Tải bản đầy đủ (.docx) (10 trang)

De thi thpt toan (298)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (103 KB, 10 trang )

Sở GD&ĐT Tỉnh Hải Dương
Trường THPT Khúc Thừa Dụ

THPT
NĂM HỌC 2022 - 2023
MƠN: TỐN
Thời gian làm bài: 90 phút
(khơng kể thời gian phát đề)

-------------------(Đề thi có ___ trang)
Họ và tên: ............................................................................

Số báo
danh: .............

Mã đề 112

b

2x  1dx 1.

Câu 1. Biết a
2
2
A. b  a b  a  1.
B. b  a 1.

Khẳng định nào sau đây đúng?

2
2


C. a  b a  b  1.
D. a  b 1.

 2017 


Câu 2. Tìm tập nghiệm của bất phương trình  2018 
2;  .
A.
 2;  .
B.
 ; 2 .
C.
 ; 2 .
D.
3

3

f x dx a, f x dx b.

Câu 3. Cho
A. b  a
B.  a  b.
C. a  b.
D. a  b.

0

2


x 1

 2017 


 2018 

 x 3

.

2

Khi đó

f x dx
0

bằng:

Câu 4. Diện tích tồn phần của hình nón có khoảng cách từ tâm của đáy đến đường sinh bằng
diện qua trục là tam giác đều bằng
A. 8.
B. 20.
C. 12.
D. 16.

3 và thiết


1

3 6
Câu 5. Rút gọn biểu thức P x . x với x  0.

2

A. P x 9
1
8

B. P x
2
C. P x
D. P  x
Câu 6. Trong không gian với hệ tọa độ Oxyz, cho điểm
xúc với trục Oy là:
2
2
2
x  1  y  2   z  3 16.

A.
2
2
2
x  1   y  2   z  3 9.

B.
Mã đề 112


I 1;  2;3.

Phương trình mặt cầu tâm I và tiếp

Trang 1/


x  1  y  2   z  3

10.

x  1  y  2   z  3

8.

2

C.
D.

2

2

2

2

2


2000
1  x và lúc đầu số
Câu 7. Một đám vi khuẩn tại ngày thứ x có số lượng là
Biết rằng
lượng vi khuẩn là 5000 con. Vậy ngày thứ 12 số lượng vi khuẩn (sau khi làm tròn) là bao nhiêu con?
A. 5154.
B. 10130.
C. 10132.
D. 5130.

N x .

2

Câu 8. Cho
A. 2.
B. -1.
C. 1.
D. 4.

f x

2

1

 1 x dx 2.

N ' x  


5

Khi đó

I f x dx
2

bằng

sin x  12 cos 2 x  2m 1cos x  m  0 có
Câu 9. Số các giá trị thực của tham số m để phương trình
 0; 2 là
đúng 4 nghiệm thực thuộc đoạn
A. Vô số.
B. 1.
C. 2.
D. 3.
y  x 4  m  2  x 2  4
Câu 10. Tìm tất cả các giá trị của tham số m để hàm số
có ba điểm cực trị.
A. m  2
B. m  2
C. m 2
D. m 2
Câu 11. Hình trụ (T) được sinh ra khi quay hình chữ nhật ABCD quanh cạnh AB. Biết AC 2a 2 và

ACB
450. Diện tích tồn phần Stp của hình trụ (T) là:
S 10a 2 .

A. tp
S 16a 2 .
B. tp
S 12a 2 .
C. tp
S 8a 2 .
D. tp
y ln cos x  2   mx  1
Câu 12. Tập tất cả các giá trị của tham số m để hàm số
đồng biến trên  là
1

  ;   .
3
A. 
 1

  3 ;   .
B.
1 

  ; 
.
3
C. 
 1

  3 ;   .
D.


Câu 13. Cho hàm số
Mã đề 112

y f x 

có bảng biến thiên như hình dưới đây:
Trang 2/




x

y'

+

y

1

0
1

-



2


0


+



0

Mệnh đề nào sau đây đúng?
A. Hàm số có giá trị lớn nhất bằng 1.

 ;1
B. Hàm số nghịch biến trên khoảng
C. Hàm số đạt cực tiểu tại x 0
D. Đồ thị hàm số khơng có đường tiệm cận.

Câu 14. Biết đồ thị (C) ở hình bên là đồ thị hàm số
(C) qua đường thẳng y x.

y a x a  0, a 1.

