TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 2.
C. 5.
D. 3.
Câu 2. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 3.
C. 4.
D. 2.
Câu 3. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 8.
C. 6.
D. 10.
Câu 4. Cho hàm số y = x − 3x + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. −3.
C. 0.
D. −6.
3
2
Câu 5. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.
B. 2.
C. 1.
D. 0.
Câu 6. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x ) − √
2
A. 2.
B. −1.
2,4
Câu 7. [1-c] Giá trị của biểu thức 3 log0,1 10
A. −7, 2.
B. 72.
3
Z
6
3x + 1
C. 4.
D. 6.
C. 7, 2.
D. 0, 8.
. Tính
1
f (x)dx.
0
bằng
Câu 8. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m ≤ .
C. m < .
D. m ≥ .
A. m > .
4
4
4
4
Câu 9. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 3
a3 5
A.
.
B.
.
C.
.
D.
.
4
6
12
12
Câu 10. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 20.
C. 8.
D. 30.
0 0 0
d = 60◦ . Đường chéo
Câu 11. Cho lăng trụ đứng ABC.A B C có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
3
√
a
4a3 6
2a3 6
6
A.
.
B.
.
C. a3 6.
D.
.
3
3
3
Câu 12. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 20, 128 triệu đồng. C. 70, 128 triệu đồng. D. 3, 5 triệu đồng.
√
Câu 13. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 2
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
18
36
6
Trang 1/10 Mã đề 1
d = 300 .
Câu 14. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V √của khối lăng trụ đã cho.
√
√
a3 3
3a3 3
3
3
B. V =
.
C. V = 6a .
D. V =
.
A. V = 3a 3.
2
2
√
Câu 15. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là
√
√
√
πa3 6
πa3 3
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
2
3
6
2n + 1
Câu 16. Tính giới hạn lim
3n + 2
2
1
3
A. 0.
B. .
C. .
D. .
3
2
2
3
2
2
Câu 17. Tìm m để hàm số y = x − 3mx + 3m có 2 điểm cực trị.
A. m > 0.
B. m , 0.
C. m = 0.
D. m < 0.
4x + 1
bằng?
Câu 18. [1] Tính lim
x→−∞ x + 1
A. −4.
B. −1.
C. 4.
D. 2.
x−1 y z+1
Câu 19. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 10x − 7y + 13z + 3 = 0.
C. 2x + y − z = 0.
D. 2x − y + 2z − 1 = 0.
1
Câu 20. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (−∞; 1).
C. D = (1; +∞).
D. D = R.
Câu 21. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.
B. (I) và (III).
C. (II) và (III).
D. (I) và (II).
Câu 22. [2] Cho hàm số f (x) = x ln x. Giá trị f (e) bằng
2
A. 3.
B. 2e.
Câu 23. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 4.
0
2
.
e
C. 2e + 1.
D.
C. 6.
D. 10.
Câu 24. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −3.
C. m = −1.
D. m = −2.
Câu 25. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
2
1
9
A.
.
B. .
C. .
D.
.
10
5
5
10
12 + 22 + · · · + n2
Câu 26. [3-1133d] Tính lim
n3
2
1
A. .
B. +∞.
C. 0.
D. .
3
3
Trang 2/10 Mã đề 1
Câu 27. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.016.000.
D. 102.423.000.
π
Câu 28. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu thức T = a + b 3.
√
√
A. T = 4.
B. T = 3 3 + 1.
C. T = 2 3.
D. T = 2.
Câu 29. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 0.
C. m ≥ 0.
D. m > 1.
Câu 30. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B. 12.
C.
.
D. 18.
2
Câu 31. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều. C. Khối tứ diện đều.
D. Khối 12 mặt đều.
Câu 32. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 6 mặt.
C. 10 mặt.
Câu 33. [1] Đạo hàm của làm số y = log x là
1
1
B.
.
A. y0 = .
x
10 ln x
C. y0 =
1
.
x ln 10
D. 4 mặt.
D. y0 =
ln 10
.
x
Câu 34. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
đến đường√thẳng BD0 bằng
√
√
√
abc b2 + c2
c a2 + b2
b a2 + c2
a b2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 35. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 2.
