Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (567)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (149.83 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một nguyên
hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. Cả ba câu trên đều sai.
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
x+2
Câu 2. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. 1.
C. 2.
D. Vơ số.
Câu 3. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A. 7.
B. 5.
C.
.


D. .
2
2
x−2
Câu 4. Tính lim
x→+∞ x + 3
2
D. 1.
A. −3.
B. 2.
C. − .
3
Câu 5. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 2.
C. 3.
D. 7.

Câu 6. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên S A
vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng (S BD)
bằng √


3a
a 38
3a 58
3a 38
.
B.
.

C.
.
D.
.
A.
29
29
29
29
2

Câu 7. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 1 − log3 2.
C. 2 − log2 3.

D. 3 − log2 3.

Câu 8. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1

x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. [2; +∞).
C. (−∞; 2).
D. (2; +∞).
Câu 9. [4-1213d] Cho hai hàm số y =

Câu 10. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 20.

C. 12.

D. 8.

Câu 11. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 12.

C. 20.

D. 30.
Trang 1/11 Mã đề 1


Câu 12. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích khối

√ chóp S .ABCD là 3 √

3

2a 3
a 3
a3 3
3
B.
.
C.
.
D.
.
A. a 3.
3
6
3
2

Câu 13. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 8.
C. 7.

D. 5.

Câu 14. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).

(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. (II) và (III).

Câu 15. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 6.
Câu 16. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 10.
!
1
1
1
Câu 17. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
A. 2.
Câu 18.

B. 1.

C. (I) và (II).

D. Cả ba mệnh đề.


C. 12.

D. 10.

C. 12.

D. 8.

C. 0.

D.

[3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

0 có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 2].
B. m ∈ [0; 4].

C. m ∈ [−1; 0].

3
.
2
q
x+ log23 x + 1+4m−1 =


D. m ∈ [0; 1].

Câu 19. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 20. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
[ = 60◦ , S A ⊥ (ABCD).
Câu 21. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối

√chóp S .ABCD là
3
3

a
2
a
3
a3 2
3
A. a 3.
B.

.
C.
.
D.
.
4
6
12
1 − n2
Câu 22. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. − .
C. .
D. 0.
3
2
2
Trang 2/11 Mã đề 1


Câu 23. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 4.
B. 3.
C. 6.

D. 8.
Câu 24. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối
√ chóp S .ABCD là


3

a
15
a3 6
a3 5
3
A. a 6.
B.
.
C.
.
D.
.
3
3
3
2x + 1
Câu 25. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.
B. −1.
C. .

D. 1.
2
Câu 26. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
4a 3
5a3 3
2a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
2
Câu 27. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền

ra.
A. 212 triệu.
B. 216 triệu.
C. 220 triệu.
D. 210 triệu.
Câu 28. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a3 6
a3 6
a 3
.
B.
.
C.
.
D.
.
A.
24
48
24
8
Câu 29. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.

B. Bốn mặt.
C. Một mặt.
D. Ba mặt.
x+2
Câu 30. Tính lim
bằng?
x→2
x
A. 1.
B. 0.
C. 3.
D. 2.
Câu 31. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.

B. 1.

C. 3.

D. 2.

Câu 32. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A. 2, 25 triệu đồng.
B. 2, 20 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 22 triệu đồng.
Câu 33. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 8 mặt.
C. 6 mặt.

D. 7 mặt.
Trang 3/11 Mã đề 1


Câu 34. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
B. m = ±3.
C. m = ±1.
D. m = ± 3.
A. m = ± 2.
1
Câu 35. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. 1.
C. 2.
D. −2.
Câu 36. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. Vô nghiệm.
C. 2.
D. 3.

Câu 37. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 4.

C. 5.

D. 2.

Câu 38. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC


3
a 3
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
12

6
Câu 39. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 40. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. −3 ≤ m ≤ 3.
C. m ≥ 3.
D. m ≤ 3.
4x + 1
bằng?
Câu 41. [1] Tính lim
x→−∞ x + 1
A. −1.
B. 2.
C. −4.
D. 4.
Câu 42. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
B. f 0 (0) = 10.
C. f 0 (0) = 1.
D. f 0 (0) = ln 10.
A. f 0 (0) =
ln 10
Câu 43. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 2020.

C. 13.
D. log2 13.
12 + 22 + · · · + n2
Câu 44. [3-1133d] Tính lim
n3
1
2
B. 0.
C. .
A. .
3
3
Câu 45. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {4; 3}.

D. {3; 4}.

Câu 46. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 10 cạnh.

D. 11 cạnh.

C. 12 cạnh.

Câu 47. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 1.

