Tải bản đầy đủ (.pdf) (167 trang)

(Luận văn) nghiên cứu tổng hợp, biến tính vật liệu mao quản trung bình sba 15 làm xúc tác cho quá trình cracking phân đoạn dầu nặng

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (7.62 MB, 167 trang )

BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

TRƯƠNG THANH TÂM

lu
an
n

va

p

ie

gh

tn

to

NGHIÊN CỨU TỔNG HỢP, BIẾN TÍNH VẬT LIỆU
MAO QUẢN TRUNG BÌNH SBA-15 LÀM XÚC TÁC
CHO QUÁ TRÌNH CRACKING PHÂN ĐOẠN DẦU NẶNG

do

Chuyên ngành: Kỹ thuật Hóa học

w
d



oa

nl

Mã số: 62520301

an

lu
oi
lm

ul

nf

va

LUẬN ÁN TIẾN SĨ KỸ THUẬT HÓA HỌC

z
at
nh

NGƯỜI HƯỚNG DẪN KHOA HỌC:

z

@


1. PGS.TS. LÊ VĂN HIẾU

m
co

l.
ai

gm

2. PGS.TS. VÕ VIỄN

n

va
ac
th

1

an
Lu

HÀ NỘI – 2014

si


LỜI CẢM ƠN

Tơi xin tỏ lịng biết ơn sâu sắc đến PGS.TS Lê Văn Hiếu và PGS.TS Võ Viễn đã tận
tình hướng dẫn và giúp đỡ tơi hồn thành luận án này.
Tôi xin chân thành cảm ơn các Thầy, Cô giáo Bộ mơn CN Hữu cơ – Hóa dầu, Viện Kỹ
thuật Hóa học và các Thầy, Cơ, bạn bè đồng nghiệp ở Phịng thí nghiệm Cơng nghệ lọc hố
dầu và Vật liệu xúc tác hấp phụ, Trường Đại học Bách khoa Hà Nội đã tạo điều kiện thuận lợi
cho tôi trong q trình thực hiện luận án.

lu
an

Tơi xin được cảm ơn Ban giám hiệu, Khoa Hóa học Trường Đại học Quy Nhơn đã tạo

Cuối cùng, xin bày tỏ lòng cảm ơn sâu sắc tới gia đình, người thân và bạn bè đã giúp

n

va

điều kiện thuận lợi cho tôi trong suốt thời gian thực hiện đề tài nghiên cứu.

to

ie

gh

tn

đỡ, động viên tơi trong q trình nghiên cứu, thực hiện luận án.


p

TÁC GIẢ LUẬN ÁN

do

TRƯƠNG THANH TÂM

d

oa

nl

w
oi
lm

ul

nf

va

an

lu
z
at
nh

z
m
co

l.
ai

gm

@
an
Lu
n

va
ac
th

i

si


LỜI CAM ĐOAN
Tơi xin cam đoan đây là cơng trình nghiên cứu của riêng tôi. Các số liệu và kết quả nêu
trong luận án là trung thực, được các đồng tác giả cho phép sử dụng và chưa từng công bố
trong bất kỳ cơng trình nào khác.
Hà Nội, ngày 18 tháng 6 năm 2014
TÁC GIẢ LUẬN ÁN


lu
an
va
n

TRƯƠNG THANH TÂM

p

ie

gh

tn

to
d

oa

nl

w

do
oi
lm

ul


nf

va

an

lu
z
at
nh
z
m
co

l.
ai

gm

@
an
Lu
n

va
ac
th

ii


si


MỤC LỤC

an
n

va

LỜI CAM ĐOAN ……………………………………………………………………

ii

MỤC LỤC ……………………………………………………………………………

iii

DANH MỤC CÁC CHỮ VIẾT TẮT VÀ KÝ HIỆU ……………………………….

vii

DANH MỤC BẢNG BIỂU ………………………………………………………….

ix

DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ …………………………………………

xi


ĐẶT VẤN ĐỀ ……………………………………………………………………….

1

Chương 1 ……………………………………………………………….…………….

4

TỔNG QUAN TÀI LIỆU ……………………………………………………………

4

1.1. VẬT LIỆU MAO QUẢN TRUNG BÌNH TRẬT TỰ …………………………..

4

1.1.1. Giới thiệu vật liệu MQTBTT ……………………...…………………………..

4
5

1.1.3. Cơ chế hình thành vật liệu MQTBTT …………………………………………

6

tn

to

i


gh

lu

LỜI CẢM ƠN ……………………………………………………………………….

1.1.2. Phân loại vật liệu MQTBTT ……………………...…………………………...

p

ie

do

1.2. VẬT LIỆU MQTBTT SBA-15 ………………………………………………….

w

oa

nl

1.2.1. Giới thiệu vật liệu MQTBTT SBA-15 ………………………………………...

d

1.2.1.1. Tổng hợp và đặc trưng ………………………………………………….

10

10
10

lu

15

1.2.2. Ứng dụng của vật liệu MQTBTT SBA-15 …………………………………….

18

nf

va

an

1.2.1.2. Biến tính vật liệu mao quản trung bình ….……………………………..

18

1.2.2.2. Xúc tác ………………………………………………………………….

18

1.2.2.3. Điều chế vật liệu mới …………………………………………………...

19

oi

lm

ul

1.2.2.1. Hấp phụ ………………………………………………………………...

z
at
nh

1.3. TỔNG QUAN VỀ XÚC TÁC Al-SBA-15 VÀ SO42-/Zr-SBA-15 TRÊN THẾ
GIỚI VÀ Ở VIỆT NAM…………………………… ………………………………..

19

z

gm

@

1.3.1. Trên thế giới …………………………………………………………………...
1.3.2. Ở Việt Nam ………………………… ………………………………………...

19
22

l.
ai


1.4. QUÁ TRÌNH CRACKING ……………………………………………………..

23

m
co

23

1.4.1.1. Bản chất và cơ chế của quá trình cracking xúc tác………………….......

23

1.4.1.2. Xúc tác của quá trình cracking …………………………………………

28

an
Lu

1.4.1. Quá trình cracking xúc tác …………………………...………………………..

n

va
ac
th

iii


si


1.4.2. Q trình cracking oxy hóa ….………………………………………………...

30

1.4.3. Tổng quan về xúc tác cho quá trình cracking dầu nặng trên thế giới và ở Việt

lu
an

31

1.4.3.1. Trên thế giới ……………………………………………………………

31

1.4.3.2. Ở Việt Nam …………………………………………………………….

32

Chương 2 ……………………………………………………………………………..

34

THỰC NGHIỆM ……………………………………………………………………..

34


2.1. TỔNG HỢP VẬT LIỆU XÚC TÁC TRÊN CƠ SỞ SBA-15 ………………….

34

2.1.1. Hóa chất ……………………………………………………...………………..

34

2.1.2. Tổng hợp vật liệu ……………………………………………...………………

34

2.1.2.1. Tổng hợp vật liệu SBA-15 ……………………………………………...

34

2.1.2.2. Tổng hợp xúc tác hệ Al-SBA-15 ……………………………………….

35

2.1.2.3. Tổng hợp xúc tác hệ SO42-/Zr-SBA-15 ………………………………...

37

n

va

Nam ……………………………………………………………….………………….


