Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn thi thpt 2 (102)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.55 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 1. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 3
a3 2
.
B.
.
C.
.
D. 2a2 2.
A.
24
12
24
3
2


Câu 2. Tập xác định của hàm số f (x) = −x + 3x − 2 là
A. (−∞; +∞).
B. (1; 2).
C. [1; 2].
D. [−1; 2).
2mx + 1
1
Câu 3. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. 0.
C. 1.
D. −2.
Câu 4. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Ba cạnh.
C. Hai cạnh.

D. Bốn cạnh.

Câu 5. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng

2
.
e
Câu 6. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là

8a3 3
8a3 3
4a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
9
3
9
9
Câu 7. Trong các mệnh đề dưới đây, mệnh đề nào sai?
!
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
!vn
un
= +∞.
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.

vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
A. 2e + 1.

B. 3.

C. 2e.

D.

Câu 8.
Z [1233d-2] Mệnh đề
Z nào sau đâyZsai?

[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
B.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.


A.

Z

Câu 9. Cho khối chóp S .ABC√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là

3
3
2a 6
a 3
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
9
4
12
2
Câu 10. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.
C. Khối bát diện đều. D. Khối tứ diện đều.

Câu 11. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 4.
C. ln 12.
D. ln 10.
Trang 1/10 Mã đề 1


2
Câu 12. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2√
D. m = ± 3.
A. m = ±1.
B. m = ±3.
C. m = ± 2.

Câu 13. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Cả ba đáp án trên.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 + 19

2 11 − 3
9 11 − 19
18 11 − 29
A. Pmin =
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
9
3
9
21
Câu 15. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; 6, 5].
C. (4; +∞).
D. [6, 5; +∞).

Câu 14. [12210d] Xét các số thực dương x, y thỏa mãn log3

Câu 16. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
B. a 3.

C.
.
D.
.
A. a 2.
2
3
Câu 17. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 70, 128 triệu đồng. C. 20, 128 triệu đồng. D. 50, 7 triệu đồng.


4n2 + 1 − n + 2
bằng
Câu 18. Tính lim
2n − 3
3
A. .
B. +∞.
C. 2.
D. 1.
2
Câu 19. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. (2; +∞).
D. R.


Câu 20. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là



πa3 6
πa3 3
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
6
3
2
Câu 21. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.


B. (II) và (III).

C. (I) và (III).

D. (I) và (II).

Câu 22. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 1.
C. 0.

D. 2.

Câu 23. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = 0.
C. m = −3.

D. m = −2.
Trang 2/10 Mã đề 1


Câu 24. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
.
C.

.
D.
.
A. 2
.
B.



a + b2
a2 + b2
a2 + b2
2 a2 + b2
Câu 25. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 6.
C. .
D. 9.
2
2
Câu 26. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 27. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 7.
B. 2.
C. 3.
D. 1.

Câu 28. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. .
B.
.
C. a.
D. .
2
2
3
Câu 29. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 1.

B. f 0 (0) = 10.

C. f 0 (0) =

1
.
ln 10

D. f 0 (0) = ln 10.

Câu 30. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1

1
1
A. m ≥ .
B. m > .
C. m < .
D. m ≤ .
4
4
4
4
p
ln x
1
Câu 31. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
A. .
B. .
C. .
D. .
9
3
9
3
Câu 32. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

A. 6 mặt.
B. 3 mặt.
C. 9 mặt.

D. 4 mặt.

Câu 33. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
100.1, 03
120.(1, 12)3
A. m =
triệu.
B. m =
triệu.
3
(1, 12)3 − 1
100.(1, 01)3
(1, 01)3
C. m =
triệu.
D.
m
=
triệu.
(1, 01)3 − 1
3
Câu 34. Hàm số f có nguyên hàm trên K nếu

A. f (x) có giá trị lớn nhất trên K.
B. f (x) liên tục trên K.
C. f (x) có giá trị nhỏ nhất trên K.
D. f (x) xác định trên K.
Z 2
ln(x + 1)
Câu 35. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 1.
B. 3.
C. 0.
D. −3.
x
Câu 36. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
1
3
3
A. .
B.
.
C. 1.
D. .
2
2
2

Trang 3/10 Mã đề 1



Câu 37. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim− f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim− f (x) = f (b).