Gọi (C’) là đường đối xứng với

Hỏi (C’) là đồ thị của hàm số nào dưới đây?
A. y log 2 x.
x
B. y 2 .
x
 1

y   .
 2
C.

D.

y log 1 x.
2

I x cos xdx.
Câu 15. Tìm nguyên hàm
A. I x sin x  cosx  C.
B. I x sin x  cos x  C
x
I x 2 cos  C.
2
C.
x
I x 2 sin  C.
2
D.

 3

  2 ;10
Câu 16. Số nghiệm thực của phương trình sin 2x 1 0 trên đoạn

A. 12.
B. 21.
C. 20.

D. 11.
y f x 
 \ 1 ,
Câu 17. Cho hàm số
xác định trên
liên tục trên mỗi khoảng xác định và có bảng biến
thiên như hình vẽ.


x
-1
1
0
+
+
f ' x 

Mã đề 112

Trang 3/


f x 



1

 2


-1


Tìm tập hợp tất cả các giá trị thực của tham số m sao cho phương trình
phân biệt.
 1;1 .
A.
 1;1.
B.
 2;  1 .
C.
 2;  1 .
D.




f x  m

có ba nghiệm thực



Câu 18. Xét hàm số
1

f x 

liên tục trên đoạn


 0;1 và thỏa mãn 2f x   3f 1  x  

1 x2 .

Tính

I f x dx.
0

A.
B.
C.
D.


.
6

.
16

.
20

.
4

2
Câu 19. Giải phương trình 2sin x  3 sin 2x 3.
2

x   k2.
3
A.

x   k.
3
B. .

x   k.
4
C.

x   k.
3
D.

Câu 20. Cho hàm số
hàm số là:
A. 3.
B. 2.
C. 1.
D. 4.

y f x 

có đạo hàm



f ' x   x 2 




2 x 2 x  2  ,  x  .
3

Số điểm cực tri của

y f x 
y f ' x 
Câu 21. Cho hàm số
liên tục trên . Đồ thị của hàm số
như hình bên. Đặt
2
g x  2f x   x  1 .
Mệnh đề nào dưới đây đúng?
max g x  g 1.
A.   3;3
min g x  g 3.
B.   3;3
Mã đề 112

Trang 4/


C.

min g x  g 1.
  3;3


g x 
  3;3 .
D. Không tồn tại giá trị nhỏ nhất của
trên
Câu 22. Cho hình chóp S.ABCD có các cạnh bên bằng
 nhau
 và
 bằng 2a, đáy là hình chữ nhật ABCD có
AB 2a, AD a. Gọi K là điểm thuộc BC sao cho 3BK  2CK 0 . Tính khoảng cách giữa hai đường
thẳng AD và SK.
2 135a
.
A. 15
B.

135a
.
15

C.

165a
.
15

2 165a
.
D. 15

x 2

.
x  3 Tìm khẳng định đúng.
Câu 23. Cho hàm số
 \   3 .
A. Hàm số đồng biến trên
B. Hàm số đồng biến trên mỗi khoảng xác định.
C. Hàm số nghịch biến trên mỗi khoảng xác định.
 \  3 .
D. Hàm số xác định trên
Câu 24. Cho tứ diện O.ABC có OA, OB, OC đơi một vng góc với nhau. Gọi H là hình chiếu của O
trên mặt phẳng (ABC). Mệnh đề nào sau đây đúng?
A. H là trung điểm của AC.
B. H là trung điểm của BC.
C. H là trọng tâm tam giác ABC .
D. H là trực tâm của tam giác ABC.
Câu 25. Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Gọi M, N, P, Q lần lượt là
trọng tâm các tam giác SAB, SBC, SCD, SDA. Biết thể tích khối chóp S.MNPQ là V, khi đó thể tích của
khối chóp S.ABCD là
27V
.
A. 4
81V
.
B. 8
9V
.
C. 4
y

2


 9
  V.
D.  2 
Câu 26. Cho hình chóp đều S.ABCD có tất cả các cạnh đều bằng a. Gọi M, N lần lượt là trung điểm của
AD và SD. Số đo của góc giữa hai đường thẳng MN và SC.
0
A. 45 .
0
B. 30 .
0
C. 60 .
0
D. 90 .

