Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (567)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.6 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = 0.
C. m = −3.

D. m = −1.

Câu 2. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 8.

D. 6.

C. 4.


Câu 3. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3
3



a 3
a
3
a3
A.
.
B. a3 3.
C.
.
D.
.
3
12
4
Câu 4. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 5}.
C. {3; 4}.
D. {5; 3}.
Câu 5.
Z Các khẳng định
Z nào sau đây là sai?
k f (x)dx = k

A.
Z
C.

Z


!0

f (x)dx, k là hằng số.
B.
f (x)dx = f (x).
Z
Z
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.

Câu 6. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = 21.
C. P = −21.
D. P = −10.
Câu 7. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B thuộc
∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và AC = BD = a.
Khoảng cách từ A đến mặt phẳng√(BCD) bằng



a 2
a 2
A. a 2.
B.
.

C. 2a 2.
D.
.
2
4
Câu 8. Cho
Z hai hàm y Z= f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f (x)dx =

A. Nếu
Z
B. Nếu

f (x)dx =

g(x)dx thì f (x) = g(x), ∀x ∈ R.

Z

g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
0
f (x)dx =

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
D. Nếu
Câu 9. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
(1, 01)3
100.1, 03
A. m =
triệu.
B. m =
triệu.
3
(1, 01) − 1
3
100.(1, 01)3
120.(1, 12)3
C. m =
triệu.
D. m =
triệu.
3
(1, 12)3 − 1
Câu 10. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối chóp S .ABMN là
Trang 1/10 Mã đề 1




5a3 3
A.
.
3



a3 3
2a3 3
B.
.
C.
.
2
3
x2 − 12x + 35
Câu 11. Tính lim
x→5
25 − 5x
2
B. −∞.
C. +∞.
A. − .
5
Câu 12. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 2.
C. 3.



4a3 3
D.
.
3

D.

2
.
5

D. 0.

Câu 13. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp

√ S .ABCD là
√ phẳng vng góc với 3(ABCD).
3
3

a 2
a 3
a 3
A. a3 3.
.
C.
.

D.
.
B.
4
2
2
Câu 14. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.

Câu 15. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a
3a 38
a 38
3a 58
A.
.
B.
.
C.
.
D.
.
29
29
29

29
Câu 16. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 12.
C. 30.
D. 8.
1
Câu 17. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey − 1.
B. xy0 = −ey − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.
Câu 18. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (2; 2; −1).
C. ~u = (1; 0; 2).

D. ~u = (2; 1; 6).
Câu 19. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
6
4
12
12
Câu 20. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 21. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?

!
1
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng −∞; .
3!
3
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3

Câu 22. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 3 nghiệm.
B. Vô nghiệm.
C. 1 nghiệm.
D. 2 nghiệm.
Z 1
Câu 23. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
2

0

B.

1
.

4

C. 0.

D. 1.
Trang 2/10 Mã đề 1


Câu 24. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {5}.
C. {2}.
D. {3}.
[ = 60◦ , S O
Câu 25. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S BC) bằng

2a 57
a 57
a 57
D.
A.
.
B.
.
C. a 57.
.

19
17
19
Câu 26. Hàm số nào sau đây khơng có cực trị
1
A. y = x3 − 3x.
B. y = x + .
x

C. y =

x−2
.
2x + 1

D. y = x4 − 2x + 1.

Câu 27. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 √3. Thể tích khối chóp S .ABCD là
a3 3
a 3
a3
A.
.
B.
.
C. a3 .
D.

.
9
3
3
Câu 28. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 + 2e
.
B. m =
.
C. m =
.
A. m =
4 − 2e
4e + 2
4 − 2e

D. m =

1 − 2e
.
4e + 2

Câu 29. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ với đáy và S C = a 3. 3Thể
√ tích khối chóp S .ABC
√là


3
3
a 6
2a 6
a 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
9
2
4
Câu 30. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m < 3.
C. m ≤ 3.
D. m ≥ 3.
Câu 31. [1] Đạo hàm của làm số y = log x là
ln 10
1
A. y0 =
.

B.
.
x
10 ln x
n−1
Câu 32. Tính lim 2
n +2
A. 2.
B. 3.
Câu 33. Bát diện đều thuộc loại
A. {3; 4}.
B. {4; 3}.

C. y0 =

1
.
x ln 10

1
D. y0 = .
x

C. 1.

D. 0.

C. {3; 3}.

D. {5; 3}.


Câu 34. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 160 cm2 .
Câu 35. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
B.
D. 2 13.
A. 26.
.
C. 2.
13
Câu 36. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {5; 3}.