gh

tn

to

40

2.2. PHƯƠNG PHÁP NGHIÊN CỨU ………………………………………………

41

p

ie

2.1.2.4. Tổng hợp xúc tác hệ Zr-Fe-SBA-15 và Al-Zr-Fe-SBA-15 …………….

do

nl

w

2.2.1. Các phương pháp đặc trưng cấu trúc vật liệu ………………………………….

41
41

2.2.1.2. Phương pháp đẳng nhiệt hấp phụ – giải hấp phụ N2 …………….……..


41

d

oa

2.2.1.1. Phương pháp nhiễu xạ Rơnghen (XRD) …………………………….…

lu

an

2.2.1.3. Phương pháp hiển vi điện tử quét (SEM) và phân tích năng lượng tán

nf

va

xạ tia X (EDX) ………………………………………………………...………………

oi
lm

ul

2.2.1.4. Phương pháp hiển vi điện tử truyền qua (TEM) …………..……………

44
44

45

2.2.1.6. Phương pháp phổ hồng ngoại (IR) ………………..……………………

46

2.2.1.7. Phương pháp phổ hấp thụ tử ngoại và khả kiến (UV-Vis) ……………..

46

2.2.1.8. Phương pháp phân tích nhiệt ……………………………………….…..

47

z
at
nh

2.2.1.5. Phương pháp khử hấp phụ NH3 theo chương trình nhiệt độ (TPD-NH3)

z
48

gm

@

2.2.1.9. Phương pháp phổ quang điện tử tia X (XPS) ………………….……….
2.2.2. Hệ thống nghiên cứu đánh giá hoạt tính xúc tác cracking MAT 5000 –


l.
ai

Zeton – Canada ………………………………………………………………………

48

m
co

51

KẾT QUẢ VÀ THẢO LUẬN ……………………………………………………….

51

3.1. TỔNG HỢP VÀ ĐẶC TRƯNG CẤU TRÚC VẬT LIỆU XÚC TÁC ………….

51

an
Lu

Chương 3 ……………………………………………………………………………..

n

va
ac
th


iv

si


3.1. 1. Tổng hợp và đặc trưng cấu trúc vật liệu nền SBA-15 …………………….......

51

3.1.2. Tổng hợp và đặc trưng vật liệu MQTB Al-SBA-15 ……………...……….......

54

3.1.2.1. Ảnh hưởng của phương pháp tổng hợp vật liệu (trực tiếp, gián tiếp)
đến cấu trúc và tính axit của xúc tác ………………………………………………....

54

3.1.2.2. Ảnh hưởng của dung mơi đến q trình tổng hợp ……………..……….

59

3.1.2.3. Ảnh hưởng của thời gian thủy phân muối Al-iso ………………………

60

3.1.2.4. Ảnh hưởng của nhiệt độ nung mẫu …………………………….………

61


3.1.2.5. Tổng hợp và đặc trưng vật liệu MQTB Al-SBA-15 với các tỷ lệ Al/Si
khác nhau …………………………………………………………………….……....

62

lu
an

3.1.2.6. Đánh giá hoạt tính xúc tác Al-SBA-15 tổng hợp gián tiếp trên phản
67

3.1.3. Tổng hợp và đặc trưng vật liệu MQTB SZ-SBA-15 ……………………….......

69

n

va

ứng cracking cumen …………………………………………………….....................

69

gh

tn

to


3.1.3.1. Ảnh hưởng của pH ……………………………………………….….....

70

3.1.3.3. Ảnh hưởng của nhiệt độ nung mẫu ……………………….…………....

71

p

ie

3.1.3.2. Tổng hợp xúc tác Zr-SBA-15 bằng các chất điều chỉnh pH khác nhau ..

do

73

nl

w

3.1.3.4. Tổng hợp trực tiếp xúc tác SZ-SBA-15 với các tỷ lệ Zr/Si khác nhau ...

oa

3.1.3.5. Tổng hợp gián tiếp xúc tác SZ-SBA-15 với các tỷ lệ Zr/Si khác nhau ...

78


d

3.1.3.6. Đánh giá hoạt tính xúc tác SZ-SBA-15-TT và SZ-SBA-15-GT bằng

lu

83

3.1.4. Tổng hợp và đặc trưng vật liệu MQTB Zr-Fe-SBA-15 và Al-Zr-Fe-SBA-15 ..

87

nf

va

an

phản ứng cracking cumen …………………………………………………………....

oi
lm

ul

3.2. ĐÁNH GIÁ HOẠT TÍNH VÀ ĐỘ CHỌN LỌC CỦA XÚC TÁC Al-SBA-15
95

3.2.1. Xúc tác Al-SBA-15 …..………………………………………………………..


96

3.2.2. Xúc tác SZ-SBA-15 …...………………………………………….…………...

96

3.2.3. Xúc tác Al-Zr-Fe-SBA-15 ……………………………………………………..

98

z
at
nh

VÀ SZ-SBA-15 BẰNG PHẢN ỨNG CRACKING PHÂN ĐOẠN DẦU NẶNG …

z
gm

@

3.3. ĐÁNH GIÁ HOẠT TÍNH, ĐỘ CHỌN LỌC CỦA XÚC TÁC Al-Zr-Fe-SBA15 BẰNG PHẢN ỨNG CRACKING OXY HÓA PHÂN ĐOẠN DẦU NẶNG …

100

l.
ai

3.3.1. Khảo sát các yếu tố ảnh hưởng đến quá trình oxidative cracking trên xúc tác


m
co

Al-Zr-Fe-SBA-15 …………………………………………………………………….

101

an
Lu
n

va
ac
th

v

si


3.3.1.1 Ảnh hưởng của nhiệt độ phản ứng ………………………………….......

101

3.3.1.2. Ảnh hưởng của tốc độ không gian nạp liệu ………………………….....

102

3.3.1.3. Ảnh hưởng của lưu lượng hơi nước …………………………………....


103

3.3.1.4. Ảnh hưởng của hàm lượng Al2O3 ………………………………….......

104

lu
an

107

KẾT LUẬN …………………………………………………………………………..

110

ĐÓNG GÓP MỚI CỦA LUẬN ÁN …………………………………………………

112

DANH MỤC CÁC CƠNG TRÌNH CỦA TÁC GIẢ ………………………………..

113

TÀI LIỆU THAM KHẢO ……………………………………………………………

114

PHỤ LỤC …………………………………………………………………………….

131


n

va

3.3.2. Khảo sát độ bền của xúc tác tối ưu …………….........................................

p

ie

gh

tn

to
d

oa

nl

w

do
oi
lm

ul


nf

va

an

lu
z
at
nh
z
m
co

l.
ai

gm

@
an
Lu
n

va
ac
th

vi


si


DANH MỤC CÁC CHỮ VIẾT TẮT VÀ KÝ HIỆU
APTES

3-aminopropyltriethoxysilane

ASTM

American Society for Testing and Materials

BET

Bruanuer – Emmett – Teller

BJH

Brunauer – Joyner – Halenda

BTX

Benzen-Toluen-Xylen

Cn

=

Hydrocacbon olefin có n cacbon trong mạch


lu
an
n

va

Differential Thermal Analysis

ĐHCT

Định hướng cấu trúc

EDX

Energy – Dispersive A-ray spectroscopy

FCC

Fluid Catalytic Cracking

FO

Fuel Oil

HCO

Heavy Cycle Oil

p


ie

gh

tn

to

DTA

Hydrodesulfurization
Hoạt động bề mặt

oa

IR

nl

HĐBM

w

do

HDS

Infrared spectrum

d


International Union of Pure and Applied Chemistry (Hiệp hội hóa học

an

lu

IUPAC

va

cơ bản và ứng dụng quốc tế)
Joint Committee on Powder Diffraction Standards

LCO

Light Cycle Oil

M41S

Họ vật liệu mao quản trung bình gồm MCM-41, MCM-48, MCM-50

MAS NMR

Magic Angle Spinning Nuclear Magnetic Resonance spectroscopy

oi
lm

ul

z
at
nh

Micro Activity Test (Đánh giá hoạt tính xúc tác ở quy mơ phịng thí
nghiệm)

z

MAT

nf

JCPDS

@

Mobil Composition of Matter No.41

MPTMS

3-mercaptopropyl trimethoxysilane

MQTB

Mao quản trung bình

MQTBTT

Mao quản trung bình trật tự


NBB

Nanometric Building Block

m
co

l.
ai

gm

MCM-41

an
Lu
n

va
ac
th

vii

si


NMR


Nuclear Magnetic Resonance spectroscopy
Chất định hướng cấu trúc (Poly(ethylen oxit)-poly(propylen oxit)-

