Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (2)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.19 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
A. 2 13.
B.
.
C. 26.
D. 2.
13
Câu 2. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3
3
a
2a 3
4a3 3
a3


A.
.
B.
.
C.
.
D.
.
6
3
3
3
Câu 3.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ√thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 10.
B. 2.
C. 2.
D. 1.
Câu 4. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (2; 2).
C. (1; −3).
Câu 5. [2] Tổng các nghiệm của phương trình 3
A. 8.
B. 7.

D. (−1; −7).

x2 −3x+8


= 92x−1 là
C. 5.

D. 6.

Câu 6. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 7. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 15 tháng.
C. 16 tháng.
D. 18 tháng.
Câu 8. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm tứ diện đều.
Câu 9. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ nhất
của |z + 2 + i|





12 17
B.
.
C. 34.
D. 5.
A. 68.
17
Câu 10. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 20, 128 triệu đồng. D. 3, 5 triệu đồng.
q
2
Câu 11. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
2mx + 1
1
Câu 12. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. −2.

C. 0.
D. 1.
Trang 1/10 Mã đề 1


1
Câu 13. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.



x = 1 + 3t




Câu 14. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
−1
+
2t
x
=
−1
+
2t
x
=
1
+
3t
x = 1 + 7t

















A. 
D. 
.
y = −10 + 11t . B. 
y = −10 + 11t . C. 
y = 1 + 4t .
y=1+t

















z = 6 − 5t
z = −6 − 5t
z = 1 − 5t
z = 1 + 5t
Câu 15. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 12.

C. 8.

Câu 16. Tập xác định của hàm số f (x) = −x + 3x − 2 là
A. [−1; 2).
B. (1; 2).
C. [1; 2].
3

D. 6.

2

D. (−∞; +∞).

Câu 17. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.

B. Khối lập phương.
C. Khối tứ diện.
D. Khối lăng trụ tam giác.
2n + 1
Câu 18. Tính giới hạn lim
3n + 2
2
3
1
A. .
B. 0.
C. .
D. .
3
2
2
Câu 19. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 4.
C. 3.
D. 2.
Câu 20. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m

B. 7 3.
C. 16.
D. 8 3.
A. 8 2.

1

Câu 21. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = (1; +∞).
C. D = R \ {1}.
D. D = (−∞; 1).
2
2
2
1 + 2 + ··· + n
Câu 22. [3-1133d] Tính lim
n3
2
1
A. +∞.
B. .
C. .
D. 0.
3
3
Câu 23. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(−4; 8).
C. A(4; −8).
D. A(4; 8).
Câu 24. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3

a3
a3
A.
.
B. a3 .
C.
.
D.
.
6
12
24
Câu 25. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
B. lim qn = 0 (|q| > 1).
1
1
C. lim = 0.
D. lim k = 0.
n
n
Câu 26. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Trang 2/10 Mã đề 1


Câu 27. Giá trị giới hạn lim (x2 − x + 7) bằng?

x→−1

A. 0.

B. 9.

C. 5.

D. 7.

Câu 28.
√ của |z|
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
B. 1.
C. 2.
D. 5.
A. 3.
Câu 29. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp √
S .ABCD là
√ S H ⊥ (ABCD), S A =
3
3
3
4a 3
2a
2a 3
4a3

A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 30. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 9.
C. 6.
D. .
2
2
Câu 31. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a


a3 5
a3 15
a3 15
a3

.
B.
.
C.
.
D.
.
A.
3
25
25
5
Câu 32. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 12.

C. 8.

D. 30.

Câu 33. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. [−1; 3].
C. [−3; 1].
D. (−∞; −3].
Câu 34. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 4.


C. 5.

D. 8.

Câu 35. [1] Đạo hàm của làm số y = log x là
1
1
1
ln 10
A. y0 =
.
B. y0 = .
C.
.
D. y0 =
.
x ln 10
x
10 ln x
x
Câu 36. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).

Trong hai câu trên
A. Cả hai câu trên đúng. B. Cả hai câu trên sai.