D. {3; 4}.
!
3n + 2
2
Câu 37. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim

+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 2.
C. 5.
D. 3.
Trang 3/10 Mã đề 1





x=t




Câu 38. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .

A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z − 3) = .
D. (x + 3) + (y + 1) + (z + 3) = .
4
4
Câu 39. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
A. a 3.
.
D.
.
B. a 2.
C.
2

3
Câu 40. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 1.
C. 3.
D. 2.
Câu 41. Giá trị của lim (3x2 − 2x + 1)
x→1
A. +∞.
B. 1.
cos n + sin n
Câu 42. Tính lim
n2 + 1
A. 1.
B. 0.
Câu 43. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
1
C. lim √ = 0.
n

C. 2.

D. 3.

C. +∞.

D. −∞.

B. lim qn = 1 với |q| > 1.

1
D. lim k = 0 với k > 1.
n

Câu 44. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục thực.
D. Trục ảo.
!x
1
1−x

Câu 45. [2] Tổng các nghiệm của phương trình 3 = 2 +
9
A. − log3 2.
B. log2 3.
C. 1 − log2 3.
D. − log2 3.
Câu 46. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Ba cạnh.
C. Hai cạnh.

D. Bốn cạnh.

Câu 47. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng là hình lăng trụ đều.

D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
1
Câu 48. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. −1.
x3 − 1
Câu 49. Tính lim
x→1 x − 1
A. 3.
B. −∞.
Câu 50. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.

C. 2.

D. 1.

C. 0.

D. +∞.

C. Khối bát diện đều.

D. Khối tứ diện đều.
Trang 4/10 Mã đề 1


Câu 51. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?

A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m > 4.
D. m ≤ 0.

Câu 52. [1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m = 4.

B. m < 0.
2

Câu 53. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
B. 3 .
C. √ .
A. 2 .
e
e
2 e
log 2x
Câu 54. [1229d] Đạo hàm của hàm số y =

x2

1 − 4 ln 2x
1 − 2 ln 2x
1
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
3
2x ln 10
x ln 10
2x ln 10
Câu 55. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m = 0.
C. m < 0.

D.

1
.
2e3

D. y0 =

1 − 2 log 2x
.
x3


D. m , 0.
0

0

0

Câu 56. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A B C D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 1).
C. A0 (−3; 3; 3).
D. A0 (−3; −3; 3).
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 57. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3].
C. (−∞; −3).
D. [−3; +∞).

Câu 58. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un

!
un
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= +∞.
= a > 0 và lim vn = 0 thì lim
vn !
un
= a , 0 và lim vn = ±∞ thì lim
= 0.
vn

Câu 59. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 0.
C. m > 1.

D. m ≥ 0.

Câu 60. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

A. 6 mặt.
B. 3 mặt.
C. 4 mặt.

D. 5 mặt.

Câu 61. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
1
1
2
A.
.
B. .
C.
.
D. .
10
5
10
5
log √a 5
bằng
Câu 62. [1] Cho a > 0, a , 1 .Giá trị của biểu thức a

1
A. 5.
B. .
D. 25.

C. 5.
5
1
Câu 63. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 3.
C. 4.
D. 2.
Trang 5/10 Mã đề 1


2

Câu 64. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x
A. 1 − log2 3.
B. 1 − log3 2.
C.
!4x
!2−x
2
3
Câu 65. Tập các số x thỏa mãn


3 # 2
"
!
2

2
A.
; +∞ .
B. −∞; .
C.
5
5

= 8.4 x−2 là
3 − log2 3.

D. 2 − log2 3.

"
!
2
− ; +∞ .
3

#
2
D. −∞; .
3

Câu 66. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
A. 10a3 .

