Tài liệu Pdf miễn phí LATEX
ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001
Câu 1. Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu (S )có
tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo
dây cung dài nhất?
A. x = 5 + 2ty = 5 + tz = 2.
B. x = 5 + 2ty = 5 + tz = 2 − 4t.
C. x = 5 + ty = 5 + 2tz = 2.
D. x = 3 + 2ty = 4 + tz = 6.
Câu 2. Tìm tất cả các giá trị của tham số m để hàm số y = xe−x + mx đồng biến trên R.
A. m > e2 .
B. m > 2e .
C. m > 2.
D. m ≥ e−2 .
ax + b
Câu 3. Cho hàm số y =
có đồ thị như hình vẽ bên. Kết luận nào sau đây là sai?
cx + d
A. ac < 0.
B. ab < 0 .
C. ad > 0 .
D. bc > 0 .
Câu 4. Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (2; −3; −1).
B. M ′ (−2; 3; 1).
C. M ′ (2; 3; 1).
D. M ′ (−2; −3; −1).
Câu 5. Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm
số y = 3x2 + log3 x + m là:
A. S = (−∞; 2).
B. S = [ -ln3; +∞).
C. S = (−∞; ln3).
D. S = [ 0; +∞).
Câu 6. Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y =
hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?
3
C. 1 < m , 4.
D. ∀m ∈ R .
A. −4 < m < 1.
B. m < .
2
x
trên tập xác định của nó là
Câu 7. Giá trị nhỏ nhất của hàm số y = 2
x +1
1
1
A. min y = 0.
B. min y = .
C. min y = −1.
D. min y = − .
R
R
R
R
2
2
Câu 8. Cho a > 1; 0 < x < y. Bất đẳng thức nào sau đây là đúng?
A. log 1 x > log 1 y.
B. loga x > loga y.
C. ln x > ln y.
3 + 2x
tại
x+1
D. log x > log y.
a
a
Câu 9. Phương trình tiếp tuyến với đồ thị hàm số y = log5 x tại điểm có hồnh độ x = 5 là:
1
x
1
x
A. y =
−
.
B. y =
−1+
.
5 ln 5 ln 5
5 ln 5
ln 5
x
x
1
C. y =
+ 1.
D. y =
+1−
.
5 ln 5
5 ln 5
ln 5
Câu 10.√Hình nón có bán kính √
đáy R, đường sinh l thì diện tích xung quanh của nó bằng
A. 2π l2 − R2 .
B. π l2 − R2 .
C. 2πRl.
D. πRl.
Câu 11. Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD là hình bình hành. Hình chiếu vng góc của A′
lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc giữa mặt
bên (ABB′ A′ ) và mặt đáy bằng 450 . Tính thể tích khối tứ diện ACB′ D′ theo a.
A. 30a3 .
B. 20a3 .
C. 100a3 .
D. 60a3 .
Câu 12. Tìm tất cả các giá trị của tham số m để hàm số y = (1 − m)x4 + 3x2 chỉ có cực tiểu mà khơng có
cực đại
A. m > 1.
B. m ≥ 1.
C. m ≤ 1.
D. m < 1.
Trang 1/5 Mã đề 001
Câu 13. Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm
số y = 3x2 + log3 x + m là:
A. S = (−∞; 2).
B. S = [ -ln3; +∞).
C. S = [ 0; +∞).
D. S = (−∞; ln3).
Câu 14. Cho lăng trụ đều ABC.A′ B′C ′ có tất cả các cạnh đều bằng a. Tính khoảng cách giữa hai đường
thẳng AB′ và BC ′ .
√
√
3a
5a
2a
a
.
C.
.
D. √ .
A. √ .
B.
2
3
5
5
Câu 15. Cho a > 1; 0 < x < y. Bất đẳng thức nào sau đây là đúng?
B. ln x > ln y.
C. log x > log y.
A. log 1 x > log 1 y.
a
D. loga x > loga y.
a
Câu 16. Tính I =
R1 √3
7x + 1dx
0
21
A. I = .
8
B. I =
20
.
7
C. I =
60
.
28
D. I =
45
.
28
Câu 17. Trong không gian Oxyz, cho mặt cầu (S ) : (x + 1)2 + (y − 3)2 + (z + 2)2 = 9. Mặt phẳng (P) tiếp
xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:
A. x + 2y + 2z + 8 = 0.
B. x − 2y − 2z − 4 = 0.
C. −x + 2y + 2z + 4 = 0.
D. 3x − 4y + 6z + 34 = 0.
Câu 18. Tập nghiệm của bất phương trình log3 (10 − 3 x+1 ) ≥ 1 − x chứa mấy số nguyên.