P123

poly(ethylen oxit), Pluronic EOyPOxEOy)

lu
an
n

va

Residue Fluid Catalytic Cracking

RGA

Refinery Gas Analysis

SBA-15

Santa Barbara Amorphous – 15

SEM

Scanning Electron Microscopy

SIMDIST

Simulated Distillation


TEM

Transmission Electron Microscopy

TEOS

Tetraethoxysilane

TGA

Thermogravimetric Analysis

TMOS

Tetramethoxysilane

tn

to

RFCC

TPD

Temperature Programmed Desorption

gh

Tử ngoại – Khả kiến


WHSV

Weight Hourly Space Velocity

p

ie

UV-Vis

X-ray Diffraction

oa

nl

Zeolit ZSM-5 có mã cấu trúc quốc tế là MFI

d

ZSM-5

X-ray Photoelectron Spectroscopy

w

XRD

do


XPS

oi
lm

ul

nf

va

an

lu
z
at
nh
z
m
co

l.
ai

gm

@
an
Lu

n

va
ac
th

viii

si


DANH MỤC BẢNG BIỂU
Bảng 1.1.

Một số tương tác giữa các cấu tử trong quá trình hình thành vật liệu
MQTBTT …………………………………………………………………….

Bảng 1.2

8

Ảnh hưởng của điều kiện tổng hợp (chất ĐHCT và nhiệt độ) đến sản phẩm
tổng hợp ……………………………………………………………………..

13

Bảng 2.1.

Các loại hóa chất sử dụng chính trong luận án ………………………………


34

Bảng 2.2.

Ký hiệu các mẫu xúc tác hệ Al-SBA-15 bằng phương pháp gián tiếp ở các

an
n

va

Bảng 2.3.

Ký hiệu các mẫu xúc tác SO42-/Zr-SBA-15 tổng hợp được …………………

39

Bảng 2.4.

Các thông số kỹ thuật của nguyên liệu dầu phân đoạn nặng ………………...

49

Bảng 3.1.

Các thông số cấu trúc của vật liệu SBA-15 .....................................................

53

Bảng 3.2.


Một số tính chất bề mặt của vật liệu Al-SBA-15-TT và Al-SBA-15-GT …...

57

Số liệu TPD-NH3 của các mẫu Al-SBA-15TT và Al-SBA-15GT …………..

58

Bảng 3.4.

Số liệu phân tích nguyên tố của các mẫu Al-SBA-15GT với các tỷ lệ Al/Si

tn

to

37

gh

lu

điều kiện khác nhau ………………………………………………………….

Bảng 3.3.

p

ie


do

khác nhau …………………………………………………………………..

w

Một số tính chất bề mặt của các mẫu Al-SBA-15GT với các tỷ lệ Al/Si khác

oa

nl

Bảng 3.5.

d

nhau ………………………………………………………………………….

an

Số liệu TPD-NH3 của các xúc tác Al-SBA-15GT theo các tỷ lệ Al/Si khác

nf

va

nhau ………………………………………………………………………….
Thông số cấu trúc của vật liệu SZ-SBA-15-TT1(x) ........................................


Bảng 3.8.

Số liệu TPD-NH3 của các mẫu xúc tác SZ-SBA-15-TT1(x), với x là tỷ lệ

oi
lm

ul

Bảng 3.7.

Zr/Si ………………………………………………………………………….

z
at
nh

Bảng 3.9.

65

lu

Bảng 3.6.

65

66
75


78

Thông số cấu trúc của vật liệu SZ-SBA-15GT(x) tổng hợp bằng phương
pháp gián tiếp ...................................................................................................

80

z

gm

@

Bảng 3.10. Số liệu TPD-NH3 của các mẫu xúc tác SZ-SBA-15-GT(x), với x là tỷ lệ
Zr/Si ………………………………………………………………………….

l.
ai

Bảng 3.11. Quan hệ “lnr – 1/T” của mẫu xúc tác SZ-SBA-15-TT(0,2) ...........................

83
85

m
co

86

Bảng 3.13. Thông số cấu trúc của Zr-Fe-SBA-15 và Al-Zr-Fe-SBA-15 ...........................


90

Bảng 3.14. Kết quả TPD-NH3 của Zr-Fe-SBA-15 và Al-Zr-Fe-SBA-15 .........................

92

an
Lu

Bảng 3.12. Quan hệ “lnr – 1/T” của mẫu xúc tác SZ-SBA-15-GT(0,1) ...........................

n

va
ac
th

ix

si


Bảng 3.15. Thông số cấu trúc của xAl-Zr-Fe-SBA-15, x là tỷ lệ Al2O3/(ZrO2:Fe2O3) ....

95

Bảng 3.16. Số liệu tổng hợp của phản ứng cracking phân đoạn dầu nặng của các xúc tác
ở khoảng nhiệt độ 450 ÷ 460oC …………………………………………….


99

Bảng 3.17. Số liệu tổng hợp của phản ứng cracking phân đoạn dầu nặng của các xúc tác
ở khoảng nhiệt độ 500oC …………………………………………………...

100

Bảng 3.18. Tính tốn cân bằng vật chất của mẫu xúc tác 0,8Al-Zr-Fe-SBA-15 ………...

107

lu
an
n

va
p

ie

gh

tn

to
d

oa

nl


w

do
oi
lm

ul

nf

va

an

lu
z
at
nh
z
m
co

l.
ai

gm

@
an

Lu
n

va
ac
th

x

si


DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ
Hình 1.1.

Các dạng cấu trúc của vật liệu MQTBTT ……………………………………

5

Hình 1.2.

Sơ đồ cơ chế tổng quát hình thành vật liệu MQTBTT ………………………

6

Hình 1.3.

Sự tương tác giữa chất HĐBM và các tiền chất vô cơ ………………………

7


Hình 1.4.

Cơ chế định hướng theo cấu trúc tinh thể lỏng ………………………………

9

Hình 1.5.

Cơ chế sắp xếp silicat ống ...............................................................................

9

Hình 1.6.

Cơ chế phù hợp mật độ điện tích …………………………………………….

10

Hình 1.7.

Hình ảnh các mao quản trung bình trật tự của SBA-15 được nối với nhau

lu
an
n

va

qua cầu nối vi mao quản ……………………………………………………..


11

Hình 1.8.

Mixen Pluronic P123 ………………………………………………………...

12

Hình 1.9.

Giản đồ nhiễu xạ tia X góc nhỏ của SBA-15 trước (A) và sau (B) khi loại bỏ

to

13

gh

tn

chất ĐHCT …………………………………………………………………...

Hình 1.10. Đường đẳng nhiệt hấp phụ – giải hấp phụ N2 ở 77K của vật liệu SBA-15 đã

p

ie

loại chất ĐHCT ………………………………………………………………


do

Hình 1.11. Ảnh của vật liệu SBA-15 quan sát bởi kính hiển vi điện tử quét JEOL ……

w

oa

nl

Hình 1.12. Ảnh TEM của SBA-15 sau khi đã nung loại bỏ chất ĐHCT ………………..

d

Hình 1.13. Quá trình ngưng tụ tạo sản phẩm biến tính trực tiếp .......................................

14
14
15
16

lu

16

Hình 1.15. Sơ đồ hình thành tâm axit mạnh trên vật liệu SZ-SBA-15 ..............................