B. 20a3 .
C.
.
D. 40a3 .
3
[ = 60◦ , S O
Câu 67. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S√BC) bằng


a 57
2a 57
a 57
B.
.
C.
.
D.
.
A. a 57.
19
19
17
Câu 68. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng




b a2 + c2
c a2 + b2
a b2 + c2
abc b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
! x3 −3mx2 +m
1
Câu 69. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m ∈ R.
C. m = 0.
D. m , 0.
x−1 y z+1
= =


Câu 70. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 2x − y + 2z − 1 = 0.
C. 2x + y − z = 0.
D. 10x − 7y + 13z + 3 = 0.
Câu 71. Tính thể tích khối lập phương biết tổng diện tích √
tất cả các mặt bằng 18.
A. 8.
B. 27.
C. 3 3.
D. 9.
Câu 72. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 3.
B. 8.
C. 6.
D. 4.
Câu 73. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3 3
a3
a3 3

a3 3
A.
.
B.
.
C.
.
D.
.
8
4
12
4
Câu 74. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 − 2; m = 1.
−2
C. M = e + 2; m = 1.
D. M = e−2 + 1; m = 1.
Câu 75. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 13.
C. 2020.
D. log2 13.
Câu 76. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 7 năm.
C. 8 năm.

D. 10 năm.
Trang 6/10 Mã đề 1


Câu 77. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 3 mặt.
C. 4 mặt.
D. 6 mặt.
Câu 78. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
1
ab
.
C. √
.
D. √
.
.
B. √
A. 2
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
2


2

sin x
Câu 79.
+ 2cos x lần lượt
√ [3-c] Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số f (x) = 2
√ là
A. 2 và 3.
B. 2 2 và 3.
C. 2 và 3.
D. 2 và 2 2.
1
Câu 80. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 4.
C. 2.
D. 3.
3a
, hình chiếu vng
Câu 81. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

2a
a
a 2
a

B.
.
C. .
D.
.
A. .
3
3
4
3
Câu 82. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Hai mặt.
C. Một mặt.
D. Bốn mặt.

Câu 83. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3
3
a
2a 3
4a3 3
a3
A.
.
B.
.
C.

.
D.
.
3
3
3
6
Câu 84. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. 1 − sin 2x.
C. 1 + 2 sin 2x.
D. −1 + sin x cos x.
Câu 85. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 8 mặt.
C. 6 mặt.
D. 7 mặt.
1
Câu 86. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.
Câu 87. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = 2 x . ln x.
B. y0 = x
.

C. y0 =
.
D. y0 = 2 x . ln 2.
2 . ln x
ln 2
Câu 88. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 6%.
C. 0, 7%.
D. 0, 8%.
Câu 89. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −5.
C. −7.

D. Không tồn tại.

Câu 90. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 2.
C. 5.

D. 1.

2,4

Câu 91. [1-c] Giá trị của biểu thức 3 log0,1 10
A. 0, 8.

B. 7, 2.
Câu 92. Dãy số nào có giới hạn bằng 0?
!n
n3 − 3n
6
A. un =
.
B. un =
.
n+1
5

bằng
C. −7, 2.

D. 72.

C. un = n − 4n.
2

!n
−2
D. un =
.
3
Trang 7/10 Mã đề 1


Câu 93. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC

A. V = 5.
B. V = 3.
C. V = 4.
D. V = 6.
x−3
bằng?
Câu 94. [1] Tính lim
x→3 x + 3
A. 1.
B. −∞.
C. +∞.
D. 0.
Câu 95. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d song song với (P).
C. d ⊥ P.
D. d nằm trên P hoặc d ⊥ P.
Câu 96. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Hai hình chóp tam giác.
D. Hai hình chóp tứ giác.
Câu 97. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
f (x)dx = f (x).
B.
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).

D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Câu 98. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 3}.

C. {5; 3}.

f (x)dx = F(x) + C.
D. {3; 4}.

2
Câu 99. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2√
D. m = ± 2.
A. m = ±3.
B. m = ±1.
C. m = ± 3.

Câu 100. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 3
a3 6
a3 6
a 6
.

B.
.
C.
.
D.
.
A.
24
24
8
48
Câu 101. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém môn Toán nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm môn Toán là
C 10 .(3)40
C 20 .(3)20
C 20 .(3)30
C 40 .(3)10
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
Câu 102. [4-1246d] Trong tất cả các số phức z thỏa mãn√|z − i| = 1. Tìm giá trị lớn√nhất của |z|
A. 1.
B. 2.

C. 5.
D. 3.
Câu 103. Tứ diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.

C. {3; 4}.

D. {4; 3}.

Câu 104. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (II) đúng.