C. 1.
D. Vô số.
Câu 36. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 7.
C. 3.
D. 1.
log7 16
bằng
Câu 37. [1-c] Giá trị của biểu thức
log7 15 − log7 15
30
A. 4.
B. −4.
C. 2.
D. −2.
Câu 38. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 3.
C. Vơ nghiệm.
D. 1.
Câu 39. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
A. 2, 4, 8.
B. 2 3, 4 3, 38.
C. 8, 16, 32.
D. 6, 12, 24.
√
Câu 40. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 64.
C. 63.
D. 62.
Câu 41. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. aα+β = aα .aβ .
B. β = a β .
C. aαβ = (aα )β .
D. aα bα = (ab)α .
a
Trang 3/10 Mã đề 1
Câu 42. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.
B. 4.
C. 2.
1
3|x−1|
= 3m − 2 có nghiệm duy
D. 3.
0 0 0 0
0
Câu 43.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
.
B.
.
C.
.
D.
.
A.
7
2
3
2
Câu 44. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.
√
√
√
√
5 13
A. 2 13.
.
B. 26.
C. 2.
D.
13
Câu 45. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 8.
C. 4.
D. 6.
!
x+1
Câu 46. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2017
2016
.
B.
.
C.
.
D. 2017.
A.
2017
2018
2018
Câu 47. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 14.
C. ln 4.
D. ln 12.
Câu 48. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.
B. x = −8.
C. x = −5.
D. x = −2.
Câu 49. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Ba mặt.
C. Năm mặt.
D. Hai mặt.
Câu 50. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. −4.
C. −2.
D. 4.
Câu 51. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
√
B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Cả ba đáp án trên.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 52. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {5; 3}.
D. {4; 3}.
Câu 53. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 12.
D. 30.
C. 20.
Câu 54. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 1.
C. Vơ nghiệm.
D. 2.
Câu 55. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là
√
2
a 2
11a2
a2 5
a2 7
A.
.
B.
.
C.
.
D.
.
4
32
16
8
Câu 56.
Z Trong các khẳng định sau, khẳng định nào sai? Z
xα+1
A.
0dx = C, C là hằng số.
B.
xα dx =
+ C, C là hằng số.
α+1
Z
Z
1
C.
dx = ln |x| + C, C là hằng số.
D.
dx = x + C, C là hằng số.
x
Trang 4/10 Mã đề 1
Câu 57. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. 4 − 2 ln 2.
C. e.
D. −2 + 2 ln 2.
Câu 58. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3 3
a3 3
a3 3
a3
.
B.
.
C.
.
D.
.
A.
4
12
8
4
Câu 59. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
100.1, 03
100.(1, 01)3
A. m =
triệu.
B. m =
triệu.
3
3
120.(1, 12)3
(1, 01)3
C. m =
triệu.
D.
m
=
triệu.
(1, 12)3 − 1
(1, 01)3 − 1
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a
a 2
a
2a
A. .
B.
.
C. .
D.
.
3
3
4
3
Câu 60. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
Câu 61. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m
√
A. 8 2.
B. 8 3.
C. 16.
D. 7 3.
Z 1
Câu 62. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
4
0
B. 1.
C. 0.
D.
1
.
2
Câu 63. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.
B. 3.
C. 4.
D. 1.
Câu 64. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 65. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 0.
C. 2.
D. 1.
Câu 66. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 5.
C. 7.
D. 0.
Trang 5/10 Mã đề 1
Câu 67. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 212 triệu.
C. 220 triệu.
D. 216 triệu.
Câu 68. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2
√
√
B. 3 − 4 2.
C. −3 − 4 2.
D. 3 + 4 2.
A. −3 + 4 2.
2n + 1
Câu 69. Tìm giới hạn lim
n+1
A. 3.
B. 0.
C. 2.
D. 1.
2
1−n
Câu 70. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. − .
C. 0.
D. .
3
2
2
Câu 71. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 32π.
C. 16π.
D. 8π.
Câu 72. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng
√
√
√
a 2
a 2
A.
.
B.
.