C. Chỉ có (II) đúng.

D. Chỉ có (I) đúng.

Câu 37. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
a3 3
2a3 3
4a3 3
5a 3
A.
.
B.
.
C.
.
D.
.
3
2
3

3
Câu 38. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−1; 0).
C. (−∞; 0) và (1; +∞). D. (0; 1).
Câu 39. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {5; 3}.
C. {4; 3}.

D. {3; 4}.
Trang 3/10 Mã đề 1


Câu 40.

[12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].

C. m ∈ [0; 2].

Câu 41. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 5.
C. 1.


q
x+ log23 x + 1+4m−1 = 0

D. m ∈ [−1; 0].
D. 3.

Câu 42. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −15.
C. −9.
D. −5.
Câu 43. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 6.

C. 8.

D. 4.

Câu 44. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 45. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?

Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
(1, 01)3
100.(1, 01)3
A. m =
triệu.
B. m =
triệu.
3
(1, 01)3 − 1
100.1, 03
120.(1, 12)3
C. m =
triệu.
D. m =
triệu.
3
(1, 12)3 − 1
Câu 46. Dãy số
!n nào có giới hạn bằng3 0?
−2
n − 3n
A. un =
.
B. un =
.
3
n+1

C. un = n − 4n.
2


!n
6
D. un =
.
5

Câu 47. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 3.
B. 2a 6.
C.
.
D. a 6.
2
Câu 48. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 5.
C. 0, 3.
D. 0, 2.
Câu 49. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?

A. 10 năm.
B. 14 năm.
C. 12 năm.
D. 11 năm.


d = 90 , ABC
d = 30 ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 50. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 3
a3 2
.
B.
.
C.
.
D. 2a2 2.
A.
12
24
24
Câu 51. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng




a 2
a 2
A.
.
B. 2a 2.
C.
.
D. a 2.
4
2
Trang 4/10 Mã đề 1


π
Câu 52. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

B. T = 2.
C. T = 4.
D. T = 3 3 + 1.
A. T = 2 3.
Câu 53. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 20.


C. 12.

 π
Câu 54. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


2 π4
3 π6
A.
e .
B.
e .
C. 1.
2
2


Câu 55. Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x

+
3
+
6−x


A. 2 + 3.
B. 2 3.
C. 3.
!
1
1
1
Câu 56. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. +∞.
C. .
2
2
3
2
Câu 57. Giá
√ x − 3x − 3x + 2

√ trị cực đại của hàm số y =

B. −3 + 4 2.
C. −3 − 4 2.
A. 3 − 4 2.
Câu 58.
A. 3.
Câu 59.
1
A. .
6
Câu 60.
A. −2.

D. 8.

D.

1 π3
e .
2


D. 3 2.

D. 2.


D. 3 + 4 2.
 π π
3
Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;

2 2
B. −1.
C. 7.
D. 1.
x+1
Tính lim
bằng
x→−∞ 6x − 2
1
1
B. .
C. 1.
D. .
3
2
[1-c] Giá trị biểu thức log2 36 − log2 144 bằng
B. −4.
C. 2.
D. 4.

Câu 61. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
a
8a
5a
A.
.
B.

.
C. .
D.
.
9
9
9
9
Câu 62. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục ảo.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
Câu 63. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Năm cạnh.
C. Ba cạnh.

D. Hai cạnh.

0

Câu 64. Cho hai đường thẳng d và d cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có hai.
C. Có một.
D. Khơng có.
Câu 65. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).

B. (1; +∞).
C. (−∞; −1).

D. (−∞; 1).

Câu 66. Cho hàm số y = x − 2x + x + 1. Mệnh đề nào dưới đây đúng?
3

2

A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số nghịch biến trên khoảng ; 1 .
3

!
1
B. Hàm số đồng biến trên khoảng ; 1 .
3
!
1
D. Hàm số nghịch biến trên khoảng −∞; .
3
Trang 5/10 Mã đề 1


Câu 67. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. −6.

C. 3.
D. −3.
Câu 68. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 3 mặt.
x−2
Câu 69. Tính lim
x→+∞ x + 3
A. 1.
B. 2.
C. −3.