C. Chỉ có (I) đúng.

D. Cả hai đều sai.
Trang 8/10 Mã đề 1


Câu 105. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 27 m.

C. 1587 m.
D. 25 m.
2
x − 3x + 3
đạt cực đại tại
Câu 106. Hàm số y =
x−2
A. x = 0.
B. x = 2.
C. x = 1.
D. x = 3.
Câu 107. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 0.
C. 2.

D. 1.

Câu 108. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 2.
C. 0, 4.
D. 0, 3.
 π π
Câu 109. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 7.
C. 3.

D. −1.
mx − 4
Câu 110. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 45.
C. 26.
D. 34.
0 0 0
d = 60◦ . Đường chéo
Câu 111. Cho lăng trụ đứng ABC.A B C có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0




3
3
3

a
2a
4a
6
6
6
.
C.
.

D.
.
B.
A. a3 6.
3
3
3
!
1
1
1
Câu 112. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 1.
B. 2.
C. 0.
D. .
2
3
2
Câu 113. Hàm số y = 2x + 3x + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; −1) và (0; +∞). C. (−∞; 0) và (1; +∞). D. (−1; 0).
Câu 114. Tính lim

7n2 − 2n3 + 1

3n3 + 2n2 + 1
B. 1.

2
7
C. - .
D. .
3
3
x−3 x−2
x−3
x−2
Câu 115. [12212d] Số nghiệm của phương trình 2 .3 − 2.2 − 3.3 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
A. 0.

Câu 116. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.
B. Nhị thập diện đều. C. Tứ diện đều.
D. Thập nhị diện đều.
Câu 117. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Năm mặt.
C. Bốn mặt.

D. Ba mặt.


Câu 118. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 13 năm.
C. 12 năm.
D. 11 năm.
Câu 119. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 18 lần.
Trang 9/10 Mã đề 1


Câu 120. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.
4
2
8
Câu 121. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.

B. 20.
C. 8.
D. 30.
Câu 122. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 123. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) có giá trị lớn nhất trên K.

B. f (x) xác định trên K.
D. f (x) liên tục trên K.
1 − xy
Câu 124. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y
nhất Pmin của P√ = x + y.



2 11 − 3
18 11 − 29
9 11 + 19
9 11 − 19
A. Pmin =
.
B. Pmin =
. C. Pmin =

. D. Pmin =
.
3
21
9
9
Câu 125. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 1134 m.
C. 2400 m.
D. 6510 m.
 π
Câu 126. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


1 π3
2 π4
3 π6
A. e .
B. 1.
C.
e .
D.
e .
2
2
2
Câu 127. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là

A. −5.
B. −6.
C. 6.

D. 5.

Câu 128. √
Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i. √
4
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.

D. |z| = 5.

2

Câu 129. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng 2n.
Câu 130. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 12.

C. 10.

D. 20.


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3. A

4.
C

5.
7.

D
B
C

6.
8. A

B

9. A


10.

B

11.

D

12.

D

13.

D

14.

D

15.

D

16. A

17. A

18.


C

20.

D

21. A

22.

D

23. A

24.

19.

C

B

25.

D

26.

27.


D

28.

D

30.

D

32.

D

29. A
31.

C

33. A
35.

B

37. A

C

34.


C

36.

C

38.

B

39.

C

40.

B

41.

C

42.

B

43.

B


44. A

45.

D

46.

47.

D

48. A

49. A

B

50. A

51.

C

52. A

53. A

54.


55.

D

B

56.

C

58.

C

59. A

60.

C

61. A

62.

D

63. A

64.


D

57.

B

65.
67.

66.

C
B

68.
1

B
C


69.

C

70.

71.


C

72. A

73. A

74.

75.

D

B

76. A

77.

B

78.

79.

B

80. A

81.


B

82.

83.

D

D
D

84. A

C

D

86.

85. A
87.

D

88.

89.

D


90.

C
B

91.

C

92.

D

93.

C

94.

D

95.

D
C

97.
99.

96.

98. A
100. A

B

101.

C

C

102.

B
B

103.

B

104.

105.

B

106.

107.


B

108.

D

109. A

110.

D

111. A

112. A
D

113.
115.

121.

D

116.
D

119.

C


114.

C

117.

C

118.

C

C

120. A

B

122.

B

123.

D

124. A

125.


D

126.

C

128.

C

127. A
129.

D

130.

2

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×