22


nf

va

an

Hình 1.14. Sơ đồ phản ứng biến tính sau tổng hợp của vật liệu SBA-15 ……………….

ul

Hình 1.16. Cơ chế giảm hoạt tính và độ bền của xúc tác ZrO2-Fe2O3 và vai trị của
Sơ đồ tổng hợp SBA-15 ..................................................................................

35

z
at
nh

Hình 2.2.

31

oi
lm

Hình 2.1.

Al2O3 …………………………………………………………………………
Sơ đồ tổng hợp xúc tác hệ Al-SBA-15 theo phương pháp trực tiếp (a) và

gián tiếp (b) ………………………………………………………………….

z

Sơ đồ tổng hợp xúc tác hệ Al-SBA-15 gián tiếp có thay đổi dung mơi ……..

Hình 2.4.

Sơ đồ tổng hợp xúc tác hệ SO42-/Zr-SBA-15 bằng phương pháp trực tiếp (a)

l.
ai

và phương pháp gián tiếp (b) ………………………………………………...

39

Sơ đồ tổng hợp xúc tác ZrO2-Fe2O3-SBA-15 (a) và Al2O3-ZrO2-Fe2O3SBA-15 (b) …………………………………………………………………..

40

Mô tả hiện tượng nhiễu xạ tia X trên bề mặt tinh thể ………………………..

41

an
Lu

Hình 2.6.


m
co

Hình 2.5.

36

gm

@

Hình 2.3.

36

n

va
ac
th

xi

si


Hình 2.7.

Hình ảnh của hệ thống MAT 5000 tại Phịng thí nghiệm Lọc hóa dầu & Vật
liệu xúc tác – hấp phụ, Viện Kỹ thuật Hóa học, ĐH Bách khoa Hà Nội …...


49

Hình 3.1.

Giản đồ nhiễu xạ tia X của SBA-15 ................................................................

51

Hình 3.2.

Đường đẳng nhiệt hấp phụ – giải hấp phụ N2 (a) và đường phân bố kích
thước mao quản của vật liệu SBA-15 (b) ……………………………………

52

Hình 3.3.

Ảnh TEM của SBA-15 ....................................................................................

53

Hình 3.4.

Ảnh SEM của SBA-15 ………………………………………………………

53

Hình 3.5.


Giản đồ nhiễu xạ tia X của SBA-15(a) và Al-SBA-15 tổng hợp gián tiếp (b),
trực tiếp (c) ......................................................................................................

lu
an

Hình 3.6.

55

Ảnh TEM của vật liệu (a) SBA-15, (b) Al-SBA-15-GT và (c) Al-SBA-15-

n

va

TT ....................................................................................................................
(A) Đường đẳng nhiệt hấp phụ – giải hấp phụ N2 và (B) đường phân bố

56

Hình 3.8.

Đường TPD-NH3 của vật liệu Al-SBA-15-TT và Al-SBA-15-GT ………….

57

Hình 3.9.

Độ chuyển hóa cumen theo nhiệt độ trên vật liệu Al-SBA-15-TT và Al-


p

ie

kích thước mao quản của vật liệu Al-SBA-15-TT và Al-SBA-15-GT ……...

gh

tn

to

Hình 3.7.

55

do

nl

w

SBA-15-GT ………………………………………………………………….

oa

Hình 3.10. Ảnh hưởng của dung mơi đến sự hình thành MQTB của Al-SBA-15GT …..

58

59

d

Hình 3.11. Ảnh hưởng của thời gian khuấy mẫu đến sự hình thành cấu trúc MQTB của

lu

an

Al-SBA-15GT ……………………………………………………………….

60

nf

va

Hình 3.12. Ảnh hưởng của nhiệt độ nung mẫu đến sự hình thành cấu trúc MQTB của

oi
lm

ul

Al-SBA-15GT ……………………………………………………………….

61
62


Hình 3.14. Ảnh TEM của Al-SBA-15GT3(x),với x là tỷ lệ Al/Si ………………………

63

Hình 3.15. Ảnh SEM của Al-SBA-15GT3(x),với x là tỷ lệ Al/Si ……………………….

63

z
at
nh

Hình 3.13. Giản đồ nhiễu xạ tia X của Al-SBA-15-GT3(x), với x là tỷ lệ Al/Si ………..

Hình 3.16. Phổ tán xạ tia X (EDX) của (A) Al-SBA-15GT3(0,1), (B) Al-SBA-

z
64

gm

@

15GT3(0,07) và (C) Al-SBA-15GT3(0,05) ………………………………….
Hình 3.17. (A) Đường đẳng nhiệt hấp phụ – giải hấp phụ N2 và (B) đường phân bố

l.
ai

kích thước mao quản của vật liệu Al-SBA-15-GT(x), với x là tỷ lệ Al/Si …..


65

m
co

Hình 3.18. Đường TPD-NH3 của các xúc tác Al-SBA-15GT theo các tỷ lệ Al/Si khác
66

Hình 3.19. Đồ thị biểu diễn độ chuyển hóa theo nhiệt độ trên xúc tác Al-SBA-15-

68

an
Lu

nhau ………………………………………………………………………….

n

va
ac
th

xii

si


GT(x), với x là tỷ lệ Al/Si ……………………………………………………

Hình 3.20. Đồ thị biểu diễn độ chọn lọc theo nhiệt độ trên xúc tác Al-SBA-15-GT(x),
với x là tỷ lệ Al/Si ……………………………………………………………

69

Hình 3.21. Phổ UV-Vis trạng thái rắn của SZ-SBA-15-TT ở các giá trị pH khác nhau ...

69

Hình 3.22. Giản đồ nhiễu xạ tia X của (a) SZ-SBA-15(NH4OH) và (b) SZ-SBA-

lu
an
n

va

15(Urê) ……………………………………………………………………….

71

Hình 3.23. Ảnh TEM của vật liệu (A) SZ-SBA-15(NH4OH) và (B) SZ-SBA-15(Urê) ..

71

Hình 3.24. Giản đồ TG – DTA của SZ-SBA-15-TT …………………………………….

72

Hình 3.25. Giản đồ nhiễu xạ tia X của SZ-SBA-15-TT ở các nhiệt độ nung khác nhau ..


72

Hình 3.26. Giản đồ nhiễu xạ tia X góc rộng của SZ-SBA-15-TT ở nhiệt độ nung 650oC

73

Hình 3.27. Giản đồ nhiễu xạ tia X của SZ-SBA-15-TT(x), x là tỷ lệ Zr/Si ......................

74

tn

to

Hình 3.28. Đường đẳng nhiệt hấp phụ - giải hấp phụ N2 (A) và đường phân bố kích
74

Hình 3.29. Phổ XPS của SZ-SBA-15-TT(0,07) …………………………………………

76

Hình 3.30. Ảnh SEM của SZ-SBA-15-TT(x), x là tỷ lệ Zr/Si ..........................................

76

p

ie


gh

thước mao quản theo BJH (B) của SZ-SBA-15-TT(x) ……………………...

do

77

nl

w

Hình 3.31. Ảnh TEM của SZ-SBA-15-TT(x), x là tỷ lệ Zr/Si ..........................................

oa

Hình 3.32. Giản đồ nhả hấp phụ TPD-NH3 của (a) SZ-SBA-15-TT(0,2), (b) SZ-SBA-

d

15-TT(0,1) và (c) SZ-SBA-15TT(0,07) ……………………………………..

77

lu

an

Hình 3.33. Giản đồ nhiễu xạ tia X của (a) SZ-SBA-15-GT(0,2), (b) SZ-SBA-1579


nf

va

GT(0,1) và (c) SZ-SBA-15-GT(0,07) ………………………………………..

oi
lm

ul

Hình 3.34. Đường đẳng nhiệt hấp phụ - giải hấp phụ N2 (A) và đường phân bố kích
79

Hình 3.35. Ảnh SEM của SZ-SBA-15-GT(x), x là tỷ lệ Zr/Si ..........................................

