Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (3.39 MB, 67 trang )
<span class="text_page_counter">Trang 1</span><div class="page_container" data-page="1">
<b>BÁO CÁO SÁNG KIẾN I. Điều kiện hoàn cảnh tạo ra sáng kiến </b>
Hoạt động trải nghiệm và hoạt động trải nghiệm hướng nghiệp là hoạt động giáo dục do nhà giáo dục định hướng, thiết kế và hướng dẫn thực hiện. Hoạt động này tạo cơ hội cho học sinh tiếp cận thực tế, thể nghiệm các cảm xúc tích cực, khai thác những kinh nghiệm đã có và huy động tổng hợp kiến thức, kĩ năng các môn học khác nhau để thực hiện những nhiệm vụ được giao. Qua đó, học sinh có thể có một số giải pháp, sáng kiến giải quyết những vấn đề thực tiễn nhà trường, gia đình xã hội phù hợp với lứa tuổi, chuyển hóa những kinh nghiệm đã trải qua thành tri thức mới, kĩ năng mới góp phần phát huy tiềm năng sáng tạo và khả năng thích ứng với cuộc sống, môi trường và nghề nghiệp tương lai.
Dạy học trải nghiệm mơn Tốn 10 là vấn đề được đặt ra và chú trọng trong Chương trình giáo dục phổ thông 2018. Dạy học trải nghiệm giúp học sinh có nền tảng tư duy độc lập, có thể chủ động phát hiện vấn đề, tìm cách thức giải quyết vấn đề của môn học vào trong cuộc sống.
Dạy Toán bằng các hoạt động trải nghiệm hiện đang là vấn đề đáng quan tâm. Việc thiết kế các hoạt động trải nghiệm trong việc dạy Toán cho học sinh trung học đòi hỏi giáo viên phải chú ý đến các yếu tố liên quan nhằm mục đích nâng cao hiệu quả học tập và đạt được mục tiêu học tập.
Xây dựng mơ hình hàm số bậc nhất, bậc hai biểu diễn số liệu dạng bảng là quá trình chuyển đổi một vấn đề thực tế sang một vấn đề tốn học thơng qua việc thiết lập và giải quyết các mơ hình tốn học, thể hiện và đánh giá lời giải trong ngữ cảnh thực tế, cải tiến mơ hình nếu cách giải quyết khơng thể chấp nhận.
Việc dạy học tốn gắn với giải quyết các vấn đề của thực tiễn mang lại nhiều lợi ích, góp phần giúp học sinh hiểu được ý nghĩa của tri thức học được, lý do tồn tại và lợi ích cho cuộc sống xã hội. Từ đó, tạo động cơ, gây hứng thú học tập, rèn luyện tư duy cho học sinh.
Hoạt động trải nghiệm thông qua các chủ đề toán học nhằm nâng cao hiểu biết về toán học và hình thành kĩ năng cho học sinh. Đồng thời bồi dưỡng năng lực tự học, năng lực giải quyết vấn đề, năng lực sáng tạo, năng lực thẩm mỹ, giao tiếp, hợp tác cho học sinh. Vì vậy,
</div><span class="text_page_counter">Trang 2</span><div class="page_container" data-page="2">hoạt động trải nghiệm trong dạy học mơn Tốn là một hoạt động vơ cùng cần thiết và bổ ích. Thơng qua hoạt động trải nghiệm, các em sẽ cảm nhận được vẻ đẹp của toán học, đồng thời giúp các em phát triển năng lực vận dụng toán học vào thực tiễn, hiểu được nguồn gốc của toán học.
Chương trình mơn Tốn chú trọng đến tính ứng dụng, gắn kết thực tiễn và các môn học, hoạt động giáo dục khác. Điều này được thể hiện qua các hoạt động thực hành và trải nghiệm trong giáo dục tốn học với nhiều hình thức khác nhau.
Việc học sinh tiếp cận một tri thức như thế nào, thao tác tri thức đó ra sao, điều đó phụ thuộc rất nhiều vào cách tiếp cận tri thức đó của học sinh thơng qua cách tổ chức dạy học trong quá trình học tập. Là giáo viên dạy tốn, điều mà chúng tơi mong muốn là có bài giảng chất lượng, tạo động cơ học tập, giúp học sinh thấy được ý nghĩa của tri thức. Vì vậy, chúng tơi
<i><b>lựa chọn đề tài: “Dạy học thực hành trải nghiệm chủ đề xây dựng mô hình hàm số bậc nhất, bậc hai sử dụng phần mềm hỗ trợ Geogebra”. </b></i>
<b>II. Mô tả giải pháp </b>
<b>1. Mô tả giải pháp trước khi tạo ra sáng kiến </b>
Quan điểm dạy học hình thành năng lực tốn học cho học sinh thông qua thực tiễn và hoạt động học tập có được sự quan tâm rất lớn từ các nhà giáo dục. Đổi mới phương pháp dạy học theo hướng lấy học sinh làm trung tâm đã được triển khai ở các nhà trường. Tuy nhiên, cho đến nay có thể nói học sinh cịn gặp nhiều khó khăn trong khi liên hệ thực tiễn và trình bày các nội dung tốn học.
Một số bài tốn có liên quan tới các vấn đề trong thực tế cuộc sống cũng như liên quan đến các môn học khác, học sinh không biết xử lý hoặc không đủ tự tin để giải quyết. Trong q trình học tập, học sinh chưa có nhiều cơ hội hoạt động tích cực, phân tích, bình luận, trao đổi.