D. 4 mặt.

2
D. − .
3

1
Câu 70. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = 4.
C. m = −3.
D. m = −3, m = 4.
3a
Câu 71. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

2a
a
a 2
a
B.
.
C. .
D.
.
A. .
3
3
4
3
Câu 72. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3
a3 3
a3 3
3
A.
.
B. a .

C.
.
D.
.
3
2
6
Câu 73. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. −e.
B. − 2 .
C. − .
D. − .
e
2e
e
9x
Câu 74. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. .
B. 1.
C. 2.
D. −1.
2
Câu 75. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 9.

B. 27.
C. 8.
D. 3 3.
Câu 76. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B.
.
C.
.
D. a 6.
6
2
3
Câu 77. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC √là
√ với đáy và S C = a 3.3 √

3
a 3
a 6

2a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
2
12
9
4

Câu 78. Thể tích của khối lập phương

cạnh
bằng
a
2

3


2a
2
A. V = a3 2.
B.
.

C. 2a3 2.
D. V = 2a3 .
3
Câu 79. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 84cm3 .
C. 48cm3 .
D. 64cm3 .
Câu 80. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 4 mặt.

D. 5 mặt.
Trang 6/10 Mã đề 1


Câu 81. Tính lim

2n2 − 1
3n6 + n4

2
.
C. 2.
D. 1.
3
Câu 82. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?

A. 2n2 lần.
B. n3 lần.
C. n3 lần.
D. 2n3 lần.
A. 0.

B.

Câu 83. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
1637
23
1079
.
B.
.
C.
.
D.
.
A.
4913
4913
4913
68
Câu 84. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 2.

D. 3.
Câu 85. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. −2e2 .
C. 2e2 .
D. 2e4 .
Câu 86. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 3
a3 5
.
B.
.
C.
.
D.
.
A.
6
12
4
12
Câu 87. Tứ diện đều thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {5; 3}.
D. {3; 3}.

Z 1
6
2
3
. Tính
f (x)dx.
Câu 88. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
0
3x + 1
A. 2.

B. −1.

C. 4.

D. 6.

Câu 89. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. 1.
C. −2 + 2 ln 2.

D. e.

Câu 90. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 10.
C. 27.

D. 3.


Câu 91. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 92.
Z Các khẳng định
Z nào sau đây là sai?
A.
Z
C.

k f (x)dx = k
f (x)dx, k là hằng số.
!0
f (x)dx = f (x).

Z
B.
Z
D.

f (x)dx = F(x) + C ⇒

Z

f (t)dt = F(t) + C.


f (x)dx = F(x) +C ⇒

Z

f (u)dx = F(u) +C.

log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. 1.
C. −8.

Câu 93. [1-c] Giá trị biểu thức
A. 4.

D. 3.

Câu 94. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. 4.
D. .
4
2
8
Trang 7/10 Mã đề 1



Câu 95. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 2ac
3b + 3ac
.
B.
.
C.
.
D.
.
A.
c+2
c+1
c+3
c+2
Câu 96. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 97. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
Câu 98. [1] Hàm số nào đồng√biến trên khoảng (0; +∞)?

A. y = loga x trong đó a = 3 − 2.
B. y = log 14 x.
C. y = log π4 x.
D. y = log √2 x.
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (−∞; 2).
C. [2; +∞).
D. (2; +∞).
Câu 99. [4-1213d] Cho hai hàm số y =

Câu 100. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị nhỏ nhất trên K.

B. f (x) xác định trên K.
D. f (x) có giá trị lớn nhất trên K.


Câu 101. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.

Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
;3 .
A. (1; 2).
B.
C. 2; .
D. [3; 4).
2
2
Câu 102. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối
√ chóp S .ABCD là


3

a 5
a3 6
a3 15
3
A. a 6.
B.
.
C.
.
D.

.
3
3
3
Câu 103. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 7%.
C. 0, 5%.
D. 0, 6%.
0 0 0 0
Câu 104.
a. Khoảng cách từ C đến √
AC 0 bằng
√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh √
a 3
a 6
a 6
a 6
.
B.
.
C.
.
D.
.
A.
7

2
3
2
Câu 105. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. 3.
C. Vô số.
D. 1.

Câu 106. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 10.

C. 6.

D. 8.

Câu 107. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 9 cạnh.