80

Hình 3.36. Ảnh TEM của SZ-SBA-15-GT(x), x là tỷ lệ Zr/Si ..........................................

81

Hình 3.37. Phổ XPS của (a) SZ-SBA-15-TT(0,07) và (b) SZ-SBA-15-GT(0,07) ………

82

z
at
nh


thước mao quản theo BJH (B) của SZ-SBA-15-GT(x) ………………….......

z
gm

@

Hình 3.38. Giản đồ nhả hấp phụ TPD-NH3 của (a) SZ-SBA-15-GT(0,07), (b) SZ-SBA15-GT(0,1) và (c) SZ-SBA-15GT(0,2) ………………………………………

82

l.
ai

Hình 3.39. Đồ thị biểu diễn (A) độ chuyển hóa và (B) độ chọn lọc benzen theo nhiệt độ

m
co

trên xúc tác SZ-SBA-15-TT(x) ………………………………………………

84

an
Lu

Hình 3.40. Đồ thị biểu diễn (A) độ chuyển hóa và (B) độ chọn lọc benzen theo nhiệt độ
trên xúc tác SZ-SBA-15-GT(x) ……………………………………………...

85


n

va
ac
th

xiii

si


Hình 3.41. Đồ thị biểu diễn phương trình đường thẳng Arrhenius cho hai mẫu (a) SZSBA-15- GT(0,1) và (b) SZ-SBA-15-TT(0,2) ................................................

86

Hình 3.42. Giản đồ nhiễu xạ tia X của Zr-Fe-SBA-15 và Al-Zr-Fe-SBA-15 …………...

87

Hình 3.43. Giản đồ nhiễu xạ tia X góc rộng của (A) Zr-Fe-SBA-15 và (B) Al-Zr-FeSBA-15 ............................................................................................................

88

Hình 3.44. Phổ EDX của (A) Zr-Fe-SBA-15 và (B) Al-Zr-Fe-SBA-15 ...........................

89

Hình 3.45. (A) Đường đẳng nhiệt hấp phụ – giải hấp phụ N2 và (B) đường phân bố


lu
an

kích thước mao quản của (a) Zr-Fe-SBA-15 và (b) Al-Zr-Fe-SBA-15 ...........

90

Hình 3.46. Ảnh SEM của (A) Zr-Fe-SBA-15 và (B) Al-Zr-Fe-SBA-15 ..........................

91

Hình 3.47. Ảnh TEM của (A) Zr-Fe-SBA-15 và (B) Al-Zr-Fe-SBA-15 ..........................

91

n

va

Hình 3.48. Giản đồ nhả hấp phụ TPD-NH3 của (a) Zr-Fe-SBA-15 và (b) Al-Zr-Fe92

Hình 3.49 Phổ EDX của xAl-Zr-Fe-SBA-15, x là tỷ lệ Al2O3/(ZrO2:Fe2O3) ..................

93

gh

tn

to


SBA-15 ............................................................................................................

p

ie

Hình 3.50. Giản đồ nhiễu xạ tia X của xAl-Zr-Fe-SBA-15, x là tỷ lệ
Al2O3/(ZrO2:Fe2O3) ........................................................................................

94

do

nl

w

Hình 3.51. (A) Đường đẳng nhiệt hấp phụ - giải hấp phụ N2 và (B) đường phân bố kích

oa

thước mao quản theo BJH của x là tỷ lệ Al2O3/(ZrO2:Fe2O3) ........................

94

d

Hình 3.52. (A) Độ chuyển hóa và độ chọn lọc phân đoạn xăng, (B) hàm lượng cốc tạo


lu

an

thành của phản ứng cracking phân đoạn dầu nặng trên xúc tác Al-SBA-15
96

nf

va

tổng hợp gián tiếp ...........................................................................................

oi
lm

ul

Hình 3.53. (A) Độ chọn lọc phân đoạn xăng, (B) hàm lượng cốc tạo thành và (C) độ
chuyển hóa của phản ứng cracking phân đoạn dầu nặng trên xúc tác SZ-

z
at
nh

SBA-15 tổng hợp trực tiếp và gián tiếp ...........................................................

97

Hình 3.54. (A) Độ chuyển hóa và độ chọn lọc phân đoạn xăng và (B) hàm lượng cốc

tạo thành của phản ứng cracking oxy hóa phân đoạn dầu nặng trên xúc tác

z
99

gm

@

0,8Al-Zr-Fe-SBA-15 .......................................................................................
Hình 3.55. (A) Độ chuyển hóa và chọn lọc, (B) hàm lượng cốc tạo thành của phản ứng

l.
ai

cracking oxy hóa phân đoạn dầu nặng trên xúc tác 0,8Al-Zr-Fe-SBA-15 ở

m
co

các nhiệt độ khác nhau (áp suất 1at, tốc độ không gian nạp liệu 6h-1, lưu

an
Lu

lượng hơi nước 6,2ml/phút) .............................................................................

101

Hình 3.56. (A) Độ chuyển hóa và chọn lọc, (B) hàm lượng cốc tạo thành của phản ứng


n

va
ac
th

xiv

si


cracking oxy hóa phân đoạn dầu nặng trên xúc tác 0,8Al-Zr-Fe-SBA-15 ở

103

các tốc độ không gian nạp liệu khác nhau (nhiệt độ phản ứng ở 500oC, áp
suất 1at, lưu lượng hơi nước 6,2ml/phút) ……………………………………
Hình 3.57. (A) Độ chuyển hóa và chọn lọc, (B) hàm lượng cốc tạo thành của phản ứng
cracking oxy hóa phân đoạn dầu nặng trên xúc tác 0,8Al-Zr-Fe-SBA-15 ở
các lưu lượng hơi nước khác nhau (nhiệt độ phản ứng ở 500oC, áp suất 1at,
tốc độ không gian nạp liệu 5h-1) ……………………………………………..

104

Hình 3.58. (A) Hàm lượng cốc tạo thành, (B) hàm lượng khí cracking, (C) độ chuyển
hóa và chọn lọc của phản ứng cracking oxy hóa phân đoạn dầu nặng trên

lu
an


các xúc tác (x)Al-Zr-Fe-SBA-15, x là tỷ lệ Al2O3/(ZrO2:Fe2O3) (nhiệt độ

n

va

phản ứng ở 500oC, áp suất 1at, tốc độ không gian nạp liệu 5h-1, lưu lượng
105

tn

to

hơi nước 8,2ml/phút) ………………………………………………………

Hình 3.59. Thành phần sản phẩm lỏng thu được của phản ứng cracking oxy hóa phân

gh
p

ie

đoạn dầu nặng trên xúc tác 0,8Al-Zr-Fe-SBA-15 ở điều kiện nhiệt độ phản
ứng ở 500oC, áp suất 1at, tốc độ không gian nạp liệu 5h-1, lưu lượng hơi

do

106


nl

w

nước 8,2ml/phút ……………………………………………………………...

oa

Hình 3.60. Thành phần khí của phản ứng cracking oxy hóa phân đoạn dầu nặng trên

d

xúc tác 0,8Al-Zr-Fe-SBA-15 ở điều kiện nhiệt độ phản ứng ở 500oC, áp suất

lu

an

1at, tốc độ không gian nạp liệu 5h-1, lưu lượng hơi nước 8,2ml/phút ……….

106

nf

va

Hình 3.61 (A) Thành phần sản phẩm lỏng, (B) độ chuyển hóa và độ chọn lọc của xúc

oi
lm


ul

tác 0,8Al-Zr-Fe-SBA-15 trên phản ứng cracking oxy hóa phân đoạn dầu
nặng ở điều kiện nhiệt độ phản ứng ở 500oC, áp suất 1at, tốc độ không gian

z
at
nh

nạp liệu 5h-1, lưu lượng hơi nước 8,2ml/phút …………………………….....