C. 2.

D. +∞.

D. Vô nghiệm.

Câu 48. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 21.
C. 23.
D. 22.
2
x − 3x + 3
Câu 49. Hàm số y =
đạt cực đại tại
x−2
A. x = 2.
B. x = 3.
C. x = 0.
D. x = 1.
Câu 50. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x)g(x)] = ab.
B. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
f (x) a

C. lim [ f (x) − g(x)] = a − b.
D. lim
= .
x→+∞
x→+∞ g(x)
b
Trang 4/11 Mã đề 1




x2 + 3x + 5
x→−∞
4x − 1
1
1
A. 1.
B. − .
C. .
4
4
Câu 52. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lập phương.
C. Hình lăng trụ.
Câu 51. Tính giới hạn lim

D. 0.

D. Hình chóp.


Câu 53. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
D.
f (x)dx = f (x).
Câu 54. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục ảo.
C. Trục thực.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
Câu 55. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 3 mặt.
D. 4 mặt.
Câu 56. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 8.

C. 6.

D. 5.


Câu 57. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
B. 9.
C. .
D. 6.
A. .
2
2
Câu 58.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.

A.
Z
C.

xα dx =

xα+1
+ C, C là hằng số.
α+1

Câu 59. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.

1

dx = ln |x| + C, C là hằng số.
Z x
D.
0dx = C, C là hằng số.

B.

C. Khối bát diện đều.

D. Khối tứ diện đều.

Câu 60. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 4.
C. 12.
D. 11.
Câu 61. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Hai khối chóp tam giác.
D. Hai khối chóp tứ giác.
Câu 62. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b


x→a

x→b

C. lim− f (x) = f (a) và lim− f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim+ f (x) = f (b).

Trang 5/11 Mã đề 1


Câu 63. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (0; 1).
C. (−∞; 0) và (1; +∞). D. (−1; 0).
 π π
3
Câu 64. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. −1.
C. 3.
D. 7.

Câu 65. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 4.

C. 2.

Câu 66. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. 2 nghiệm.
C. 1 nghiệm.

D. 144.
D. Vô nghiệm.

Câu 67. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 68. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 69. [2] Phương trình log x 4 log2
12x − 8
A. Vô nghiệm.

B. 3.
C. 1.
D. 2.
Câu 70. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
1
C. lim k = 0.
n

B. lim un = c (un = c là hằng số).
D. lim qn = 0 (|q| > 1).

Câu 71. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. −6.
C. 6.
2

D. −5.

Câu 72. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
1

Câu 73. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = R \ {1}.
C. D = (−∞; 1).

Câu 74. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
A.
.
B. √ .
n
n

C.

sin n
.
n

D. D = (1; +∞).
D.

1
.
n

√3
4
Câu 75. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
2
5
5
B. a 3 .

C. a 3 .
D. a 8 .
A. a 3 .
1
Câu 76. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 < m ≤ 1.
D. 2 < m ≤ 3.
Câu 77. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối bát diện đều.

D. Khối 20 mặt đều.

Câu 78. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. Cả ba đáp án trên.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Trang 6/11 Mã đề 1


Câu 79. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27

.
D. 27.
A. 18.
B. 12.
C.
2
Câu 80. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 12.
C. 30.
D. 20.
!
1
1
1
+ ··· +
Câu 81. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. +∞.
C. 2.
D. .
2
2
2
x − 12x + 35
Câu 82. Tính lim

x→5
25 − 5x
2
2
A. +∞.
B. − .
C. .
D. −∞.
5
5
Câu 83. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≤ 3.
D. m ≥ 3.
2mx + 1
1
Câu 84. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −2.
B. −5.
C. 1.
D. 0.
Câu 85. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và

a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
36
12
24
Câu 86. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d nằm trên P hoặc d ⊥ P.
C. d song song với (P).
D. d ⊥ P.
Câu 87. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là

A. ln 10.
B. ln 12.
C. ln 14.
D. ln 4.
Câu 88. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 7, 2.
C. 0, 8.

D. 72.

Câu 89. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 84cm3 .
C. 48cm3 .
D. 91cm3 .
2n + 1
Câu 90. Tính giới hạn lim
3n + 2
3
2
1
A. 0.
B. .
C. .
D. .
2
3
2

Câu 91. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
C. .
D. .
A. 4.
B. .
2
8
4
√3
Câu 92. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. .
B. − .
C. −3.
D. 3.
3
3
Câu 93. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = loga 2.
C. log2 a =
.
D. log2 a = − loga 2.

loga 2
log2 a
Trang 7/11 Mã đề 1


Câu 94.
√ min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
B. 2.
C. 1.
D. 2.
A. 10.
Câu 95. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
a 3
8a 3
4a 3
8a 3
A.
.
B.
.
C.
.
D.

.
9
3
9
9
Câu 96. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 15, 36.
C. 20.
D. 24.
Câu 97. Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 3).
D. A0 (−3; 3; 1).
Câu 98. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m < 3.
C. m ≤ 3.
D. m > 3.
1
Câu 99. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 4.

C. 3.
D. 1.
Câu 100. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = −5.
C. x = 0.

D. x = −8.
un
Câu 101. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. 0.
C. 1.
D. −∞.
ln x p 2
1
Câu 102. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
8
1
B. .
C. .
D. .
A. .
9

3
3
9
Câu 103. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
8
Câu 104. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 96.
C. 64.
D. 81.