A. Vô số.
B. 3.
C. 5.
D. 4.
−a = (4; −6; 2). Phương
Câu 19. Cho đường thẳng ∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương →
trình tham số của đường thẳng ∆ là
A. x = −2 + 4ty = −6tz = 1 + 2t.
B. x = −2 + 2ty = −3tz = 1 + t.
C. x = 2 + 2ty = −3tz = −1 + t..
D. x = 4 + 2ty = −3tz = 2 + t.
Câu 20. Cho hình phẳng D giới hạn bởi các đường y = (x − 2)2 , y = 0, x = 0, x = 2. Khối tròn xoay tạo
thành khi quay D quạnh trục hồnh có thể tích V bằng bao nhiêu?
32π
32
32
B. V =
.
C. V =
.
D. V = 32π.
A. V = .
5
5
5π
Câu 21. Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a. Tính diện tích xung quanh của
hình trụ.
A. 4πa2 .
B. 5πa2 .
C. 2πa2 .
D. 6πa2 .
Câu 22. Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1). Tìm điểm M sao cho
3MA2 + 2MB2 − MC 2 đạt giá trị nhỏ nhất.
3 3
3 1
3 1
3 1
A. M(− ; ; −1).
B. M(− ; ; 2).
C. M(− ; ; −1).
D. M( ; ; −1).
4 2
4 2
4 2
4 2
π
R4
Câu 23. Cho hàm số f (x). Biết f (0) = 4 và f ′ (x) = 2 sin2 x + 1, ∀x ∈ R, khi đó f (x) bằng
π2 + 15π
A.
..
16
R
Câu 24. 6x5 dxbằng
A. x6 + C.
π2 − 4
B.
..
16
π2 + 16π − 4
C.
..
16
B. 30x4 + C.
C.
1 6
x + C.
6
0
π2 + 16π − 16
D.
..
16
D. 6x6 + C.
Câu 25. Một sinh viên A trong thời gian 4 năm học đại học đã vay ngân hàng mỗi năm 10 triệu đồng
với lãi suất 3
A. 45.188.656 đồng.
B. 48.621.980 đồng.
C. 43.091.358 đồng.
D. 46.538667 đồng.
Trang 2/5 Mã đề 001
Câu 26. Cho tam giác ABC vuông tại A, AB = a, BC = 2a. Tính thể tích khối nón nhận được khi quay
tam giác √
ABC quanh trục AB.
√
πa3 3
.
B. 3πa3 .
C. πa3 3.
D. πa3 .
A.
3
Re lnn x
Câu 27. Tính tích phân I =
dx, (n > 1).
x
1
1
1
1
A. I = n + 1.
B. I =
.
C. I =
.
D. I = .
n−1
n+1
n
x−3
y−6
z−1
Câu 28. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 :
=
=
và
−2
2
1
d2 : x = ty = −tz = 2 (t ∈ R). Đường thẳng đi qua điểm A(0; 1; 1), vng góc với d1 và cắt d2 có phương
trình là:
y
z−1
x y−1 z−1
x−1
=
=
.
B. =
=
.
A.
−1
−3
4
1
−3
4
x
y−1 z−1
x
y−1 z−1
C.
=
=
.
D.
=
=
.
−1
−3
4
−1
3
4
Câu 29. Lăng trụ ABC.A′ B′C ′ có đáy là tam giác đều cạnh a. Hình chiếu vng góc của A′ lên (ABC)
là trung điểm của BC. Góc giữa cạnh bên và mặt phẳng đáy là 600 . Khoảng cách từ C ′ đến mp (ABB′ A′ )
là
√
√
√
√
3a 13
a 3
3a 10
3a 13
A.
.
B.
.
C.
.
D.
.
13
2
20
26
Câu 30. Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1;
Độ dài đường cao AH của tứ diện ABCD là:
A. 5 .
B. 6.
C. 7 .
D. 9 .
Câu 31. Đồ thị như hình bên là đồ thị của hàm số nào?
2x + 1
2x − 1
−2x + 3
A. y =
.
B. y =
.
C. y =
.
x+1
x−1
1−x
Câu 32. Tập xác định của hàm số y = logπ (3 x − 3) là:
A. (1; +∞).
B. (3; +∞).
C. [1; +∞).
D. y =
2x + 2
.
x+1
D. Đáp án khác.
Câu 33. Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + 1 có hai điểm
cực trị nằm về hai phía trục Ox.
1
A. m > 1.
B. m > 2 hoặc m < −1. C. m < −2.
D. m > 1 hoặc m < − .
3
4
2
Câu 34. Hàm số y = x − 4x + 1 đồng biến trên khoảng nào trong các khoảng sau đây.