x 2  2x  3
x1
Câu 27. Biết đờ thi ̣(C) của hàm số
có hai điểm cực trị. Đường thẳng đi qua hai điểm cực
tri ̣của đồ thi ̣(C) cắt trục hoành ta ̣i điểm M có hồnh độ x M bằng:
y

Mã đề 112

Trang 5/


A. x M  2.
x 1  2.
B. M

x 1  2.
C. M
D. x M 1.
Câu 28. Gọi M là giao điểm của đồ thị hàm số
thị hàm số trên tại điểm M là:
A. 3y  x  1 0

y

x 1
x  2 với trục hồnh. Phương trình tiếp tuyến với đồ

B. 3y  x  1 0
C. 3y  x  1 0

D. 3y  x  1 0
Câu 29. Một giải thi đấu bóng đá quốc gia có 16 đội thi đấu vịng trịn 2 lượt tính điểm. Hai đội bất kỳ
đều đấu với nhau đúng 2 trận. Sau mỗi trận đấu, đội thắng được 3 điểm, đội thua 0 điểm, nếu hòa mỗi đội
được 1 điểm. Sau giải đấu, Ban tổ chức thống kê được 80 trận hòa. Hỏi tổng số điểm của tất cả các đội
sau giải đấu bằng bao nhiêu?
A. 720.
B. 280.
C. 560.
D. 640.
3
2
Câu 30. Xét phương trình ax  x  bx  1 0 với a, b là các số thực, a 0, a b sao cho các nghiệm
đều là số thực dương. Tìm giá trị nhỏ nhất của biểu thức
A. 12 3.


5a 2  3ab  2
P 2
.
a b  a 

B. 8 2.
C. 11 6.
D. 15 3.

Câu 31. Cho a, b  0; a, b 1 và x, y là hai số thực dương. Trong các mệnh đề dưới đây, mệnh đề nào
sai?.
1
1
log a 
.
x
log
x
a
A.
B.
C.

log a xy  log a x  log a y.
log a

x
log a x  log a y.
y


D. log b a.log a x log b x.
Câu 32. Trong không gian với hệ tọa độ Oxyz, cho
đoạn thẳng AB có phương trình là:
A.  4x  12z  10 0
B. x  3y  10 0.
C. x  3x  10 0.
D. x  3z  10 0.

 3
y  
 
Câu 33. Cho hàm số
Mã đề 112

A 1; 2;  3, B  3; 2;9 .

Mặt phẳng trung trực của

x 2  2x 3

.

Tìm khẳng định đúng.
Trang 6/


 ;  1.
 ;  1.
B. Hàm số luôn đồng biến trên khoảng
A. Hàm số luôn nghịch biến trên khoảng

C. Hàm số luôn nghịch biến trên .
D. Hàm số luôn đồng biến trên .

Câu 34. Tổng tất cả các nghiệm thực của phương trình
A. 4  2.
B. 8.
C. 8  2.

2 log 4 x  3  log 4 x  5  0
2



D. 8  2.

M 1; 2;3.
Câu 35. Trong không gian với hệ tọa độ Oxyz, cho điểm
Gọi (P) là mặt phẳng đi qua điểm
Mvà cách gốc tọa độ O một khoảng lớn nhất, mặt phẳng (P) cắt các trục tọa độ tại các điểm A,B,C. Tính
thể tích khối chóp O.ABC.
686
.
A. 9
1372
.
B. 9
343
.
C. 9
524

.
D. 3
Câu 36. Trong khơng gian với hệ tọa độ Oxyz, gọi H hình chiếu vng góc của
x 1 y z 2
:
 
.
1
2
1 Tìm tọa độ điểm H .
thẳng
A.
B.
C.

M 2; 0;1

lên đường

H 0;  2;1.

H 2; 2;3.
H 1;0; 2 .

D.

H  1;  4;0 .

C.


 \  0;  .



y tan  cos x 
2
 là
Câu 37. Tập xác định của hàm số
 \  k .
A.
 
 \ k  .
 2
B.

 \  0 .
D.
Câu 38. Gọi A là tập các số tự nhiên có 6 chữ số đơi một khác nhau được tạo ra từ các chữ số 0, 1, 2, 3, 4,
5. Từ A chọn ngẫu nhiên một số. Tính xác suất để số được chọn có chữ số 3 và chữ số 4 đứng cạnh nhau.
8
.
A. 25
4
.
B. 15
Mã đề 112

Trang 7/



2
.
C. 15
4
.
D. 25
Câu 39. Thể tích của khối cầu ngoại tiếp bát diện đều có cạnh bằng a là.
3a 3
.
A. 3

B.