Câu 105. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 64.
C. 63.
D. Vô số.
Câu 106. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 8%.
C. 0, 7%.
D. 0, 5%.

mx − 4
Câu 107. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 45.
C. 34.
D. 26.
Trang 8/11 Mã đề 1


Câu 108. [1] Hàm số nào đồng
√ biến trên khoảng (0; +∞)?
B. y = log π4 x.
A. y = loga x trong đó a = 3 − 2.

C. y = log 2 x.
D. y = log 14 x.
Câu 109. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 10.
C. P = −21.
D. P = 21.
2
x
Câu 110. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
C. M = e, m = 0.

D. M = e, m = .
A. M = e, m = 1.
B. M = , m = 0.
e
e
Câu 111. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aα bα = (ab)α .
B. aαβ = (aα )β .
C. β = a β .
D. aα+β = aα .aβ .
a
Câu 112. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Ba mặt.
C. Hai mặt.
D. Năm mặt.
Câu 113. Tứ diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.

C. {4; 3}.

D. {5; 3}.


π

Câu 114. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là

2


1 π3
2 π4
3 π6
A. e .
e .
e .
B.
C. 1.
D.
2
2
2
Câu 115. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 64cm3 .
C. 72cm3 .
D. 27cm3 .
Câu 116.
√cạnh bằng a


√ Thể tích của tứ diện đều
3
3
a 2
a3 2

a3 2
a 2
.
B.
.
C.
.
D.
.
A.
6
2
12
4
9t
Câu 117. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
9 + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 1.
C. 0.
D. Vô số.
Câu 118. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. [6, 5; +∞).
C. (4; +∞).
Câu 119. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.

C. 4 mặt.

Câu 120. Xác định phần ảo của số phức z = ( 2 + 3i)2 √
A. 7.
B. −7.
C. 6 2.

D. (4; 6, 5].
D. 6 mặt.

D. −6 2.

Câu 121. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính
.ABC theo a
√ thể tích của khối chóp 3S√

3
a 5
a 15
a3
a3 15
A.
.
B.
.
C.
.
D.
.

25
25
3
5
Câu 122. Cho hai hàm y = f (x), y = Z
g(x) có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

Trang 9/11 Mã đề 1


Z
D. Nếu

f (x)dx =

Z

g(x)dx thì f (x) , g(x), ∀x ∈ R.

Câu 123. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + 3.
C. T = e + .
D. T = e + 1.
A. T = 4 + .
e
e
Câu 124. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
.
C. √
.
D. √
.
A. 2
.
B. √
2
a +b
a2 + b2
a2 + b2

2 a2 + b2
Câu 125. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 30.

C. 20.

D. 8.

Câu 126. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)20
C 20 .(3)30
C 10 .(3)40
C 40 .(3)10
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
3
2
2
Câu 127. Tìm m để hàm số y = x − 3mx + 3m có 2 điểm cực trị.
A. m = 0.

B. m < 0.
C. m , 0.
D. m > 0.
Câu 128. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −3.
C. m = −2.


x
+
3
+
Câu 129. Tìm giá trị lớn nhất của
hàm
số
y
=
√6 − x

C. 3 2.
A. 3.
B. 2 3.

D. m = 0.
D. 2 +


3.



Câu 130. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


3
πa 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
2
6
6
3
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.

B
D

3.
5.

B
C

7.
9.

B
D

11.

4.

D

6.

D


8.

C

10.

C

15. A

14.

C

16.

C
C

17.

B

18.

19.

B


20. A

21.

B

22.

23.

B

24.

25. A

26.

27. A

28.

29.

B

31.

C


33. A

B
C
D
C

30.

D

32.

D

34. A

35.
37.

D

12.

C

13.

C


D

36. A
38.

B

40.

39. A
41.

D

42.

43.

D

44.

C
B
D
C

45.

B


46.

47.

B

48.

D

50.

D

49.

D

51.

B

52. A

53.

B

54.


B

D

55.

C

56.

C

57.

C

58.

C

60.

C

59.

B

61. A


62. A

63.

D

64. A

65.

D

66.
68.

67. A
1

B
D


70.

C

69.
71.


D

72.

73.

D

74. A

D
C

75.

B

76.

D

77.

B

78.

D

79. A


80.
C

81.

D

84.

85.

C

86.

87.

C

88. A

89. A

B

90.

91.


D

C

92. A

93. A

94.
D

95.
97.

96.

C

99.
101.

C

82.
D

83.

B


B

98. A
D

B

103.

C

D

105. A

100.

D

102.

D

104.

D

106.

C


107.

C

108.

C

109.

C

110.

C

111.

C

112.

B

114.

B

113.


B

115.

D

116.

C

118.

117. A
120.

C

D

121.

B

122.

B

123.


B

124.

B

125.

B

126. A
128.
130.

C
D

2

127.

C

129.

C




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×