Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (567)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.42 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích hình
hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là√

D. 8, 16, 32.
A. 2, 4, 8.
B. 6, 12, 24.
C. 2 3, 4 3, 38.
Câu 2. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
d = 300 .
Câu 3. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.


3a3 3
a3 3
3


3
C. V = 6a .
D. V =
.
B. V = 3a 3.
.
A. V =
2
2
Câu 4. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; −1) và (0; +∞). C. (−∞; 0) và (1; +∞). D. (−1; 0).
Câu 5. Bát diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.

C. {4; 3}.

D. {3; 3}.

Câu 6.
Z Trong các khẳng định sau, khẳng định nào sai? Z
A.
0dx = C, C là hằng số.
B.
dx = x + C, C là hằng số.
Z
Z
xα+1
1

dx = ln |x| + C, C là hằng số.
D.
xα dx =
+ C, C là hằng số.
C.
x
α+1
Câu 7. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m > .
C. m ≥ .
D. m ≤ .
A. m < .
4
4
4
4
Câu 8. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 8 năm.
C. 10 năm.
D. 9 năm.
Câu 9. [1] Hàm số nào đồng√biến trên khoảng (0; +∞)?
A. y = loga x trong đó a = 3 − 2.
B. y = log √2 x.

C. y = log 14 x.
D. y = log π4 x.
Câu 10. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. Không tồn tại.
C. −3.

D. −7.

Câu 11. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 12.
C. 10.
D. 4.

Câu 12. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 64.
C. 63.
D. Vô số.
0

Câu 13. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {2}.
C. {3}.
D. {5}.
Trang 1/10 Mã đề 1



Câu 14. Phát biểu nào sau đây là sai?
A. lim qn = 0 (|q| > 1).
1
C. lim = 0.
n

B. lim un = c (un = c là hằng số).
1
D. lim k = 0.
n

Câu 15. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 22.
C. y(−2) = 6.
D. y(−2) = −18.
Câu 16. Giá trị của giới hạn lim
A. 2.

B. 0.

2−n
bằng
n+1

C. 1.


D. −1.


Câu 17. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √


a3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 3.
4
3
12

Câu 18. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng


a 38
3a
3a 38

3a 58
A.
.
B.
.
C.
.
D.
.
29
29
29
29
2
Câu 19. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2√
D. m = ± 3.
A. m = ±3.
B. m = ±1.
C. m = ± 2.

Câu 20. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là 3, phần ảo là −4.
2

2


sin x
Câu 21.
+ 2cos x lần lượt là
√ [3-c] Giá trị nhỏ nhất và giá√trị lớn nhất của hàm√số f (x) = 2
B. 2 và 2 2.
C. 2 và 3.
D. 2 và 3.
A. 2 2 và 3.

Câu 22. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
C. 3.
D. .
A. 1.
B. .
2
2
a
1
Câu 23. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 4.
B. 1.
C. 2.
D. 7.
2


Câu 24. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 2.
B. 4.
C. 3.

D. 5.

Câu 25. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Bốn mặt.
C. Hai mặt.

D. Ba mặt.
tan x + m
Câu 26. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (−∞; 0] ∪ (1; +∞). C. [0; +∞).
D. (1; +∞).
Câu 27. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
1
9
2
A.
.

B. .
C.
.
D. .
10
5
10
5
Trang 2/10 Mã đề 1


Câu 28. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = 2 x . ln x.
B. y0 = x
.
2 . ln x

C. y0 =

1
.
ln 2

D. y0 = 2 x . ln 2.

Câu 29. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 6.


B. 4.

C. −1.

3

Z

6
3x + 1

. Tính

1

f (x)dx.
0

D. 2.

Câu 30. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3

a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
12
6
Câu 31. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e + 1.
B. .
C. 3.
e

D. 2e.

√3
4
Câu 32. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
5
5
2

B. a 3 .
C. a 8 .
D. a 3 .
A. a 3 .
x−3 x−2 x−1
x
Câu 33. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2).
C. (−∞; 2].
D. (2; +∞).
!4x
!2−x
2
3
Câu 34. Tập các số x thỏa mãn


" 3
! 2
"