108

Hình 3.62. Giản đồ nhiễu xạ tia X góc hẹp của 0,8Al-Zr-Fe-SBA-15 trước và sau phản
ứng …………………………………………………………………………..

108

z
109

m
co

l.
ai

gm


@

Hình 3.63. Giản đồ nhiễu xạ tia X góc rộng của 0,8Al-Zr-Fe-SBA-15 sau phản ứng …..

an
Lu
n

va
ac
th

xv

si


ĐẶT VẤN ĐỀ
Việc khai thác các nguồn tài nguyên hóa thạch nói chung và dầu mỏ nói riêng để phục
vụ nhu cầu đời sống con người đã ngày càng làm giảm nhanh trữ lượng của chúng trong tự
nhiên. Để nâng cao hiệu quả sử dụng nguồn nguyên liệu dầu mỏ, hạn chế việc khai thác quá
mức nguồn tài nguyên này, người ta nghiên cứu cải tiến về công nghệ và tìm kiếm những xúc
tác phù hợp để chế biến sâu nguyên liệu, tạo ra các sản phẩm có giá trị cao hơn. Một trong
những q trình ấy là cracking có mặt của xúc tác.
Phân xưởng cracking xúc tác là phân xưởng quan trọng nhất của một nhà máy lọc dầu.

lu

Chất lượng của sản phẩm của quá trình cracking xúc tác thay đổi trong phạm vi rất rộng phụ


an

thuộc vào nhiều yếu tố như nguyên liệu, loại và đặc tính của vật liệu xúc tác cũng như các

n

va

thông số công nghệ của q trình. Hiện nay, cơng nghệ cracking sử dụng chủ yếu trong các

tn

to

nhà máy lọc dầu là công nghệ cracking xúc tác tầng sôi (Fluid Catalytic Cracking – FCC) với

gh

xúc tác chứa zeolit. Xúc tác chứa zeolit có những ưu điểm như hoạt tính và độ chọn lọc cao,

p

ie

dễ tách khỏi sản phẩm, không gây ô nhiễm môi trường, … và với những ưu điểm này nó đã

do

thúc đẩy nhiều nhà khoa học đi sâu vào biến tính và tìm kiếm những zeolit mới nhằm mục


nl

w

đích cải tiến xúc tác để đưa vào ứng dụng trong công nghiệp. Tuy nhiên, xúc tác chứa zeolit

d

oa

cũng có những hạn chế nhất định như kích thước mao quản bé, độ bền thủy nhiệt không cao,

an

lu

kém bền với các tác nhân gây ngộ độc xúc tác, …[17, 30] nên hiệu quả quá trình xúc tác
khơng cao khi sử dụng cho q trình cracking các phân đoạn dầu nặng. Vì vậy hướng nghiên

va

ul

nf

cứu đặt ra cho luận án là tìm kiếm xúc tác và các q trình phù hợp để có thể chuyển hóa được

nhu cầu của con người.

oi

lm

các phân đoạn dầu nặng thành những sản phẩm nhẹ hơn, có giá trị kinh tế cao đáp ứng được

z
at
nh

Với công nghệ lọc dầu, ngay từ ban đầu đã phải đối mặt với thách thức của việc
chuyển hóa hiệu quả dầu thơ nặng có nhiệt độ sơi cao thành các sản phẩm chưng cất có phân

z

tử nhẹ hơn. Cracking nhiệt được đưa vào năm 1912. Các khoáng sét tự nhiên của

@

gm

montmorillonite được đưa vào năm 1936. Sau đó, kiểu xúc tác này được thay bởi các xúc tác

l.
ai

nhôm silicat tổng hợp vào năm 1940. Hơn 20 năm sau, vào năm 1962 zeolite được đưa vào

m
co

các chất nền cracking xúc tác. Sự kiện này như là một cuộc cách mạng trong công nghiệp xúc

tác cracking. Việc sử dụng xúc tác zeolite đã dẫn đến tăng mạnh độ chọn lọc xăng và giảm cốc

an
Lu

và khí. Tuy nhiên việc cải tiến xúc tác cracking vẫn tiếp tục phát triển và luôn thu hút sự chú

n

va
ac
th

1

si


của các nhà khoa học và thương mại, đặc biệt theo hướng tăng hiệu suất tạo xăng, giảm tạo
cốc và khí.
Zeolite đã thể các tính chất ưu việt nổi trội như đã đề cập ở trên. Tuy nhiên chúng vẫn
thể hiện các nhược điểm do có kích thước mao quản bé khơng thích hợp với các phân tử lớn,
cồng kềnh. Vì thế việc tìm kiếm các vật liệu mao quản lớn, trật tự được đặt ra. Vào đầu thập
niên 90 của thế kỷ XX, các thành công trong việc tổng hợp các vật liệu mao quản trung bình
đã mở ra một giai đoạn mới trong tổng hợp chất xúc tác và hấp phụ. Sau đó, các nghiên cứu
tổng hợp và ứng dụng vật liệu mao quản trung bình thu hút được sự quan tâm của các nhà
khoa học trong và ngoài nước. Bên cạnh vật liệu M41S, một họ vật liệu mao quản trung bình

lu
an


khác là SBA (Santa Barbara Amorphous) được tổng hợp lần đầu tiên ở đại học Santa Barbara

n

va

(Califonia, Mỹ) bởi nhóm nghiên cứu Galen Stucky [47, 48]. Họ vật liệu này gồm các thành

tn

to

viên SBA-1, SBA-2,…, SBA-15, SBA-16 có kích thước và cấu trúc khác nhau, SBA có mao
quản khá lớn (có thể đạt đến 500Å), thành mao quản dày, bền nhiệt, bền thủy nhiệt hơn các vật

gh

ie

liệu mao quản trung bình khác. Trong số các vật liệu của họ SBA, SBA-15 được quan tâm hơn

p

cả bởi SBA-15 có cấu trúc sắp xếp các mao quản kiểu lục lăng với mức độ trật tự cao, mặt

do

nl


w

khác nó cịn có hệ thống vi mao quản nối liền giữa các mao quản trung bình. Hệ thống các

oa

mao quản này giúp cho các oxit kim loại hình thành trong quá trình biến tính sẽ giữ được cấu

d

trúc ổn định. Ngồi ra, vật liệu này có kích thước lỗ xốp nằm trong khoảng 6 đến 15nm và độ

lu

an

dày mao quản cao do đó độ bền nhiệt và bền thủy nhiệt hơn hẳn so với các vật liệu mao quản

nf

va

trung bình khác. Với các ưu điểm như vậy nên vật liệu SBA-15 được ứng dụng khá nhiều

oi
lm

ul

trong các lĩnh vực như xúc tác, hấp phụ, .... Để có thể làm xúc tác cho phản ứng cracking, vật

liệu phải có tính axit mà SBA-15 gần như trơ về mặt hóa học, do đó để tạo các tâm axit hoạt

đưa các oxit kim loại lên nền vật liệu.

z
at
nh

tính, người ta thay thế nguyên tử silic trong mạng của SBA-15 bởi một nguyên tử khác hoặc

Với mục đích tạo các pha hoạt động trên vật liệu SBA-15 làm xúc tác cho quá trình

z
gm

@

cracking phân đoạn dầu nặng theo hướng tăng hiệu suất tạo xăng và giảm tạo cố và khí, luận
án sẽ thực hiện các nhiệm vụ sau:

l.
ai

1. Nghiên cứu xác định điều kiện tổng hợp xúc tác chứa các tâm axit trên nền vật liệu

m
co

mao quản trung bình SBA-15 với các đối tượng nghiên cứu cụ thể là Al-SBA-15, SO42-/Zr-


an
Lu

SBA-15 và Al2O3-ZrO2-Fe2O3-SBA-15.