C. 10 cạnh.

D. 11 cạnh.

Câu 108. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng là hình lăng trụ đều.

D. Hình lăng trụ tứ giác đều là hình lập phương.
Trang 8/10 Mã đề 1


Câu 109. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. 6.
C. 5.
2

D. −6.

Câu 110. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

D. aαβ = (aα )β .
A. aα+β = aα .aβ .
B. aα bα = (ab)α .
C. β = a β .
a
Câu 111. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 112. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vô nghiệm.
B. 1 nghiệm.
C. 3 nghiệm.


D. 2 nghiệm.

Câu 113. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 114. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
C. 18.
D. 12.
A. 27.
B.
2
Câu 115. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.
C. Khối bát diện đều. D. Khối tứ diện đều.
Câu 116. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 9 mặt.
C. 6 mặt.
D. 7 mặt.
p
ln x
1
Câu 117. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:

x
3
1
8
8
1
A. .
B. .
C. .
D. .
3
9
3
9
Câu 118. Tính lim
x→3

A. 3.

x2 − 9
x−3

B. +∞.

C. 6.

D. −3.
un
Câu 119. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn

A. −∞.
B. +∞.
C. 1.
D. 0.
Câu 120. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
6
4
12
12
Z 1
Câu 121. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b

0

A. 1.

B.

Câu 122. Tính lim
x→1

A. 0.

x3 − 1
x−1

1
.
2

B. 3.

1
.
4

C. 0.

D.

C. +∞.


D. −∞.
Trang 9/10 Mã đề 1


Câu 123. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
.
B. √ .
A.
n
n

C.

n+1
.
n

Câu 124. [12210d] Xét các số thực dương x, y thỏa mãn log3

D.

1
.
n

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y


nhất Pmin của P√ = x + y.



2 11 − 3
9 11 + 19
18 11 − 29
9 11 − 19
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
9
21
9
Câu 125. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 9 mặt.
C. 3 mặt.
D. 6 mặt.
0 0 0
d = 60◦ . Đường chéo
Câu 126. Cho lăng trụ đứng ABC.A B C có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





3

4a3 6
a
6
2a3 6
.
B.
.
C. a3 6.
D.
.
A.
3
3
3
! x3 −3mx2 +m
1
Câu 127. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m = 0.
C. m ∈ (0; +∞).
D. m , 0.
Câu 128. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng




2a 3
a 3
a 3
.
B. a 3.
.
D.
.
A.
C.
2
3
2
Câu 129. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −2.
B. −4.
C. −7.
D.
.
27
Câu 130. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Thập nhị diện đều. C. Tứ diện đều.
D. Bát diện đều.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2.
D

3.
5.
9.

4. A

B

7.

6.

B

10.

C
C


11.

C

12.

13.

C

14. A
16.

D

17.
19.

B

20.

21.

B

22.
D


B

26. A

27.

B

28.
D

B

C
D
D

C

32.

33.

C

34. A

35. A

C


30.

31.

37.

C

24.

25.
29.

D

18. A

C

23.

B

8. A

C

15.


C

36. A
B

38.

39. A

40.

41. A

42. A

43.

B

44. A

45.

B

46. A

B
D


47.

D

48.

C

49.

D

50.

C
C

51.

C

52.

53.

C

54. A

55.

57.

D
B

59. A
D

58.

D

62.
64.

C

65. A
67.

D

60. A

61.
63.

56.

66.

D

69. A
1

D
B
C


70.

D

72.
74.

71.
73.

C

77.

78.

C

79.


80.

C

81. A

82.

C

83.

84.

C

85. A

B

88.

C

C

D
D

92.


D

93.

C

95. A

96.

D

99.

100. A

B
B

C

103.

104.

C

105. A
D


C

101.

102.
106.

D

97.

C

98.

107.

108. A

C

109. A

110.

111.

C
D


112.

113.

C

114.

D
B

115. A

B

117.

118.

C

119.

120.

C

121.


B

124. A

B

125.

C

127.

128.

C

129. A

2

D
C

C
B

B

123.


126.
130.

D

89.
91.

94. A

B

D

D

122.

D

87.

90.

116.

C

75.


B

76. A

86.

B

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×