Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (618)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.5 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 6.

C. 8.

D. 4.

Câu 2. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3
a3 5
a3 5
.
B.
.
C.
.
D.
.


A.
4
6
12
12
Câu 3. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD. Cho
hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 16π.
C. 32π.
D. V = 4π.
Câu 4. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 5. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. Vơ nghiệm.
C. 3 nghiệm.

D. 2 nghiệm.

Câu 6. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD) cùng
vng góc với đáy, S C = a 3. Thể tích khối chóp S .ABCD√là

3
3
3

a
a
3
a
3
A. a3 .
B.
.
C.
.
D.
.
3
3
9
Câu 7. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (2; 2).
C. (−1; −7).
D. (0; −2).
1
Câu 8. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 ≤ m ≤ −1.
C. −2 < m < −1.
D. (−∞; −2) ∪ (−1; +∞).
Câu 9.
Z [1233d-2] Mệnh đề
Z nào sau đâyZsai?

[ f (x) − g(x)]dx =

A.
Z
B.

[ f (x) + g(x)]dx =

g(x)dx, với mọi f (x), g(x) liên tục trên R.

f (x)dx −
Z

f (x)dx +

Z
g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
C.

3


Câu 10. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e2 .
C. e.
D. e5 .
1
Câu 11. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (1; +∞).
C. (−∞; 3).
D. (−∞; 1) và (3; +∞).
d = 30◦ , biết S BC là tam giác đều
Câu 12. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.

13
16
26
9
Trang 1/10 Mã đề 1


Câu 13. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có hai.
C. Có một hoặc hai.
D. Có một.
Câu 14. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
1637
23
1079
.
B.
.
C.
.
D.
.
A.
4913
4913
4913

68
Câu 15. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; 6, 5].
C. [6, 5; +∞).

D. (4; +∞).

d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 16. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 3
a3 2
2
A.
.
B.
.
C. 2a 2.
D.
.
12
24
24
Câu 17. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)

hợp với √
đáy một góc 60◦ . Thể tích khối chóp S .ABCD là



a3 3
a3 3
2a3 3
3
A.
C.
.
B. a 3.
.
D.
.
6
3
3
!4x
!2−x
2
3
Câu 18. Tập các số x thỏa mãn


3
2
!
"

!
#
#
"
2
2
2
2
; +∞ .
B. −∞; .
C. −∞; .
D. − ; +∞ .
A.
5
3
5
3
1
Câu 19. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = 4.
C. m = −3, m = 4.
D. m = −3.
x−2 x−1
x
x+1
Câu 20. [4-1212d] Cho hai hàm số y =

+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3].
C. (−∞; −3).
D. (−3; +∞).
Câu 21. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 6.

C. 8.

D. 10.

Câu 22. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 15, 36.
C. 20.
D. 24.
Câu 23. Cho z là√nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 − i 3

−1 + i 3
.
B. P =
.
C. P = 2i.
D. P = 2.
A. P =
2
2
Câu 24. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 23.
C. 21.
D. 22.
Câu 25. Khối lập phương thuộc loại
A. {3; 4}.
B. {5; 3}.

C. {3; 3}.

D. {4; 3}.
Trang 2/10 Mã đề 1


Câu 26. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là −3, phần ảo là 4.

D. Phần thực là 3, phần ảo là −4.
Câu 27. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a
a
a 3
.
B. a.
C. .
D. .
A.
2
2
3
Câu 28. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.
B. x = −5.
C. x = −8.
D. x = −2.
Câu 29. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = ln x − 1.
Câu 30. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 2
.
B. un =
.
A. un =
2

5n − 3n
5n + n2

C. y0 = 1 − ln x.
C. un =

n2 + n + 1
.
(n + 1)2

D. y0 = 1 + ln x.
D. un =

n2 − 3n
.
n2

Câu 31. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 5}.
D. {3; 4}.

x2 + 3x + 5
Câu 32. Tính giới hạn lim
x→−∞
4x − 1
1
1
D. .

A. 1.
B. 0.
C. − .
4
4
Câu 33. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lăng trụ tam giác.
C. Khối bát diện đều.
D. Khối lập phương.
Câu 34. Phát biểu nào sau đây là sai?
1
A. lim un = c (un = c là hằng số).
B. lim = 0.
n
1
C. lim k = 0.
D. lim qn = 0 (|q| > 1).
n
Câu 35. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 10 năm.
C. 7 năm.
D. 9 năm.
Câu 36. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(−4; −8)(.
C. A(−4; 8).