n

va
ac
th

2

si


2. Sử dụng các phản ứng cracking xúc tác và cracking oxi hóa (oxidative cracking) để
đánh giá hoạt tính xúc tác với nguyên liệu là phân đoạn dầu nặng và xác định các điều kiện và
xúc tác tốt nhất cho mỗi q trình.
Với những đóng góp mới, hy vọng rằng các kết quả của luận án sẽ góp một phần thiết
thực làm phong phú thêm khả năng tổng hợp, biến tính, sử dụng các chất xúc tác trên nền vật
liệu mao quản trung bình trật tự SBA-15, tiếp nối được các kiến thức tiên tiến của thế giới
trong lĩnh vực nghiên cứu xúc tác cracking.

lu
an
n

va
p


ie

gh

tn

to
d

oa

nl

w

do
oi
lm

ul

nf

va

an

lu
z

at
nh
z
m
co

l.
ai

gm

@
an
Lu
n

va
ac
th

3

si


Chương 1

TỔNG QUAN TÀI LIỆU
1.1. VẬT LIỆU MAO QUẢN TRUNG BÌNH TRẬT TỰ
Vật liệu có cấu trúc mao quản là vật liệu mà trong lịng nó có hệ thống mao quản với

kích thước từ vài đến vài chục nano mét. Các mao quản có thể có dạng ống hình trụ (linear,
parallel channels), ba chiều (three dimensional pore) hoặc dạng lồng (cage). Sự có mặt của các
mao quản đó làm cho vật liệu có nhiều tính chất đặc biệt mà những vật liệu đặc khít khơng có
được.

lu

Theo quy định của IUPAC (Internatironal Union of Pure and Applied Chemistry), vật

an

liệu mao quản được chia thành ba loại dựa vào kích thước mao quản [85]. Theo cách phân loại

n

va

này, các vật liệu vô cơ rắn xốp chứa các mao quản có đường kính 2 – 50nm được gọi là vật

to

tn

liệu mao quản trung bình (mesopore); vật liệu có đường kính mao quản nhỏ hơn 2nm và lớn

gh

hơn 50nm được gọi là vật liệu vi mao quản (micropore) và vật liệu có mao quản lớn

p


ie

(macropore).

w

do

1.1.1. Giới thiệu vật liệu MQTBTT

oa

nl

Đặc điểm quan trọng nhất của các vật liệu MQTBTT là chúng có mao quản đồng nhất,
sắp xếp một cách trật tự, kích thước mao quản rộng, diện tích bề mặt riêng lớn, do đó vật liệu

d

an

lu

có thể mang trên nó các tâm hoạt động và vì vậy sẽ dễ dàng tiếp cận với tác nhân phản ứng.

va

Vật liệu MQTBTT không phải là vật liệu tinh thể. Xét về mối quan hệ xa thì các mặt mạng, sự


ul

nf

sắp xếp các mao quản,… được phân bố theo quy luật tuần hoàn như trong mạng tinh thể,

oi
lm

nhưng nhìn ở góc độ gần thì các phần tử (ion, nguyên tử, nhóm nguyên tử,…) lại liên kết với
nhau một cách vơ định hình. Vì vậy, vật liệu MQTBTT được gọi là vật liệu vơ định hình.

z
at
nh

Năm 1992, nhóm nghiên cứu của cơng ty Mobil Oil đã tìm ra họ vật liệu mới –
M41S – có kích thước mao quản từ 2 ÷ 10nm bằng việc sử dụng chất hoạt động bề mặt như

z

những chất định hướng cấu trúc (ĐHCT) [70, 73, 88]. Giống với zeolit, họ vật liệu này có diện

@

gm

tích bề mặt riêng rất lớn (~ 1000m2/g), cấu trúc mao quản rất đồng đều và ổn định, riêng kích

l.

ai

thước mao quản thì lớn hơn nhiều so với zeolit (>1nm) – cho phép các phân tử có kích thước

m
co

lớn có thể dễ dàng khuếch tán và tham gia phản ứng bên trong mao quản nên là chất mang lý
tưởng để có thể tạo ra nhiều loại vật liệu hấp phụ và xúc tác đa dạng, phong phú. Đây chính là

an
Lu

ưu điểm của vật liệu mới này. Tùy theo điều kiện tổng hợp như bản chất của chất hoạt động bề

ac
th

4

n

va

mặt, bản chất của chất phản ứng, nhiệt độ tổng hợp, giá trị pH mà kích thước và cấu trúc mao

si


quản khác nhau được hình thành như cấu trúc lục lăng (MCM-41), cấu trúc lập phương

(MCM-48), cấu trúc lớp (MCM-50). Và ngay sau đó là hàng loạt các cơng trình nghiên cứu
biến tính và tìm kiếm khả năng ứng dụng của họ vật liệu này được công bố [27, 71, 74, 132.].
Giai đoạn tiếp theo có thể kể đến là sự phát hiện của nhóm Stucky và cộng sự về việc
sử dụng các polime trung hòa điện như những chất ĐHCT để tổng hợp họ vật liệu MQTBTT
mới ký hiệu SBA (Santa Barbara Amorphous) [47, 48]. Vật liệu này có mao quản đồng đều,
độ trật tự cao với đường kính mao quản có thể lên đến 50nm và diện tích bề mặt riêng khá lớn
(> 800m2/g). Cấu trúc của SBA phụ thuộc chủ yếu vào loại chất hoạt động bề mặt được sử
dụng. Ưu điểm của họ vật liệu SBA là tường mao quản dày, có tính bền nhiệt và thủy nhiệt

lu
an

cao hơn các nhóm vật liệu MQTBTT trước đó, nên về cơ bản đã khắc phục được những nhược

n

va

điểm của các nhóm vật liệu thuộc họ M41S. Vì thế, họ vật liệu SBA đã mở ra một chương mới

Trên thế giới, vật liệu MQTBTT đang được nghiên cứu và ứng dụng nhiều theo các

gh

tn

to

trong việc ứng dụng các vật liệu mao quản trong thực tiễn [46].


ie

hướng sau: kết tinh lại mao quản bằng các hợp chất thích hợp để có thể kiểm sốt kích thước

p

mao quản [125]; gắn hay tẩm lên mao quản một lớp vật liệu tinh thể làm chất xúc tác để có

do

nl

w

thể phát triển bề mặt của vật liệu xúc tác [157]; thay thế đồng hình Si bằng các kim loại khác

oa

nhau để có thể thay đổi kích thước mao quản, lực axit và tạo ra những xúc tác có hoạt tính

d

mong muốn [114]; gắn các nhóm chức năng lên trên bề mặt mao quản để cải thiện hoạt tính bề

lu
an

mặt [60].

nf


va

1.1.2. Phân loại vật liệu MQTBTT

oi
lm

ul

Vật liệu MQTBTT được phân loại theo nhiều tiêu chí khác nhau. Thông thường vật
liệu MQTBTT được phân loại theo cấu trúc và theo thành phần.

z
at
nh

 Theo cấu trúc:

z
m
co

l.
ai

gm

@
Cấu trúc lục lăng (hexagonal): MCM-41, SBA-15, ...




Cấu trúc lập phương (cubic): MCM-48, SBA-16,…

n
ac
th

5

va



an
Lu

Hình 1.1. Các dạng cấu trúc của vật liệu MQTBTT

si




Cấu trúc lớp (lamellar): MCM-50,...



Cấu trúc trật tự biến dạng (disordered): KIT-1,….


