .
Câu 12. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên.
Số giá trị nguyên của tham số m để phương f (x + m) = m có ba nghiệm phân biệt?
A. 1.
B. 0.
C. 3.
D. 2.
Câu 13. Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) và điểmM(1; 2; 2)thuộc mặt cầu.
Phương trình của (S ) là
√
A. (x + 1)2 + (y + 4)2 + (z − 2)2 = 40.
B. (x + 1)2 + (y + 4)2 + (z − 2)2 = 40.
C. (x − 1)2 + (y − 4)2 + (z + 2)2 = 10.
D. (x − 1)2 + (y − 4)2 + (z + 2)2 = 40.
Trang 1/5 Mã đề 001
Câu 14. Cho hàm số y = f (x) có đồ thị của y = f ′ (3 − 2x) như hình vẽ sau:
3
Có bao nhiêu giá trị nguyên của tham số m ∈ [−2021; 2021] để hàm số g(x) = f (
x + 2021x
+ m)
có ít nhất 5 điểm cực trị?
A. 2022.
B. 2019.
C. 2020.
D. 2021.
y−6
z+2
x−2
Câu 15. Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1 :
=
=
và
2
−2
1
x−4 y+1 z+2
d2 :
=
=
. Gọi mặt phẳng (P) là chứa d1 và (P)song song với đường thẳng d2 . Khoảng
1
3
−2
cách từ điểm M(1; 1; 1) đến (P) bằng
√
3
2
1
C. 10.
A. √ .
B. √ .
D. √ .
3 10
5
53
Câu 16. Tính đạo hàm của hàm số y = 5 x
5x
A. y′ = 5 x ln 5.
B. y′ =
.
C. y′ = x.5 x−1 .
ln 5
Câu 17. Tìm số phức liên hợp của số phức z = i(3i + 1).
B. z = 3 − i.
C. z = −3 + i.
A. z = −3 − i.
D. y′ = 5 x .
D. z = 3 + i.
z2
Câu 18. Cho số phức z1 = 2 + 3i, z2 = 5 − i. Giá trị của biểu thức
z1 +
là
z1
√
√
A. 5.
B. 13.
C. 11.
D. 5.
Câu 19. Với mọi số phức z, ta có |z + 1|2 bằng
A. z2 + 2z + 1.
B. z · z + z + z + 1.
C. z + z + 1.
D. |z|2 + 2|z| + 1.
Câu 20. Cho z là một số phức. Xét các mệnh đề sau :
I. Nếu z = z thì z là số thực.
II. Mô-đun
√ của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z.
III. |z| = z · z
A. 2.
B. 0.
C. 3.
D. 1.
Câu 21. Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = 8 − 17i. Khi đó hiệu phần thực và phần ảo
của z là
A. 3.
B. −7.
C. 7.
D. −3.
√
Câu 22. Cho số phức z = (m − 1) + (m + 2)i với m ∈ R. Tập hợp tất các giá trị của m để |z| ≤ 5 là
A. m ≥ 0 hoặc m ≤ −1. B. m ≥ 1 hoặc m ≤ 0. C. 0 ≤ m ≤ 1.
D. −1 ≤ m ≤ 0.
Câu 23. Cho số phức z = 2 + 5i. Tìm số phức w = iz + z.
A. w = 7 − 3i.
B. w = 3 + 7i.
C. w = −3 − 3i.
D. w = −7 − 7i.
Câu 24. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 1.
B. A = 0.
C. A = 2ki.
D. A = 2k.
Câu 25. Cho số phức z = a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A. z + z = 2bi.
B. |z2 | = |z|2 .
C. z − z = 2a.
D. z · z = a2 − b2 .
R4
R4
R4
Câu 26. Nếu −1 f (x) = 2 và −1 g(x) = 3 thì −1 [ f (x) + g(x)] bằng
A. 6 .
B. −1.
C. 5.
D. 1.
1
Câu 27. Cho cấp số nhân (un ) với u1 = 2 và công bội q = . Giá trị của u3 bằng
2
7
1
1
A. .
B. .
C. .
D. 3.
2
2
4