D. A(4; −8).
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 37. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 4.
B. 1.
C. 2.
D. 7.
Câu 38. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. 4.
B. .
C. .
D. .
8
4
2
Câu 39. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. n3 lần.
D. 2n2 lần.
Câu 40. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là

A. 70, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 50, 7 triệu đồng.
D. 20, 128 triệu đồng.
Trang 3/10 Mã đề 1


Câu 41. Tính lim

x→+∞

x−2
x+3

2
B. − .
C. −3.
D. 1.
3
Câu 42. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. Vô số.
C. 1.
D. 2.
A. 2.

2
Câu 43. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2√
A. m = ±3.

B. m = ±1.
C. m = ± 3.
D. m = ± 2.

Câu 44. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
3
.
B.
.
C. a .
D.
.
A.
12
24
6
Câu 45. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.

Câu 46. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √


3
3

a
a
a3
3
3
B.
.
C.
.
D.
.
A. a3 3.
12
3
4
!
!
!
1
2
2016
4x
Câu 47. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2

2017
2017
2017
2016
A. T = 1008.
B. T = 2017.
C. T = 2016.
D. T =
.
2017
Câu 48. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



2a 3
a 3
a 3
.
B.
.
C. a 3.
D.
.
A.
3
2
2
Câu 49. Khối đa diện đều loại {3; 5} có số mặt
A. 8.

B. 30.
C. 12.
D. 20.
Câu 50. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim
= .
B. lim [ f (x)g(x)] = ab.
x→+∞ g(x)
x→+∞
b
C. lim [ f (x) + g(x)] = a + b.
D. lim [ f (x) − g(x)] = a − b.
x→+∞

x→+∞

Câu 51. [1-c] Giá trị của biểu thức
A. 4.

log7 16
log7 15 − log7

B. 2.

Câu 52. [1] Tập xác định của hàm số y = 4
A. D = (−2; 1).
B. D = [2; 1].

1 − 2n
Câu 53. [1] Tính lim
bằng?
3n + 1
2
A. .
B. 1.
3

x2 +x−2

15
30

bằng
C. −2.

D. −4.

C. D = R \ {1; 2}.

D. D = R.



C.

1
.
3


2
D. − .
3
Trang 4/10 Mã đề 1


Câu 54. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 6.
C. 9.
D. .
2
2
Câu 55.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x
A.
xα dx =
+ C, C là hằng số.
B.
dx = x + C, C là hằng số.
α+1
Z
Z
1
C.

dx = ln |x| + C, C là hằng số.
D.
0dx = C, C là hằng số.
x
Câu 56. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng



a 2
a 2
A.
.
B. a 2.
C.
.
D. 2a 2.
4
2

2
Câu 57. [4-1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vô số.
C. 64.
D. 63.
Câu 58. Khối đa diện đều loại {3; 3} có số đỉnh

A. 3.
B. 4.

C. 2.

D. 5.

Câu 59. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có vơ số.
C. Khơng có.
D. Có hai.
Câu 60. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 1.
C. 3.
D. 2.


4n2 + 1 − n + 2
bằng
Câu 61. Tính lim
2n − 3
3
A. 2.
B. .
C. 1.
D. +∞.
2

x3 − 1
Câu 62. Tính lim
x→1 x − 1
A. −∞.
B. 0.
C. 3.
D. +∞.
Câu 63. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y z−1
x−2 y−2 z−3
A. = =
.
B.
=
=
.

1 1
1
2
3
4
x y−2 z−3
x−2 y+2 z−3
C. =
=
.
D.
=
=
.
2
3
−1
2
2
2
Câu 64. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {3; 3}.
D. {4; 3}.
mx − 4
Câu 65. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.

B. 26.
C. 34.
D. 45.
Câu 66. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
9
5
13
A. −
.
B.
.
C. − .
D.
.
100
25
16
100
Trang 5/10 Mã đề 1


4x + 1
Câu 67. [1] Tính lim
bằng?
x→−∞ x + 1
A. −1.
B. 4.


C. 2.

Câu 68. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 3}.
x2 − 5x + 6
x→2
x−2
B. 1.

D. −4.
D. {4; 3}.

Câu 69. Tính giới hạn lim
A. −1.