C. a 2.
D. a 3.
2
3
x2
Câu 73. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = 1.
C. M = e, m = .
D. M = e, m = 0.
e
e
3
Câu 74. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.
B. e2 .
C. e3 .
D. e5 .
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
Câu 75. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
Pmin của P = x +
√ y.
√
√
√
18 11 − 29
9 11 + 19
2 11 − 3
9 11 − 19
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
21
9
3
9
Câu 76.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
( f (x) + g(x))dx =
A.
Z
C.
( f (x) − g(x))dx =
f (x)dx +
Z
g(x)dx.
Z
f (x)dx −
B.
Z
g(x)dx.
f (x)g(x)dx =
f (x)dx g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
√
4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
C. 2 nghiệm.
D. 1 nghiệm.
Câu 77. [2] Phương trình log4 (x + 1)2 + 2 = log √2
A. Vô nghiệm.
B. 3 nghiệm.
√
√
4n2 + 1 − n + 2
Câu 78. Tính lim
bằng
2n − 3
3
A. 2.
B. .
C. 1.
D. +∞.
2
Câu 79. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
4a 3
5a3 3
2a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
2
Trang 6/10 Mã đề 1
Câu 80. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {4; 3}.
C. {5; 3}.
D. {3; 4}.
x−1
Câu 81. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√
√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB có độ dài bằng
B. 6.
C. 2.
D. 2 2.
A. 2 3.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 82. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 2
a3 3
a3 3
A.
.
B.
.
C.
.
D. 2a2 2.
24
24
12
0
Câu 83. Cho hai đường thẳng phân biệt d và d đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Khơng có.
C. Có một hoặc hai.
D. Có hai.
Câu 84. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = R \ {1; 2}.
C. D = (−2; 1).
2
D. D = [2; 1].
Câu 85. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
C. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
D. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
Câu 86. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 + 2; m = 1.
−2
C. M = e + 1; m = 1.
D. M = e−2 − 2; m = 1.
!4x
!2−x
2
3
≤
là
Câu 87. Tập các số x thỏa mãn
#
" 3
! 2
#
"
!
2
2
2
2
A. −∞; .
; +∞ .
B. − ; +∞ .
C. −∞; .
D.
3
3
5
5
2
Câu 88. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m > 3.
C. m < 3.
D. m ≥ 3.
1
Câu 89. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.
Câu 90.
√ min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
A. 10.
B. 1.
C. 2.
D. 2.
Câu 91. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 3.
B. 6.
C. 4.
D. 8.
1
Câu 92. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. 2.
C. −2.
D. −1.
Câu 93. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −2.
B. −7.
C.
.
D. −4.
27
Câu 94. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 2).
C. (−∞; 0) và (2; +∞). D. (0; +∞).
Trang 7/10 Mã đề 1
Câu 95. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 9.
C. .
D. 6.
2
2
1 + 2 + ··· + n
Câu 96. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = .
B. lim un = 0.
2
C. lim un = 1.
D. Dãy số un khơng có giới hạn khi n → +∞.
1
Câu 97. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 < m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.
Câu 98. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 20.
C. 30.
Câu 99.
Z Các khẳng định
Z nào sau đây là sai?
D. 12.
Z
f (x)dx, k là hằng số.
B.
f (x)dx = F(x) + C ⇒
!0
Z
Z
Z
C.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.
f (x)dx = f (x).
A.
k f (x)dx = k
Z
f (t)dt = F(t) + C.
Câu 100. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
18
15
9
6
3
2
Câu 101. Tập xác định của hàm số f (x) = −x + 3x − 2 là
A. (1; 2).
B. [1; 2].
C. (−∞; +∞).
D. [−1; 2).
1
Câu 102. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 1.
C. 3.
D. 4.
Câu 103. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√ chóp S .ABCD là
√
3
3
a 2
a 3
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
16
24
48
48
2
Câu 104. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 6.
C. 8.
D. 5.
Câu 105. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(−4; 8).
C. A(−4; −8)(.
D. A(4; −8).
Câu 106. Dãy số nào có giới hạn bằng!0?
n
6
n3 − 3n
.
B. un =
.