!
#
#
2
2
2
2
A. −∞; .
B. − ; +∞ .
C.
; +∞ .
D. −∞; .
3
3
5
5



x = 1 + 3t




Câu 35. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua





z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
−1
+
2t
x
=
1
+
3t
x
=
1
+
7t

x = −1 + 2t
















A. 
C. 
.
D. 
y = −10 + 11t . B. 
y = 1 + 4t .
y=1+t
y = −10 + 11t .

















z = −6 − 5t
z = 1 − 5t
z = 1 + 5t
z = 6 − 5t
Câu 36. Tính lim
A. +∞.

x→3

x2 − 9
x−3

B. −3.

C. 6.

D. 3.

Câu 37. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao

nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. Vô số.
D. 64.
Câu 38. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m , 0.
C. m = 0.

D. m < 0.

Câu 39. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≤ 3.
D. m ≥ 3.
Trang 3/10 Mã đề 1


Câu 40. Phần thực√và phần ảo của số phức
√ z=
A. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là 3.




2 − 1 − 3i lần lượt √l


B. Phần thực là 2, √
phần ảo là 1 − √
3.
D. Phần thực là 1 − 2, phần ảo là − 3.

1

Câu 41. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = (−∞; 1).
C. D = R \ {1}.

D. D = (1; +∞).

Câu 42. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 8.

D. 20.

C. 12.

Câu 43. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2

a 2
A. a 2.
B.
.
C.
.
D. a 3.
2
3
Câu 44. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 8.
C. 4.
D. 10.

Câu 45. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 108.
C. 36.
D. 4.
Câu 46. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. a.
B. .
C.
.

D. .
3
2
2
Câu 47. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
Câu 48. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. 1.
D. Vơ nghiệm.
!
5 − 12x
Câu 49. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?

12x − 8
A. 3.
B. 1.
C. 2.
D. Vô nghiệm.
Câu 50. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 51. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1728
1079
1637
A.
.
B.
.
C.
.
D.
.
68
4913
4913
4913
Câu 52. Khối đa diện đều loại {5; 3} có số mặt
A. 20.

B. 12.
C. 8.
D. 30.
Câu 53. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y z−1
x y−2 z−3
A. = =
.
B. =
=
.
1 1
1
2
3
−1

Trang 4/10 Mã đề 1


x−2 y+2 z−3
=
=
.
2
2
2
Câu 54.! Dãy số nào sau đây có giới
!n hạn là 0?
n
4
5
A.
.
B.
.
e
3
C.

D.

x−2 y−2 z−3
=
=
.
2

3
4

!n
1
C.
.
3

!n
5
D. − .
3

Câu 55. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 56. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
dx = log |u(x)| + C.
B.
u(x)
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.

Câu 57. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 8.

C. 6.

Câu 58. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 3.

C. 4.

D. 4.
1
3|x−1|

= 3m − 2 có nghiệm duy

D. 1.

Câu 59. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lăng trụ.
C. Hình chóp.

D. Hình lập phương.

Câu 60. [1] Giá trị của biểu thức 9log3 12 bằng

A. 144.
B. 24.

C. 2.

D. 4.

Câu 61. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.

C. Khối tứ diện đều.

D. Khối bát diện đều.
d = 120◦ .
Câu 62. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
D. 4a.
A. 3a.
B. 2a.
C.
2
Câu 63. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > 1.
C. m ≥ 0.
D. m > −1.


Câu 64. Thể tích của khối lập phương
√ có cạnh bằng a 2
3


2a 2
A. V = 2a3 .
B.
.
C. V = a3 2.
D. 2a3 2.
3
Câu 65. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh của khối chóp bằng 2n.
C. Số mặt của khối chóp bằng 2n+1.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 66. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y =
.
B. y = x + .
2x + 1
x

C. y = x4 − 2x + 1.

D. y = x3 − 3x.
Trang 5/10 Mã đề 1



Câu 67. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = (−2; 1).
C. D = [2; 1].

D. D = R \ {1; 2}.

Câu 68. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.
C. 4 mặt.

D. 6 mặt.

2

Câu 69. Tính lim

x→+∞

A. −3.

x−2
x+3
B. 2.

Câu 70. Tính lim
x→5


A. +∞.

x2 − 12x + 35
25 − 5x
B. −∞.

C. 1.

2
D. − .
3

2
C. − .
5

D.