2a 3
.
3

8 2a 3
.
3
C.
2a 3
.
2
D.
Câu 40. Cho hình chóp đều S.ABC có đáy là tam giác đều cạnh a. Gọi E, F lần lượt là trung
điểm của các cạnh SB, SC. Biết mặt phẳng (AEF) vng góc với mặt phẳng (SBC). Tính thể tích khối
chóp S.ABC.
a3 6
.

A. 12
a3 3
.
B. 24
a3 5
.
C. 24
a3 5
.
D. 8

x
x
Câu 41. Cho tham số thực a. Biết phương trình e  e 2 cos ax có 5 nghiệm thực phân biệt. Hỏi
x
x
phương trình e  e 2 cos ax  4 có bao nhiêu nghiệm thực phân biệt?
A. 6.
B. 5.
C. 11.
D. 10.
x a
y
bx  c có đồ thị như hình vẽ bên. Tính giá trị của biểu thức P a  b  c.
Câu 42. Cho hàm số
A. P 1.
B. P  3.
C. P 5.
D. P 2.
0


Câu 43. Cho khối lăng trụ đứng ABC.A’B’C’ có đáy là tam giác ABC vuông tại A, AC a, ACB 60 .
0
Đường thẳng BC’ tạo với mặt phẳng (AA’C’C) góc 30 . Tính thể tích khối lăng trụ đã cho.

3
A. 2a 3.
a 3 3.
B. 2

a 3 3.
C. 3
3
D. a 6.

Mã đề 112

Trang 8/


M 2;1;0 
Câu 44. Trong không gian với hệ tọa độ Oxyz, cho điểm
và đường thẳng d có phương trình
x  1 y 1 z
d:

 .
2
1
 1 Phương trình của đường thẳng  đi qua điểm, M cắt và vuông góc với đường thẳng

d là:
x 2  y 1 z

 .
4
2
A.  3
x 2 y 1 z

 .
3 2
B.  1
x 2 y 1 z

 .
4
2
C. 1
x 2 y 1 z

 .
4
2
D.  1
9
1  2x 3  x  .
Câu 45. Tìm hệ số của số hạng chứa x trong khai triển nhị thức Newton 
A. 4620.
B. 1380.
C. 9405.

D. 2890.
Câu 46. Cho đa giác đều 100 đỉnh nội tiếp một đường tròn. Số tam giác tù được tạo thành từ 3 trong 100
đỉnh của đa giác là
A. 58800.
B. 44100.
C. 78400.
D. 117600.
Câu 47. Khối mười hai mặt đều có bao nhiêu cạnh?
A. 12 cạnh.
B. 30 cạnh.
C. 20 cạnh.
D. 16 cạnh.
x 2
y
16  x 4 là
Câu 48. Tổng số các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
A. 1.
B. 2.
C. 3.
D. 0.
Câu 49. Một người gửi tiết kiệm vào ngân hàng 200 triệu đồng theo thể thức lãi kép (tức là tiền lãi được
cộng vào vốn của kỳ kế tiếp). Ban đầu người đó gửi với kỳ hạn 3 tháng, lãi suất 2,1%/kỳ hạn, sau 2 năm
người đó thay đổi phương thức gửi, chuyển thành kỳ hạn 1 tháng với lãi suất 0,65%/tháng. Tính tổng số
tiền lãi nhận được (làm trịn đến nghìn đồng) sau 5 năm.
A. 98562000 đồng.
B. 98215000 đồng.
C. 98560000 đồng.
D. 98217000 đồng.
Câu 50. Cho hình chóp S.ABCD, đáy ABCD là hình vng cạnh a, SA vng góc với mặt phẳng
BM x, DN y 0  x, y  a .

(ABCD); M, N là hai điểm nằm trên hai cạnh BC, CD. Đặt
Hệ thức liên
hệ giữa x và y để hai mặt phẳng (SAM) và (SMN) vng góc với nhau là:
x 2  a 2 a x  2y .
A.
2x 2  a 2 a x  y .
B.
x 2  2a 2 a x  y .
C.
11

Mã đề 112

Trang 9/


D.

x 2  a 2 a x  y .
------ HẾT ------

Mã đề 112

Trang 10/



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×