C. 5.

D. 0.

Câu 70. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. −4.
C. 4.

D. 2.

Câu 71. Khối đa diện đều loại {3; 4} có số mặt
A. 8.

B. 12.

C. 10.
D. 6.
2
ln x
m
Câu 72. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 135.
C. S = 22.
D. S = 24.
Câu 73. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = 3S h.
C. V = S h.
D. V = S h.
2
3
3
2
Câu 74. Tìm giá trị lớn chất của hàm số y = x − 2x − 4x + 1 trên đoạn [1; 3].
67
A.

.
B. −7.
C. −2.
D. −4.
27
Câu 75. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m > .
C. m ≤ .
D. m < .
4
4
4
4
Câu 76. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 77. Tính lim
x→3

A. 3.

x2 − 9
x−3


B. −3.

Câu 78. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.

C. +∞.

D. 6.

C. Khối 12 mặt đều.

D. Khối bát diện đều.

Câu 79. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
B.
.
C. 2.
D. 26.
A. 2 13.
13
Câu 80. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.

B. Bốn mặt.
C. Hai mặt.
D. Năm mặt.
2
Câu 81. Tính
√ mơ đun của số phức z biết
√ (1 + 2i)z = 3 + 4i.
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.

D. |z| =

√4
5.

Câu 82. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất

√ của hàm số. Khi đó tổng M + m

A. 7 3.
B. 16.
C. 8 2.
D. 8 3.
Câu 83. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m > 0.
C. m > −1.


D. m ≥ 0.
Trang 6/10 Mã đề 1


Câu 84. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = −1.
C. m = 0.

D. m = −2.

Câu 85. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≥ 3.
D. m ≤ 3.
Câu 86. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. Cả ba câu trên đều sai.
Câu 87. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 30.

C. 20.

D. 8.


Câu 88. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m < .
D. m ≥ .
4
4
4
4
Câu 89. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 3.
C. 1.
D. Vô nghiệm.
1
Câu 90. [1] Giá trị của biểu thức log √3
bằng
10
1
A. −3.
B. − .
3

C. 3.


D.

Câu 91. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 4.

B. 2.
cos n + sin n
Câu 92. Tính lim
n2 + 1
A. 1.
B. 0.

3

1
.
3
Z

6
3x + 1

C. 6.

D. −1.

C. −∞.


D. +∞.

. Tính

1

f (x)dx.
0

Câu 93. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là
√ phẳng vng góc với 3(ABCD).

3
3

a 3
a 2
a 3
A.
.
B.
.
C.
.
D. a3 3.
2
2
4

Câu 94. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 8.

C. 12.

Câu 95. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. −7, 2.
C. 7, 2.

D. 30.
D. 0, 8.

Câu 96. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 2
a3 3
A.
.
B.
.
C.

.
D.
.
6
4
12
12

Câu 97. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
2
3
6
6

Trang 7/10 Mã đề 1


Câu 98. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim+ f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim− f (x) = f (b).

q
Câu 99. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i

h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [−1; 0].
C. m ∈ [0; 1].
D. m ∈ [0; 4].
Câu 100. Cho hai hàm y = f (x), y = Z
g(x) có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
0
B. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.

Câu 101. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A. 4 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
2n + 1
3n + 2
2
B. .
3

Câu 102. Tính giới hạn lim
A. 0.

C.

3
.
2

 π
Câu 103. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


1 π
3 π6
2 π4
e .
B. e 3 .
C.
e .
A.
2

2
2

D.

1
.
2

D. 1.

2

Câu 104. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 2.
B. 5.
C. 3.

D. 4.

Câu 105. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 64cm3 .
C. 27cm3 .
D. 72cm3 .
Câu 106. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường




√ thẳng BD bằng
b a2 + c2
abc b2 + c2
c a2 + b2
a b2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 107. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên

A. Cả hai câu trên sai.

B. Chỉ có (I) đúng.

C. Chỉ có (II) đúng.

D. Cả hai câu trên đúng.
Trang 8/10 Mã đề 1


Câu 108. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,

√ N, P bằng


14 3
20 3
C. 8 3.
D.
A.
.
B. 6 3.
.
3
3
Câu 109. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.

