Tài liệu Pdf miễn phí LATEX
ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001
Câu 1. Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y = −x2 + 2mx − 1 − 2m trên
đoạn [−1; 2] nhỏ hơn 2.
7
B. m ≥ 0.
C. m ∈ (−1; 2).
D. m ∈ (0; 2).
A. −1 < m < .
2
Câu 2. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Tọa độ của một véc
tơ pháp tuyến của (P) là
A. (2; −1; −2).
B. (−2; −1; 2).
C. (2; −1; 2).
D. (−2; 1; 2).
−u (2; −2; 1), kết luận nào sau đây là đúng?
Câu 3. Trong
hệ tọa độ Oxyz cho →
√ không gian với→
→
−
−
−u | = 1.
−u | = 3
B. | u | = 9.
C. |→
D. |→
A. | u | = 3.
.
Câu 4.√Hình nón có bán kính đáy R, đường sinh l thì diện√tích xung quanh của nó bằng
B. πRl.
C. 2π l2 − R2 .
D. 2πRl.
A. π l2 − R2 .
Câu 5. Cho 0 < a , 1; 0 < x , 2. Đẳng thức nào sau đây là sai?
1
A. loga2 x = loga x.
B. aloga x = x.
2
C. loga (x − 2)2 = 2loga (x − 2).
D. loga x2 = 2loga x.
Câu 6. Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − 5 = 0. Bán kính R
của (S) bằng bao nhiêu?
√
√
C. R = 9.
D. R = 29.
A. R = 3.
B. R = 21.
Câu 7. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s). Tính
quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?
A. S = 24 (m).
B. S = 28 (m).
C. S = 12 (m).
D. S = 20 (m).
π
π
π
x
và F( ) = √ . Tìm F( )
Câu 8. Biết F(x) là một nguyên hàm của hàm số f (x) =
2
cos x
3
4
3
π
π ln 2
π
π ln 2
π
π ln 2
π
π ln 2
A. F( ) = −
.
B. F( ) = +
.
C. F( ) = −
.
D. F( ) = +
.
4
3
2
4
4
2
4
4
2
4
3
2
Câu 9. Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − 5 = 0. Bán kính R
của (S) bằng bao nhiêu?
√
√
D. R = 21.
A. R = 9.
B. R = 3.
C. R = 29.
Câu 10. Cho lăng trụ đều ABC.A′ B′C ′ có tất cả các cạnh đều bằng a. Tính khoảng cách giữa hai đường
thẳng√AB′ và BC ′ .
√
a
3a
5a
2a
A.
.
B.
.
C. √ .
D. √ .
2
3
5
5
x
π
π
π
Câu 11. Biết F(x) là một nguyên hàm của hàm số f (x) =
và F( ) = √ . Tìm F( ).
2
cos x
3
4
3
π
π ln 2
π
π ln 2
π
π ln 2
π
π ln 2
A. F( ) = +
.
B. F( ) = −
.
C. F( ) = +
.
D. F( ) = −
.
4
4
2
4
3
2
4
3
2
4
4
2
Câu 12. Cho hình chóp đều S .ABCD có đáy ABCD là hình vng cạnh 2a, đường cao của hình chóp
bằng a. Tính góc giữa hai mặt phẳng (S AC) và (S AB).
A. 360 .
B. 300 .
C. 600 .
D. 450 .
Câu 13. Đồ thị hàm số nào sau đây có vơ số đường tiệm cận đứng?
A. y = x3 − 2x2 + 3x + 2.
B. y = sin x .
3x + 1
C. y = tan x.
D. y =
.
x−1
Trang 1/5 Mã đề 001
Câu 14. Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu
(S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S)
theo dây cung dài nhất.
A. x = 5 + 2ty = 5 + tz = 2 − 4t.
B. x = 5 + ty = 5 + 2tz = 2.
C. x = 5 + 2ty = 5 + tz = 2.
D. x = 3 + 2ty = 4 + tz = 6.
1
Câu 15. Kết luận nào sau đây về tính đơn điệu của hàm số y = là đúng?
x
A. Hàm số nghịch biến trên R.
B. Hàm số nghịch biến trên (0; +∞).
C. Hàm số đồng biến trên R.
D. Hàm số đồng biến trên (−∞; 0) ∪ (0; +∞).
Câu 16. Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y = −x2 + 2mx − 1 − 2m trên
đoạn [−1; 2] nhỏ hơn 2.