 Phân loại theo thành phần:


Vật liệu MQTBTT chứa silic (MCM-41, MCM-48, SBA-15, SBA-16,…) và

vật liệu MQTBTT silic chứa oxit kim loại (Al-MCM-41, Ti-MCM-41, Al-SBA-15, …)


Vật liệu MQTBTT không chứa silic như: ZrO2, TiO2, Fe2O3, …

1.1.3. Cơ chế hình thành vật liệu MQTBTT
Có rất nhiều cơ chế đã được đưa ra để giải thích q trình hình thành vật liệu

lu

MQTBTT, đó là sự tương tác giữa các chất hoạt động bề mặt với các tiền chất vơ cơ có trong

an

dung dịch.

n

va
p

ie

gh


tn

to
d

oa

nl

w

do
an

lu

Hình 1.2. Sơ đồ cơ chế tổng quát hình thành vật liệu MQTBTT

Để tổng hợp các vật liệu MQTBTT cần 3 thành phần cơ bản sau:

va

Chất hoạt động bề mặt: chứa 1 đầu ưa nước và 1 đuôi dài kị nước, đóng vai trị làm

oi
lm

tác nhân định hướng cấu trúc.


ul

nf



Tiền chất vô cơ (như các hợp chất của Si): hình thành nên mạng lưới mao quản.



Dung mơi (nước, axit, bazơ…): đóng vai trị xúc tác trong q trình kết tinh.

z
at
nh



Các cơ chế được đề nghị để giải thích quá trình hình thành vật liệu MQTB đều dựa trên

z

sự tương tác giữa chất HĐBM và tiền chất vô cơ. Tùy theo chất HĐBM và tỷ lệ giữa chất

@

gm

HĐBM và tiền chất vơ cơ mà có sự tương tác khác nhau, từ đó sẽ hình thành nên các vật liệu


l.
ai

có cấu trúc và đặc tính khác nhau [132]. Trên hình 1.3 trình bày sơ đồ của một số tương tác

m
co

giữa chất HĐBM và tiền chất vơ cơ trong q trình hình thành vật liệu MQTBTT [53, 109].
.

an
Lu
n

va
ac
th

6

si


lu
an
n

va
p


ie

gh

tn

to
d

oa

nl

w

do
va

an

lu
Hình 1.3. Sự tương tác giữa chất HĐBM và các tiền chất vô cơ

nf

 Liên kết hydro

 Lực tương tác tĩnh điện.


z
at
nh

 Lực Van der Waals

oi
lm

ul

Các loại tương tác giữa các cấu tử vô cơ và hữu cơ gồm:

z

Các tương tác này được điều chỉnh bởi sự phù hợp về mật độ điện tích giữa phần ưa

@
gm

dung mơi của chất HĐBM và các cation silicat bao quanh.

l.
ai

Bảng 1.1 trình bày về các vật liệu MQTBTT được tạo thành từ các tương tác khác

m
co


nhau giữa chất HĐBM và tiền chất vô cơ.

an
Lu
n

va
ac
th

7

si


Bảng 1.1. Một số tương tác giữa các cấu tử trong quá trình hình thành vật liệu MQTBTT

Loại chất HĐBM

Kiểu tương tác

Silic : MCM-41 (lục lăng)

S+ I-

Oxit antimon (lục lăng, lập phương, lớp)

Cation S+

Silic: SBA-1 (lập phương), SBA-2 (lục lăng 3D)


S+ X- I+

Anion S

Oxit zirconi (lớp, lục lăng)

S- I+

-

Oxit Mg, Al, Fe, Co (lớp)

S-M+ I-

Oxit Zn (lớp)
Silic: HMS (lục lăng)

lu

S0 I0

an

Không ion S0

Vật liệu (cấu trúc)

MSU-X (lục lăng)


n

va

S0 (XI)0

Silic: SBA-15 (lục lăng)
Silic (lục lăng)

Như vậy mỗi loại chất HĐBM lại có một kiểu tương tác khác nhau đối với tiền chất vô

gh

tn

to

(S0 Mn+) I0

p

ie

cơ và ngược lại, cùng một loại chất HĐBM nhưng với các kiểu tương tác khác nhau sẽ tạo

do

được các vật liệu MQTBTT có cấu trúc khác nhau.

nl


w

Sau khi tạo ra được vật liệu có cấu trúc mao quản trung bình, người ta chú ý hơn đến

d

oa

độ trật tự của các vật liệu này. Thông thường để tạo ra vật liệu có độ trật tự cao người ta cần:
 Tăng cường sự tương tác giữa tiền chất vơ cơ (silicat,...) và chất HĐBM vì sự tương

va

an

lu

tác này thường là yếu.

nf

 Quá trình ngưng tụ để hình thành nên mạng lưới vô cơ cần đảm bảo không được quá

oi
lm

ul

nhanh và cục bộ. Quá trình này cần phải chậm hơn sự tổ hợp của tác nhân tạo cấu trúc.

Một số cơ chế được đề nghị để giải thích quá trình hình thành vật liệu MQTBTT.

z
at
nh

Cơ chế định hướng theo cấu trúc tinh thể lỏng (Liquid Crystal Templating)
Cơ chế này được các nhà nghiên cứu của hãng Mobil Oil đề nghị vào năm 1992 để

z

giải thích sự hình thành vật liệu M41S.

@

Cơ chế định hướng cấu trúc tinh thể lỏng mà nhóm nghiên cứu Beck và cộng sự [73]

gm

l.
ai

đề nghị dựa trên cơ sở thương tác tĩnh điện giữa các tiền chất vơ cơ với các nhóm chất ĐHCT.

m
co

Theo cơ chế này, trong dung dịch các chất ĐHCT tự sắp xếp thành pha tinh thể lỏng có dạng
mixen ống với thành ống là các đầu ưa nước của các phân tử chất ĐHCT và đuôi kị nước


an
Lu

hướng vào trong. Các mixen ống này đóng vai trị làm tác nhân tạo cấu trúc và sắp xếp thành
cấu trúc tinh thể lỏng có đối xứng lục lăng. Sau khi thêm nguồn silic vào dung dịch, các phần

n

va
ac
th

8

si


tử chứa silic tương tác với đầu phân cực của chất ĐHCT thông qua tương tác tĩnh điện (S+I-,
S-I+, trong đó S là chất ĐHCT, I là tiền chất vơ cơ) hoặc tương tác hydro (SoIo) và hình thành
nên lớp màng silicat xung quanh mixen ống. Q trình polyme hố ngưng tụ silicat tạo nên
tường vơ định hình của vật liệu silic dioxit MQTB, hình 1.4

. Vật liệu sau đó được nung để

loại bỏ chất ĐHCT.
Các dạng silicat trong dung dịch có thể đóng vai trị tích cực trong việc định hướng sự
hình thành pha hữu cơ và vơ cơ. Mặt khác, các phân tử của chất ĐHCT có vai trị quan trọng
trong việc thay đổi kích thước mao quản. Thay đổi độ dài phần kị nước của chất ĐHCT có thể

lu


làm thay đổi kích thước mixen, do đó tạo ra khả năng chế tạo các vật liệu MQTB có kích

an

thước mao quản khác nhau.

n

va
p

ie

gh

tn

to
d

oa

nl

w

do
lu


an

Hình 1.4. Cơ chế định hướng theo cấu trúc tinh thể lỏng [73]

va

Cơ chế sắp xếp silicat ống (Silicate Rod Assembly)

ul

nf

Các nhóm nghiên cứu [29, 45] đã chi tiết hơn khi đề nghị cơ chế hình thành MCM-41

. Sau khi nghiên cứu 14N NMR và 29Si MAS NMR, cơ chế

z
at
nh

trước khi thêm silicat, hình 1.4

oi
lm

– họ cũng có quan điểm pha tinh thể lỏng dạng lục lăng của chất ĐHCT khơng hình thành

nhóm [45] đề xuất là cơ chế sắp xếp silicat ống, hình 1.5.

z

m
co

l.
ai

gm

@
an
Lu

Hình 1.5. Cơ chế sắp xếp silicat ống

n

va
ac
th

9

si


×