B. Tăng lên n lần.
C. Tăng lên (n − 1) lần. D. Không thay đổi.
1
ln x p 2
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 110. Gọi F(x) là một nguyên hàm của hàm y =
x
3
8
1
8
1
B. .
C. .
D. .
A. .
9
3
3
9
Câu 111. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {3}.
C. {5}.
D. {5; 2}.
Câu 112. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog
A. 5.

B. 25.


C.


a



5

bằng
D.

5.

Câu 113. [12210d] Xét các số thực dương x, y thỏa mãn log3
nhất Pmin của P√ = x + y.
9 11 − 19
A. Pmin =
.
9


9 11 + 19
=
.
9

1
.
5


1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y


2 11 − 3
=
.
3


18 11 − 29
B. Pmin
C. Pmin
D. Pmin =
.
21
d = 120◦ .
Câu 114. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
B. 3a.
C. 4a.
D. 2a.
A.
2
Câu 115. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.

B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 116. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách √
từ C đến đường thẳng BB0 bằng 2, khoảng
0
0
cách từ A đến các đường thẳng BB và CC lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √

2 3
A. 2.
B. 1.
C.
.
D. 3.
3
 π π
Câu 117. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 7.
C. −1.
D. 3.
Câu 118. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc

45◦ . Tính thể tích của khối chóp S√
.ABC theo a


a3 15
a3 5
a3 15
a3
A.
.
B.
.
C.
.
D.
.
3
5
25
25
Câu 119. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Trang 9/10 Mã đề 1


Câu 120. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.

B. Khối 12 mặt đều.
x+2
Câu 121. Tính lim
bằng?
x→2
x
A. 3.
B. 1.
Câu 122. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 2.

C. Khối 20 mặt đều.

D. Khối bát diện đều.

C. 2.

D. 0.

C. 24.

D. 144.

Câu 123. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + .
B. T = e + 3.

C. T = e + 1.
D. T = 4 + .
e
e
2
Câu 124. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t − 6t(m/s). Tính qng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 8 m.
C. 12 m.
D. 16 m.
Câu 125. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

B. aα+β = aα .aβ .
C. aα bα = (ab)α .
D. aαβ = (aα )β .
A. β = a β .
a
Câu 126. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {1}.
C. D = R \ {0}.
D. D = R.
0 0 0 0
Câu 127.
a. Khoảng cách từ C đến √
AC 0 bằng
√ ABCD.A B C D cạnh √
√ [2] Cho hình lâp phương

a 6
a 3
a 6
a 6
.
B.
.
C.
.
D.
.
A.
2
7
2
3


Câu 128.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x

+
3
+
√6 − x


B. 3.
C. 3 2.
D. 2 + 3.
A. 2 3.
3a
Câu 129. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a 2
a
a
2a
.
B.
.
C. .
D. .
A.
3
3
3

4
x
Câu 130. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 ) = 2 − x bằng
A. 1.
B. 2.
C. 3.
D. 7.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

4.

C

2.

D

5.


D

6.

B

7.

D

8.

B

9.

D

11.

D

D

10.
12. A

C

13.


14.

15.

C

16.

D

17.

18.

D

19.

B
D
C

20.

B

21.

22.


B

23.

D

25.

D

24.

D

26.

C

27.

28.

C

29.

30.

B


32.

B
D

31.
C

34.

C

33. A
D

36. A
38.

B

C

35.

D

37.

D


39. A

40.

D

41.

42.

D

43.

B

45.

B

44. A
46.

C

D

47. A


48. A

49.

D

50. A

51.

D
D

52.

D

53.

54.

D

55. A

56.

57. A

C


58.

B

59.

60.

B

61.

62.
64.

C

63. A

C
B

65.

66. A
68.

D


67.
B

69. A
1

C
B


70. A

71. A

72. A

73.

74.

C

75.

76.

C

77.


78. A

79.

80. A

81.

82.

B

84.

D
C

86.

C
D
B
D

83.

C

85.


C

87.

88. A

D

B

89. A

90.

B

91. A

92.

B

93. A
C

94.

95.

B


96.

D

97.

B

98.

D

99.

B

100.

D

102.

101. A

B

103.

C

C

104.

D

105.

106.

D

107.

108.

B

109. A

110.
112.

D
B

111.

C


113.

C

114. A

115.

116. A

117. A
D

118.
120.

121.

122.

D

123.

124.

D

125. A


126.

D

127.

130.

B

119. A

B

128.

D

C

129. A

B

2

C
B
D




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×