Kiểm tra LATEX
ĐỀ KIỂM TRA THPT MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001
√
Câu 1. Cho hình phẳng (D) giới hạn bởi các đường y = x, y = x, x = 2 quay quanh trục hồnh. Tìm
thể tích V của khối tròn xoay tạo thành?
10π
π
B. V = 1.
C. V =
.
D. V = π.
A. V = .
3
3
Câu 2. Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − 5 = 0. Bán kính R
của (S) bằng
√
√ bao nhiêu?
B. R = 21.
C. R = 3.
D. R = 9.
A. R = 29.
Câu R3. Công thức nào sai?
A. R e x = e x + C.
C. cos x = sin x + C.
R
B. R sin x = − cos x + C.
D. a x = a x . ln a + C.
Câu 4. Cho hai số thực a, bthỏa√ mãn √a > b > 0. Kết luận nào√sau đây là sai?
√
√
√
5
A. ea > eb .
B. a 2 > b 2 .
C. 5 a < b.
D. a− 3 < b− 3 .
Câu 5. Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm
số y = 3x2 + log3 x + m là:
A. S = (−∞; 2).
B. S = [ -ln3; +∞).
C. S = (−∞; ln3).
D. S = [ 0; +∞).
Câu 6. Cho hình lập phương ABCD.A′ B′C ′ D′ . Tính góc giữa hai đường thẳng AC và BC ′ .
A. 600 .
B. 300 .
C. 450 .
D. 360 .
p
Câu 7. Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) 1 − y. Kết luận nào
sau đây là sai?
A. Nếux > 2 thìy < −15.
B. Nếu 0 < x < 1 thì y < −3.
C. Nếux = 1 thì y = −3.
D. Nếu 0 < x < π thì y > 1 − 4π2 .
x
trên tập xác định của nó là
Câu 8. Giá trị nhỏ nhất của hàm số y = 2
x +1
1
1
A. min y = 0.
B. min y = − .
C. min y = .
D. min y = −1.
R
R
R
R
2
2
Câu 9. Cho hàm số f (x) liên tục trên R. Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
Re2 f (ln x)
2F(0) − G(0) = 1, F(2) − 2G(2) = 4 và F(1) − G(1) = −1. Tính
.
2x
1
A. −6.
B. −4.
C. −2.
D. −8.
Câu 10. Cho cấp số nhân (un ) với u1 = 3 và công bội q = −2. Số hạng thứ 7 của cấp số nhân đó là
A. 384.
B. −192.
C. −384.
D. 192.
Câu 11. Cho hàm số y = f (x) có đồ thị của y = f ′ (3 − 2x) như hình vẽ sau:
3
Có bao nhiêu giá trị nguyên của tham số m ∈ [−2021; 2021] để hàm số g(x) = f (
x + 2021x
+ m)
có ít nhất 5 điểm cực trị?
A. 2019.
B. 2021.
C. 2022.
D. 2020.
Câu 12. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên.
Số giá trị nguyên của tham số m để phương f (x + m) = m có ba nghiệm phân biệt?
A. 2.
B. 0.
C. 1.
D. 3.
Câu 13. Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình bên. Điểm cực đại của đồ thị
hàm số đã cho có tọa độ là
A. (0; −3).
B. (−1; −4).
C. (1; −4).
D. (−3; 0).
Trang 1/5 Mã đề 001
Câu 14. Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y + 5z − 2 = 0. Điểm nào dưới đây thuộc
mặt phẳng (P)?
A. M(0 ; 0 ; 2).
B. P(4 ; −1 ; 3).
C. Q(4 ; 4 ; 2).
D. N(1 ; 1 ; 7).
Câu 15. Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − 1 = 0. Một véc tơ pháp tuyến của (P)
là
−n = (1; 3; −2).
−n = (1; −2; 3).
−n = (1; −2; −1).
−n = (1; 2; 3).
A. →
B. →
C. →
D. →
Câu 16. Tập nghiệm của bất phương trình 52x+3 > −1 là
A. (−∞; −3).
B. R.
C. (−3; +∞).
!2016
!2018
1−i
1+i
+
bằng
Câu 17. Số phức z =
1−i
1+i
A. −2.
B. 1 + i.
C. 0.
D. ∅.
D. 2.
Câu 18. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 2ki.
B. A = 2k.
C. A = 0.
D. A = 1.
Câu 19. Phần thực của số phức z = 1 + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 là
A. −22016 .
B. −21008 + 1.
C. 21008 .
D. −21008 .
(1 + i)2017
Câu 20. Số phức z =
có phần thực hơn phần ảo bao nhiêu đơn vị?
21008 i
A. 21008 .
B. 2.
C. 1.
D. 0.
Câu 21. Cho P = 1 + i + i2 + i3 + · · · + i2017 . Đâu là phương án chính xác?
A. P = 1.
B. P = 1 + i.
C. P = 0.
D. P = 2i.
Câu 22. Tìm số phức liên hợp của số phức z = i(3i + 1).
A. z = 3 + i.
B. z = −3 + i.
C. z = 3 − i.
D. z = −3 − i.
Câu 23. Cho z là một số phức. Xét các mệnh đề sau :
I. Nếu z = z thì z là số thực.
II. Mô-đun
√ của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z.
III. |z| = z · z
A. 0.
B. 3.
C. 1.
D. 2.
Câu 24. Cho số phức z = a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A. z · z = a2 − b2 .
B. |z2 | = |z|2 .
C. z − z = 2a.
D. z + z = 2bi.
Câu 25. Cho số phức z1 = 3 − 2i. Khi đó số phức w = 2z − 3z là
A. −3 + 2i.
B. −3 − 2i.
C. −3 − 10i.
D. 11 + 2i.
Câu 26. Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn
z + 2i
= 1 là một
đường tròn. Tâm của đường tròn đó có tọa độ là
A. (0; 2).
B. (2; 0).
C. (0; −2).
D. (−2; 0).
800π
. Gọi A và B là hai điểm thuộc
3
đường tròn đáy sao cho AB = 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng
√
√
24
5
A. .
B.
.
C. 4 2.
D. 8 2.
5
24
Câu 28. Cho hàm số f (x) liên tục trên R. Gọi
R 2 F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4) + G(4) = 4 và F(0) + G(0) = 1. Khi đó 0 f (2x) bằng
3
3
A. 3 .
B. .
C. 6.
D. .
2
4
Câu 27. Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng
Câu 29. Cho khối lập phương có cạnh bằng 2. Thể tích của khối lập phương đã cho bằng
8
A. 6.
B. .
C. 4 .
D. 8 .
3
Trang 2/5 Mã đề 001
1
Câu 30. Cho cấp số nhân (un ) với u1 = 2 và công bội q = . Giá trị của u3 bằng
2
1
1
7
A. .
B. .
C. 3.
D. .
4
2
2
Câu 31. Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R). Gọi d là khoảng cách từ O đến (P). Khẳng
định nào dưới đây đúng?
A. d < R.
B. d = 0.
C. d = R.
D. d > R.
Câu 32. Thể tích khối trịn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2 + 2x và
y = 0 quanh trục Ox bằng
16
16
16π
16π
A. .
B.
.
C.
.
D.
.
9
15
15
9
Câu 33. Cho hàm số y = f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R.
Diện tích hình phẳng giới hạn bởi các đường y = f (x) và y = f ′ (x) bằng
1
5
1
4
A. .
B. .
C. .
D. .
4
2
2
3