2
.
5

!
!
!
1
2
2016
4x

. Tính tổng T = f
+f
+ ··· + f
Câu 71. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T = 1008.
B. T =
.
C. T = 2017.
D. T = 2016.
2017
Câu 72. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 15 tháng.
B. 17 tháng.
C. 16 tháng.
D. 18 tháng.
Câu 73. [3-1132d] Cho dãy số (un ) với un =
A. lim un = 1.
C. lim un = 0.

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1

1
B. lim un = .
2
D. Dãy số un khơng có giới hạn khi n → +∞.

Câu 74. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 75. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 23.
C. 22.
D. 24.
Câu 76. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (−∞; 6, 5).
C. (4; 6, 5].

D. [6, 5; +∞).

Câu 77. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ phẳng vng góc với 3(ABCD).

√ S .ABCD là

3
3

a 2
a 3
a 3
B.
.
C.
.
D.
.
A. a3 3.
2
2
4
1
Câu 78. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. .
B. − .
C. 3.
D. −3.
3
3
Câu 79. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P = z4 + 2z3 − z


−1 − i 3
−1 + i 3
A. P =
.
B. P = 2.
C. P = 2i.
D. P =
.
2
2
Trang 6/10 Mã đề 1


x2 − 3x + 3
đạt cực đại tại
x−2
A. x = 3.
B. x = 0.
x−3
Câu 81. [1] Tính lim
bằng?
x→3 x + 3
A. 0.
B. 1.
Câu 80. Hàm số y =

C. x = 1.

D. x = 2.


C. +∞.

D. −∞.

Câu 82. Tính thể tích khối lập phương biết tổng diện tích √
tất cả các mặt bằng 18.
A. 8.
B. 9.
C. 3 3.
D. 27.

2
Câu 83. Xác định phần ảo của số
√ phức z = ( 2 + 3i)

A. 7.
B. 6 2.
C. −6 2.
D. −7.
Câu 84. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. 3n3 lần.
C. n lần.
D. n2 lần.
Câu 85. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là −1, phần ảo là 4.
Câu 86. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó

là:
A. 64cm3 .
B. 84cm3 .
C. 48cm3 .
D. 91cm3 .
Câu 87. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + .
B. T = e + 3.
C. T = e + 1.
D. T = 4 + .
e
e
Câu 88. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. [1; +∞).
C. [−1; 3].
D. (−∞; −3].
Câu 89. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 5.

C. 2.

D. 3.

Câu 90. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác

S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C. a3 .
D.
.
12
6
24
d = 60◦ . Đường chéo
Câu 91. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6
4a3 6
a3 6

3
.
B. a 6.
C.
.
D.
.
A.
3
3
3
Câu 92. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = (0; +∞).

C. D = R \ {0}.

D. D = R.

Câu 93. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 27 lần.
Câu 94. [12214d] Với giá trị nào của m thì phương trình
A. 2 < m ≤ 3.

B. 0 < m ≤ 1.


1
3|x−2|

= m − 2 có nghiệm

C. 2 ≤ m ≤ 3.

D. 0 ≤ m ≤ 1.
Trang 7/10 Mã đề 1


!
x+1
Câu 95. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) +
x
2017
2016
4035
.
B.
.
C.
.
A.
2018
2018
2017
2n2 − 1
Câu 96. Tính lim 6

3n + n4
2
A. 1.
B. 2.
C. .
3
Câu 97. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Ba mặt.
C. Năm mặt.

f 0 (2) + · · · + f 0 (2017)
D. 2017.

D. 0.
D. Hai mặt.

Câu 98. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 2.
C. 1.
D. 3.
 π π
Câu 99. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. 3.
C. −1.
D. 1.

log2 240 log2 15
Câu 100. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 1.
B. 4.
C. 3.
D. −8.
Z 1
Câu 101. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
1
.
D. .
4
2
Câu 102. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng
√M + m


C. 8 3.
D. 7 3.
A. 16.
B. 8 2.
A. 0.


B. 1.

C.

Câu 103. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Bốn cạnh.
C. Năm cạnh.

D. Hai cạnh.

Câu 104. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với

đáy (ABC)
√ một góc bằng 60 . Thể
√tích khối chóp S .ABC là3

3
3
a 3
a 3
a
a3 3
.
B.
.
C.
.
D.