7
A. m ∈ (−1; 2).
B. m ∈ (0; 2).
C. −1 < m < .
D. m ≥ 0.
2
Câu 17. Cho mặt phẳng (α) : 2x − 3y − 4z + 1 = 0. Khi đó, một véctơ pháp tuyến của (α)?
−n = (2; 3; −4).
−n = (2; −3; 4).
−n = (−2; 3; 1).
−n = (−2; 3; 4).
A. →
B. →
C. →
D. →
Câu 18. Biết F(x) = x là một nguyên hàm của hàm số f (x) trên R. Giá trị của
2
R3
[1 + f (x)]dx bằng
1
32
26
.
B. 10.
C. .
D. 8.
3
3
Câu 19. Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = x2 và đường thẳng y = mx với m , 0. Hỏi
có bao nhiêu số ngun dương m để diện tích hình phẳng (H) là số nhỏ hơn 20.
A. 5.
B. 4.
C. 6.
D. 3.
Câu 20. Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + 1 + 3i −
z
i = 0. Tính S = 2a + 3b.
A. S = −5.
B. S = 5.
C. S = −6.
D. S = 6.
√
Câu 21. Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn
z + 4 − 8i
= 2 5
là đường trịn có phương trình:
√
A. (x − 4)2 + (y + 8)2 = 2 5.
B. (x − 4)2 + (y + 8)2 = 20.
√
C. (x + 4)2 + (y − 8)2 = 20.
D. (x + 4)2 + (y − 8)2 = 2 5.
y
z−2
x+1
=
=
. Viết
Câu 22. Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d :
2
1
1
phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox.
A. (P) : x − 2y + 1 = 0. B. (P) : y + z − 1 = 0. C. (P) : y − z + 2 = 0. D. (P) : x − 2z + 5 = 0.
−a = (4; −6; 2). Phương
Câu 23. Cho đường thẳng ∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương →
A.
trình tham số của đường thẳng ∆ là
A. x = 2 + 2ty = −3tz = −1 + t..
C. x = −2 + 2ty = −3tz = 1 + t.
B. x = 4 + 2ty = −3tz = 2 + t.
D. x = −2 + 4ty = −6tz = 1 + 2t.
3
Câu 24. Tìm đạo hàm của hàm số: y = (x + 1) 2
1
1
1
1
3 2
3 −
3
2
A. 3x(x + 1) 2 .
B. (x + 1) 2 .
C. x 4 .
D. (2x) 2 .
2
4
2
Câu 25. Một sinh viên A trong thời gian 4 năm học đại học đã vay ngân hàng mỗi năm 10 triệu đồng
với lãi suất 3
A. 45.188.656 đồng.
B. 43.091.358 đồng.
C. 46.538667 đồng.
D. 48.621.980 đồng.
2
Câu 26. Cho hình chóp đều S .ABCD có cạnh đáy bằng a Gọi M, N lần lượt là trung điểm của SA và BC
o
Biết góc
√ giữa MN và mặt phẳng
√ (ABCD) bằng 60 . Tính
√ sin của góc giữa MN và mặt phẳng (S BD)
5
3
10
2
A.
.
B.
.
C.
.
D. .
5
4
5
5
Trang 2/5 Mã đề 001
Câu 27. Trong hệ tọa độ Oxyz, cho A(1;
kính AB có phương trình
√ 2; 3), B(−3; 0; 1). Mặt2 cầu đường
2
2
2
2
A. (x + 1) + (y − 1) + (z − 2) = 6.
B. (x + 1) + (y − 1) + (z − 2)2 = 24.
C. (x − 1)2 + (y + 1)2 + (z + 2)2 = 6.
D. (x + 1)2 + (y − 1)2 + (z − 2)2 = 6.
Câu 28. Đồ thị hàm số nào sau đây có 3 điểm cực trị:
A. y = x4 − 2x2 − 1.
B. y = x4 + 2x2 − 1.
C. y = 2x4 + 4x2 + 1.
D. y = −x4 − 2x2 − 1.
(2 ln x + 3)3
là :
x
4
4
(2 ln x + 3)
2 ln x + 3
(2 ln x + 3)
+ C.