A. (1; 5).
B. (3; 5).
C. (−3; 0).
D. (−1; 1).
√
Câu 35. Cho bất phương trình 3 2(x−1)+1 − 3 x ≤ x2 − 4x + 3. Tìm mệnh đề đúng.
A. Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
B. Bất phương trình đúng với mọi x ∈ [ 1; 3].
C. Bất phương trình vơ nghiệm.
D. Bất phương trình đúng với mọi x ∈ (4; +∞).
Câu 36. Cho hình√chóp S .ABCD có đáy ABCD là hình vng. Cạnh S A vng góc với mặt phẳng
(ABCD); S A = 2a 3. Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 . Gọi M, N lần lượt là trung
điểm hai
MN và S C.
√ cạnh AB, AD. Tính khoảng
√
√
√ cách giữa hai đường thẳng
a 15
3a 30
3a 6
3a 6
A.
.
B.
.
C.
.
D.
.
2
10
2
8
Câu 37. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
→
− (2; 3; −5).
qua điểm
A(1; −2; 4) và có một
véc tơ chỉ phương là u
x = 1 + 2t
x = 1 + 2t
x = 1 − 2t
x = −1 + 2t
y
=
−2
−
3t
y
=
−2
+
3t
y
=
−2
+
3t
y = 2 + 3t .
A.
.
B.
.
C.
.
D.
z = 4 + 5t
z = −4 − 5t
z = 4 − 5t
z = 4 − 5t
Trang 3/5 Mã đề 001
Câu 38. Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N). Diện tích
tồn phầnS tp của hình nón (N) bằng
A. S tp = πRl + 2πR2 .
B. S tp = πRh + πR2 .
C. S tp = 2πRl + 2πR2 . D. S tp = πRl + πR2 .
Câu 39. Cho hàm số y = x2 − x + m có đồ thị là (C). Tìm tất cả các giá trị của tham số m để tiếp tuyến
của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2).
A. m = 2.
B. m = 4.
C. m = 3.
D. m = 1.
Câu 40. Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A. y = −x4 + 2x2 .
B. y = −x4 + 2x2 + 8. C. y = −2x4 + 4x2 .
Câu 41. Tính tích tất cả các nghiệm của phương trình (log2 (4x))2 + log2 (
A.
1
.
128
B.
1
.
6
C.
1
.
64
D. y = x3 − 3x2
.
x2
)=8
8
1
D. .
32
Câu 42. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên.
Số giá trị nguyên của tham số m để phương f (x + m) = m có ba nghiệm phân biệt?
A. 1.
B. 0.
C. 3.
D. 2.
2
1 3 1
2
2
Câu 43. Cho hàm số f (x) =
− x + (2m + 3)x − (m + 3m)x +
. Có bao nhiêu giá trị nguyên của
3
2
3
tham số m thuộc [−9; 9] để hàm số nghịch biến trên khoảng (1; 2)?
A. 3.
B. 16.
C. 2.
D. 9.
Câu 44. Thể tích khối hộp chữ nhật có 3 kích thước là a; 2a;3a bằng
A. 6a3 .
B. a3 .
C. 6a2 .
D. 2a3 .
Câu 45. Cho hàm số y = f (x) có bảng biến thiên như sau
Hàm số y = f (x) nghịch biến trên khoảng nào trong các khoảng dưới đây?
A. (0 ; +∞).
B. (−2 ; 0).
C. (−1 ; 4).
D. (−∞ ; −2).
Câu 46. Tính thể tích V của khối trịn xoay khi quay hình phẳng giới hạn bởi đồ thị (C) : y = 4 − x2 và
trục hoành quanh trục Ox.
22π
4
7π
512π
A. V =
.
B. V = .
C. V =
.
D. V =
.
3
5
2
15
Câu 47. Nếu
R6
1
A. 2.
f (x) = 2 và
R6
g(x) = −4 thì
1
B. −6.
R6
( f (x) + g(x)) bằng
1
C. −2.
D. 6.
Câu 48. Cho khối lăng trụ đứng ABC.A′ B′C ′ √
có đáy ABC là tam giác vuông cân tại A,AB = a. Biết
3
khoảng cách từ A đến mặt phẳng (A′ BC) bằng
a. Tính thể tích của khối lăng trụ ABC.A′ B′C ′
3
√
√
a3 2
a3 2
a3
a3
A.
.
B.
.
C. .
D. .
2
6
6
2
Câu 49. Thiết diện qua trục của một hình nón là một tam giác đều cạnh có độ dài bằng a. Tính diện tích
tồn phần S tp của hình nón đó.
1
5
3
A. S tp = πa2 .
B. S tp = πa2 .
C. S tp = πa2 .
D. S tp = πa2 .
4
4
4
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001