Câu 38. Cho
Z hai hàm yZ= f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f 0 (x)dx =

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
 π π
Câu 39. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. −1.
C. 1.
D. 3.
3

Câu 40. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ S .ABCD là

√ phẳng vng góc với 3(ABCD).

3
3

a 3
a 3
a 2
B.
.
C.
.
D.
.
A. a3 3.
2
4
2

Câu 41. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. Vơ số.
D. 63.
Câu 42. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|




12 17
.
B. 5.
C. 68.
D. 34.
A.
17
Câu 43. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac
3b + 2ac
.
B.
.
C.
.
A.
c+2
c+2
c+1
Câu 44. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều.
Câu 45.
! định nào sau đây là sai?
Z Các khẳng
0

f (x)dx = f (x).


A.
Z
C.

f (x)dx = F(x) + C ⇒

Z
B.

Z

f (t)dt = F(t) + C. D.

Z

k f (x)dx = k

D.

3b + 2ac
.
c+3

D. Khối 12 mặt đều.

Z

f (x)dx, k là hằng số.
Z

f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.

Câu 46. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 12 m.
C. 8 m.
D. 16 m.
un
Câu 47. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. −∞.
C. +∞.
D. 0.
Câu 48. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng



a 6
A.
.
B. a 6.
C. a 3.
D. 2a 6.
2
Trang 4/10 Mã đề 1



Câu 49. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 8.
C. 20.
D. 12.
!
5 − 12x
Câu 50. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. Vô nghiệm.
B. 2.
C. 1.
D. 3.
Câu 51. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 1.
C. m > 0.

D. m ≥ 0.

Câu 52. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có một.
C. Khơng có.
D. Có hai.
Câu 53. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng

nhau?
A. 3.
B. 6.
C. 8.
D. 4.
1
Câu 54. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 4.
C. 3.
D. 2.
√3
Câu 55. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. 3.
B. − .
C. .
D. −3.
3
3
1
Câu 56. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 < m < −1.
C. (−∞; −2] ∪ [−1; +∞). D. −2 ≤ m ≤ −1.
x−2 x−1

x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−∞; −3].
C. [−3; +∞).
D. (−3; +∞).

Câu 57. [4-1212d] Cho hai hàm số y =

Câu 58. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. 2e2 .
C. −e2 .
D. −2e2 .
Câu 59. Hàm số y =
A. x = 2.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 1.


C. x = 3.

Câu 60. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (1; −3).
C. (−1; −7).

D. x = 0.
D. (2; 2).

Câu 61. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 62. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 72cm3 .
C. 46cm3 .
D. 64cm3 .
 π
Câu 63. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


2 π4
3 π6
1 π

A. 1.
B.
e .
C.
e .
D. e 3 .
2
2
2
Trang 5/10 Mã đề 1


Câu 64. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
.
B.
.
C.
.
D. a 6.
A.
3
2
6

Câu 65. Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; 3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; −3).
Câu 66. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = x
.
B. y0 =
.
C. y0 = 2 x . ln 2.
D. y0 = 2 x . ln x.
2 . ln x
ln 2
9t
Câu 67. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 1.
C. 0.
D. Vô số.

Câu 68. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng




3a 38
3a 58
a 38
3a
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 69. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .

9
15
18
6
Câu 70. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
12
4
4
8
8
Câu 71. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 64.

C. 81.
D. 96.
Câu 72. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n2 lần.
C. 3n3 lần.
D. n3 lần.
Câu 73. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 30.

C. 12.

D. 8.

Câu 74. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≤ 3.
C. m ≥ 3.
D. −2 ≤ m ≤ 2.
Câu 75. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 3.

B. 1.

C. 2.

3

2
Câu 76. Giá

√ trị cực đại của hàm số y√= x − 3x − 3x + 2
B. 3 + 4 2.
C. −3 + 4 2.
A. 3 − 4 2.