.
A.
4
12
4
8
Câu 105. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
5a
2a
a
B.
.
C.
.
D.
.
A. .
9
9
9
9
Câu 106. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có hai.
C. Có một.
D. Khơng có.

Câu 107. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Khối lập phương.

D. Khối 12 mặt đều.

Câu 108. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
Trang 8/10 Mã đề 1


(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.
Câu 109. Tính lim
x→2
A. 0.

B. 2.

C. 3.

D. 4.

x+2
bằng?
x

B. 3.

C. 1.

D. 2.

Câu 110. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 3}.
2x + 1
Câu 111. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.
B. −1.
C. .
2
Câu 112. Mệnh đề nào sau đây sai?

D. {3; 4}.

D. 1.
Z

A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
B.
f (x)dx = f (x).


f (x)dx = F(x) + C.

C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Câu 113. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 2.
C. 1.

D. Vô nghiệm.

Câu 114. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 115. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối tứ diện.
C. Khối lăng trụ tam giác.
D. Khối lập phương.
x3 − 1
Câu 116. Tính lim
x→1 x − 1
A. +∞.
B. 0.

C. −∞.

D. 3.

Câu 117. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của

khối chóp A.GBC
A. V = 5.
B. V = 4.
C. V = 6.
D. V = 3.
Câu 118. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 6.

C. 12.

D. 8.

Câu 119. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 12.
C. 8.
D. 30.
1 − 2n
bằng?
Câu 120. [1] Tính lim
3n + 1
2
1
2
A. .
B. 1.
C. .
D. − .
3

3
3
0 0 0 0
0
Câu 121. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b, AA = c. Khoảng cách từ điểm
0
A đến đường



√ thẳng BD bằng
abc b2 + c2
b a2 + c2
a b2 + c2
c a2 + b2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 122. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√


a3 3
a3 5
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
12
6
4
Trang 9/10 Mã đề 1


π
Câu 123. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


D. T = 2 3.
A. T = 4.
B. T = 2.
C. T = 3 3 + 1.

Câu 124. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≥ .
C. m ≤ .
D. m > .
4
4
4
4
Câu 125.
√ các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
√ [4-1246d] Trong tất cả
B. 5.
C. 1.
D. 2.
A. 3.
log(mx)
Câu 126. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m < 0 ∨ m = 4.
Câu 127. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi

cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.423.000.
D. 102.016.000.
n−1
Câu 128. Tính lim 2
n +2
A. 2.
B. 1.
C. 3.
D. 0.
Câu 129. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hồn nợ ở mỗi tháng là như nhau và ơng A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 25 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 22 triệu đồng.
! x3 −3mx2 +m
1
nghịch biến trên
Câu 130. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ R.

C. m = 0.
D. m ∈ (0; +∞).
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
2.

D

3. A

4.

D

5. A

6.

D

8.

D


1.

B

D

7.
9.

B

10.

11.

B

12. A

B

13.

D

14. A

15.

D


16.

D
D

17.

B

18.

19.

B

20.
D

23.

24.

B

27.
29.

C
B


31.

C

D

28.

D

D
B

38.
D

40. A

41.

D

42.

D

B
D


46. A

47. A

48.

B

50. A

B

51.

D

52.

53. A

B

54.

55.

D

57.


56.

C
B

58.

C

59. A

D

60. A

61.

D

62.

63.

D

64.

65.

C


44. A

B

45.
49.

B

36.

39.
43.

B

32. A
34.

35.

B

26.
30.

33. A
37.


D

22.

21. A
25.

C

C
D

66. A

B

67. A

69.
1

C


70.

D

72.


71. A
73.

C

74. A
76.
78.

C

75.

C

77.

C

79.

B

B

B

80.

C


81. A

82.

C

83.

B

84. A

85.

B

86. A

87.

B

88. A

89. A

90. A

91.


92.

93.

D

94. A
D

96.
98.

B

100.

D

102. A
D

97.

B

99.

D


101.

D

D

D

D
C

120.

C

113.

C

116.

D
B

115.

B

117.


B

119.

D

121.

D

123. A
125.

C

126.

D

127.

128.

D

129.

130.

C


111. A

B

118.

B

109.

C

114.

124.

B

107.

112.

122.

95.

105.

B


108.
110.

D

103. A

104.
106.

B

C

2

D
B
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×