B.
+ C.
C.
+ C.
A.
2
8
8
Câu 30. Họ nguyên hàm của hàm số y = (x − 1)e x là:
A. xe x + C.
B. (x − 1)e x + C.
C. xe x−1 + C.
(2 ln x + 3)2
D.
+ C.
2
Câu 29. Họ nguyên hàm của hàm số f (x) =
Câu 31. Tập xác định của hàm số y = logπ (3 x − 3) là:
A. [1; +∞).
B. (3; +∞).
C. Đáp án khác.
D. (x − 2)e x + C.
D. (1; +∞).
Câu 32. Tìm tập hợp tất cả các giá trị của tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm
cực đại có hồnh độ nhỏ hơn 1.
A. S = [−1; +∞) .
B. S = (−1; +∞) .
C. S = (−∞; −4) ∪ (−1; +∞) .
D. S = (−4; −1).
Câu 33. Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vng. Diện tích tồn phần của (T ) là
A. 8π.
B. 10π.
C. 6π.
D. 12π.
Câu 34. Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC là tam giác tù, AB = AC. Góc tạo bởi hai
đường thẳng AA′ và BC ′ bằng 300 ; khoảng cách giữa AA′ và BC ′ bằng a; góc giữa hai mặt phẳng
(ABB′ A′ √
) và (ACC ′ A′ ) bằng 600 . Tính
thể tích khối lăng trụ√ABC.A′ B′C ′ .
√
√
B. 6a3 3.
C. 4a3 3.
D. 9a3 3.
A. 3a3 3.
Câu 35. Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0. Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2 +MB2 +2MC 2
nhỏ nhất. Tính tổng a + b + c.
A. 4.
B. 1.
C. 3.
D. 2.
Câu 36. Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau. Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
A. 36080253 đồng.
B. 36080251 đồng.
C. 36080255 đồng.
D. 36080254 đồng.
Câu 37. Tính đạo hàm của hàm số y = 5 x+cos3x
A. y′ = (1 − sin 3x)5 x+cos3x ln 5 .
C. y′ = (1 + 3 sin 3x)5 x+cos3x ln 5 .
B. y′ = (1 − 3 sin 3x)5 x+cos3x ln 5.
D. y′ = 5 x+cos3x ln 5 .
Câu 38. Hàm số y = x3 − 3x2 + 1 có giá trị cực đại là:
A. 1.
B. 4.
C. −3.
D. 2.
Câu 39. Tìm tất cả các giá trị của tham số m để hàm số y = mx3 + mx2 − x + 2 nghịch biến trên R.
A. −3 ≤ m ≤ 0.
B. m < 0.
C. m > −2.
D. −4 ≤ m ≤ −1.
Câu 40. Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x trên đoạn [−1; 2] lần lượt là M, m.
Tính M + m.
A. 6.
B. 4.
C. 5.
D. 3.
Câu 41. Hàm số y = x4 − 4x2 + 1 đồng biến trên khoảng nào trong các khoảng sau đây.
A. (−1; 1).
B. (3; 5).
C. (−3; 0).
D. (1; 5).
Câu 42. Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình bên. Điểm cực đại của đồ thị
hàm số đã cho có tọa độ là
A. (−3; 0).
B. (−1; −4).
C. (1; −4).
D. (0; −3).
Trang 3/5 Mã đề 001
Câu 43. Cho khối chóp S .ABCD có đáy ABCD là hình vng với AB = a, S A⊥(ABCD) và S A = 2a.
Thể tích của khối chóp đã cho bằng
A. 6a3 .
B.
a3
.
3
C. 2a3 .
D.
2a3
.
3