D. +∞.

D. −3 − 4 2.

Câu 77. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 7 năm.
C. 9 năm.
D. 10 năm.
Trang 6/10 Mã đề 1


Câu 78. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 9.

C. 0.

D. 7.


Câu 79. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
"
!
5
5
A. (1; 2).
B.
;3 .
C. [3; 4).
D. 2; .
2
2


ab.

Câu 80. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

a3 2
a3 3
a3 6
a3 3
A.
.
B.

.
C.
.
D.
.
16
48
48
24
2n + 1
Câu 81. Tính giới hạn lim
3n + 2
1
2
3
A. 0.
B. .
C. .
D. .
2
3
2
1
Câu 82. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 3.
C. 4.
D. 1.

Câu 83. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 12.
C. 4.
D. 11.
Câu 84. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 10.

C. 12.

Câu 85. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 12.
C. 10.

D. 8.
D. 3.

Câu 86. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
C. lim un = c (Với un = c là hằng số).
Câu 87. Bát diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.

1
= 0 với k > 1.
nk

1
D. lim √ = 0.
n

B. lim

C. {5; 3}.

D. {4; 3}.
x−1 y z+1
= =

Câu 88. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. 2x − y + 2z − 1 = 0.
C. 2x + y − z = 0.
D. −x + 6y + 4z + 5 = 0.
!x
1
1−x
Câu 89. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. − log3 2.
B. − log2 3.

C. log2 3.
D. 1 − log2 3.
Câu 90. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aαβ = (aα )β .
B. aα+β = aα .aβ .
C. β = a β .
D. aα bα = (ab)α .
a
Câu 91. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
Trang 7/10 Mã đề 1


5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 22 triệu đồng.
Câu 92. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.

2
8
4
Câu 93. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 9 mặt.
D. 6 mặt.
Câu 94. Tính lim
x→5

A. −∞.

x2 − 12x + 35
25 − 5x
B. +∞.

Câu 95. [1] Đạo hàm của làm số y = log x là
1
1
A. y0 = .
B.
.
x
10 ln x
Câu 96. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 6.
1 − n2
bằng?

Câu 97. [1] Tính lim 2
2n + 1
1
A. .
B. 0.
2

2
C. − .
5
C. y0 =
C. 12.

C.

1
.
3

D.
ln 10
.
x

2
.
5

D. y0 =


1
.
x ln 10

D. 10.

1
D. − .
2

d = 120◦ .
Câu 98. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B.
.
C. 2a.
D. 3a.
2
Câu 99. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log √2 x.
B. y = log π4 x.

C. y = log 41 x.
D. y = loga x trong đó a = 3 − 2.
1
Câu 100. [1] Giá trị của biểu thức log √3
bằng
10

1
1
A. 3.
B. .
C. −3.
D. − .
3
3
Câu 101. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1079
1637
1728
A.
.
B.
.
C.
.
D.
.
68
4913
4913
4913


Câu 102. Phần thực


phần
ảo
của
số
phức
z
=
2

1

3i lần lượt l √



A. Phần thực là √2 − 1, phần ảo là −√ 3.
B. Phần thực là 1√− 2, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Câu 103.
√ Thể tích của khối lăng trụ tam giác đều có cạnh√bằng 1 là:

3
3
3
3
A.
.
B. .
C.

.
D.
.
12
4
4
2
Câu 104. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x)g(x)] = ab.
B. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
f (x) a
C. lim
= .
D. lim [ f (x) − g(x)] = a − b.
x→+∞ g(x)
x→+∞
b
Trang 8/10 Mã đề 1



Câu 105. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là √
3


a3 3
a3
a 3
.
B.
.
C. a3 3.
D.
.
A.
3
12
4
Câu 106. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tam giác.
Câu 107. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Không có câu nào C. Câu (II) sai.
D. Câu (I) sai.
sai.
Câu 108. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng

biến d thành d0 ?
A. Có một.
B. Có một hoặc hai.
C. Khơng có.
D. Có hai.
Câu 109. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
A. 27.
B. 12.
C. 18.
D.
2
n−1
Câu 110. Tính lim 2
n +2
A. 2.
B. 3.
C. 1.
D. 0.
Câu 111. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 6 mặt.
C. 4 mặt.