A. un =
n+1
5
C. un = n − 4n.
2
!n
−2
D. un =
.
3
log 2x
Câu 107. [3-1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 log 2x
1
1 − 4 ln 2x
1 − 2 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 =
.
D. y0 = 3
.
3
3
x
2x ln 10
2x ln 10
x ln 10
Câu 108. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có vơ số.
C. Khơng có.
D. Có một.
Trang 8/10 Mã đề 1
Câu 109. [1]! Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
B. −∞; − .
C. − ; +∞ .
A. −∞; .
2
2
2
!
1
D.
; +∞ .
2
x3 − 1
Câu 110. Tính lim
x→1 x − 1
A. −∞.
B. 3.
D. 0.
C. +∞.
√
Câu 111. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là
√
√
3
3
3
√
a
a
a
3
3
.
C.
.
D.
.
A. a3 3.
B.
4
3
12
Câu 112. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
ab
1
.
C. √
.
D. √
.
A. 2
.
B. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 113. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −9.
B. −12.
C. −5.
D. −15.
2
Câu 114. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 3 − log2 3.
C. 1 − log2 3.
D. 2 − log2 3.
Câu 115. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vuông góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (2; 2; −1).
C. ~u = (3; 4; −4).
D. ~u = (1; 0; 2).
1
Câu 116. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.
Câu 117. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
Câu 118. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −5.
C. −3.
D. Khơng tồn tại.
Câu 119. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 6 mặt.
D. 5 mặt.
Câu 120. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 24.
C. 22.
D. 23.
Câu 121. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 3.
C. 12.
D. 10.
Câu 122. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
!x
1
1−x
Câu 123. [2] Tổng các nghiệm của phương trình 3 = 2 +
là
9
A. − log3 2.
B. log2 3.
C. − log2 3.
D. 1 − log2 3.
Trang 9/10 Mã đề 1
Câu 124. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
dx = log |u(x)| + C.
C.
u(x)
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 125. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
x→a
x→a
C. lim f (x) = f (a).
D. f (x) có giới hạn hữu hạn khi x → a.
x→a
Câu 126. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. 4.
D. .
8
4
2
Câu 127. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.
B. Câu (II) sai.
C. Câu (I) sai.
D. Không có câu nào
sai.
Câu 128. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
B. lim un = c (Với un = c là hằng số).
n
1
D. lim qn = 1 với |q| > 1.
C. lim k = 0 với k > 1.
n
Câu 129. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Thập nhị diện đều. C. Tứ diện đều.
D. Bát diện đều.
Câu 130. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = R.
C. D = (0; +∞).
D. D = R \ {0}.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
B
2.
3.
B
4.
5.
B
6.
7. A
8.
D
9.
11.
13.
B
C
B
D
10.
12.
C
B
D
14.
B
C
15.
C
16.
B
17.
B
18.
C
19.
B
20.
C
21.
D
22. A
24.
D
25. A
26.
D
27. A
28. A
29. A
30.
C
23.
31.
D
33.
32.
D
B
34.
C
D
35.
B
36. A
37.
B
38.
D
40.
D
39.
41.
D
42. A
B
43.
44.
C
45.
D
D
46.
C
47.
B
48.
49.
B
50.
C
51.
B
52.
C
53.
B
54.
55.
D
57.
56.
C
59.
58.
D
61.
C
D
B
C
60.
D
62.
D
63.
B
64. A
65.
B
66. A
67.
B
68. A
1
B
69.
70.
C
D
74.
B
75.
C
77.
C
79.
C
78.
80. A
81. A
82. A
83.
84. A
85.
86.
D
87.
88.
D
89.
90.
D
73.
72. A
76.
B
D
C
D
B
D
91. A
B
92.
C
93. A
94.
C
95.
96. A
C
97. A
98.
C
99.
101.
C
102.
103.
D
C
B
104. A
106.
105. A
D
107.
D
108. A
109.
C
110.
111.
C
112.
D
114.
D
113.
B
115.
D
116.
117. A
118.
119. A
120.
121.
123.
C
124.
125.
C
126.
129.
C
D
C
122.
B
127.
B
D
C
B
128.
D
130.
B
2
D
B