D. 8 mặt.

3


x −1
Câu 112. Tính lim
x→1 x − 1
A. +∞.
B. 3.

C. 0.

Câu 113. Cho f (x) = sin x − cos x − x. Khi đó f (x) bằng
A. 1 − sin 2x.
B. −1 + 2 sin 2x.
C. 1 + 2 sin 2x.
2

2

D. −∞.

0

D. −1 + sin x cos x.

x2 +2x

Câu 114. [2] Tổng các nghiệm của phương trình 2
= 82−x là
A. 5.
B. −6.
C. 6.


D. −5.

d = 300 .
Câu 115. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.


a3 3
3a3 3
3
3
A. V =
.
B. V = 6a .
C. V = 3a 3.
D. V =
.
2
2
Câu 116. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a = − loga 2.
C. log2 a =
.
D. log2 a =
.

log2 a
loga 2
Câu 117. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 4.

C. 8.

D. 10.
Trang 9/10 Mã đề 1


Câu 118. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {0}.

C. D = (0; +∞).

D. D = R \ {1}.

Câu 119. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −7.
B. −4.
C.
.
D. −2.
27
Câu 120. Biểu thức nào sau đây khơng có nghĩa



−3
A. 0−1 .
B. (−1)−1 .
C.
−1.
D. (− 2)0 .
Câu 121. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
8a
a
5a
A.
.
B.
.
C. .
D.
.
9
9
9
9
Câu 122. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 12.
C. 8.
D. 20.

x−1
Câu 123. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng √
AB có độ dài bằng
√ đều ABI có hai đỉnh A, √
B. 2 3.
C. 6.
D. 2.
A. 2 2.
Câu 124. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −9.
B. −5.
C. −15.
D. −12.
Câu 125. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 20.

C. 30.

D. 12.

Câu 126. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 6.

C. V = 5.
D. V = 4.
Câu 127. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ là 1728. Khi đó, các kích thước của hình hộp là
√ đã cho
B. 8, 16, 32.
C. 2, 4, 8.
D. 6, 12, 24.
A. 2 3, 4 3, 38.
Câu 128. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 24.

C. 2.

Câu 130. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 10 cạnh.

C. 12 cạnh.

D. 144.
1 3
Câu 129. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. −3 ≤ m ≤ 4.

C. m = −3.
D. m = 4.
D. 9 cạnh.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2. A

3.

B

4.

5.

B

6.

7.


B

8.

9.
B

14.

15.

B

16.

19. A

C
D

20.

C
C

21.

D

22.


23.

D

24.

25.

B

18.

C

17.

B

26. A

C

28.

B
D

29.


C
D

30.

31. A

33.
B

36.

C

38.
40.

B

12. A

13.

34.

C

10. A

C


11. A

27.

B

D

C

35.

D

37.

D
C

39.

B

41.

B

42. A


43.

B

44. A

45.

D

47.

D

49.

D

46.
48.
50.

D
B

51. A

C

52.


D

53. A

54. A

55.

56.
58.

D
C

C

57.

B

59.

B

60. A

61.

62. A


63.

B
B

64.

C

65.

66.

C

67. A

68.

C

70.
1

C

D



72.

C

71.
73. A

D

74. A

75.

C

76.

77.

C

78.

B

80.

B

79.


B

81.
83.

C
B

85.

D

D

84.

D

88. A
B
D

91.
93.

82.
86. A

87. A

89.

90.

C

92.

C
D

94.

B

95.

D

96.

97.

D

98.

C
B


100.

99. A
101.

C

102. A

103.

C

104.

D
C

106.

105. A
107.

C

B

109.

108.


D
B

110.

C

D

111.

B

112.

113.

B

114.

D

116.

D

115.


D

117.

C

119.

B

118. A
D

120. A

121.

B

122.

B

123.

B

124.

D


125.

D

126.

D

127.

D

128.

D

129. A

130.

2

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×