Khi áp dụng vào thực tế, học sinh còn lúng túng khi sử dụng và vận dụng cách biểu diễn hình ảnh, biểu đồ, cơng thức trong suy luận nên gặp khó khăn trong khi tìm kiếm các giải pháp tốn học trong học tập và thực tiễn. Vì thế, các em chưa hiểu rõ kiến thức toán học với cuộc sống nên hứng thú học tập mơn Tốn của các em chưa cao.
</div><span class="text_page_counter">Trang 3</span><div class="page_container" data-page="3"><b>2. Mô tả giải pháp sau khi có sáng kiến. Phần 1. Cơ sở lý thuyết. </b>
<i><b>1.1. Dạy học thực hành trải nghiệm </b></i>
Dạy học trải nghiệm mơn Tốn là phương pháp khuyến khích học sinh tự khám phá, thử nghiệm trực tiếp với các kiến thức. Từ đó hình thành các khái niệm và đưa ra phân tích, các kết luận về kiến thức ấy. Trong phương pháp học này, giáo viên đóng vai trị là người hướng dẫn hỗ trợ học sinh, giáo viên có thể khuấy động khơng khí lớp học bằng các cách cho học sinh tham gia dự án, học STEM hay thuyết trình, học sinh đóng vai trị trung tâm, chủ động nghiên cứu các khái niệm, từ đó tìm mối liên hệ giữa các cơng thức đã học và tìm ra phương pháp giải quyết vấn đề.
Dạy học trải nghiệm mơn Tốn là q trình diễn ra liên tục các hoạt động tìm hiểu khái niệm, phân tích cơng thức, liên tưởng tình huống áp dụng, ghi nhớ để thực hành và tìm ra các giải pháp phù hợp. Hoạt động báo cáo kết quả sau giờ học tập trải nghiệm giúp các em hình thành kĩ năng giao tiếp, nói trước đám đơng, lắng nghe và phản biện cực kì hiệu quả.
Học sinh được tham gia nhiều chương trình dạy học trải nghiệm mơn Tốn thì các em sẽ tích lũy được nhiều kỹ năng tư duy linh hoạt, tư duy logic, phân tích ý nghĩa các con số. Hoạt động báo cáo kết quả sau giờ học tập trải nghiệm cũng giúp các em thực hành kỹ năng giao tiếp nói trước đám đơng, lắng nghe và phản biện cực kì hiệu quả.
<i><b>1.2. Quy trình thiết kế và tổ chức hoạt động trải nghiệm cho học sinh trong dạy học 1.2.1. Giai đoạn thiết kế hoạt động trải nghiệm </b></i>
<i>Bước 1: Xác định chủ đề trải nghiệm. </i>
Căn cứ vào nội dung chương trình mơn Tốn trong chương trình giáo dục 2018, căn cứ vào đặc điểm đối tượng học sinh, tình hình cụ thể nhà trường, giáo viên xác định và lựa chọn các nội dung học tập tạo nên chủ đề dạy học trải nghiệm phù hợp.
<i>Bước 2: Xác định mục tiêu của chủ đề trải nghiệm. </i>
Để xác định mục tiêu học sinh cần đạt được sau khi học hoạt động trải nghiệm, cần trả lời câu hỏi: Học sinh sẽ đạt được những năng lực cụ thể nào sau khi tham gia chủ đề này?
</div><span class="text_page_counter">Trang 4</span><div class="page_container" data-page="4"><i>Bước 3: Xác định các nội dung của hoạt động trải nghiệm. Căn cứ vào mục tiêu của chủ </i>
đề đã được xác định, từ đó xác định được nội dung hoạt động cần có trong chủ đề.
<i>Bước 4: Thiết kế hoạt động trải nghiệm. Dự kiến thời gian, địa điểm, thiết bị sử dụng </i>
trong quá trình hoạt động.
<i><b>1.2.2. Giai đoạn tổ chức hoạt động trải nghiệm </b></i>
Hoạt động trải nghiệm hướng nghiệp có thể diễn ra trong hoặc ngồi mơi trường lớp học. Tổ chức hoạt động trải nghiệm diễn ra theo các bước sau:
<i> Bước 1: Giáo viên đề xuất nhiệm vụ. </i>
Nhiệm vụ của giáo viên đưa ra có tính vừa sức với học sinh, học sinh có thể tạo ra được sản phẩm để làm căn cứ đánh giá sau khi kết thúc hoạt động.
<i>Bước 2: Tổ chức cho học sinh tham gia hoạt động cụ thể. Trong giai đoạn này, học sinh </i>
tự trải nghiệm trong để thực hiện nhiệm vụ được giao.
<i>Bước 3: Tổ chức cho phân tích, xử lí trải nghiệm. </i>
Sau khi trải nghiệm cụ thể, học sinh sẽ tự mình suy nghĩ hoặc tranh luận với các học sinh khác về tính đúng đắn, tính hợp lí của sự việc. Giáo viên cần bao quát lớp, tạo điều kiện cho cá nhân, nhóm tự trình bày các ý tưởng, kịp thời điều chỉnh, hướng học sinh vào hoạt động học tập, giúp đỡ các em gặp khó khăn thơng qua các phiếu nhiệm vụ, sử dụng các câu hỏi gợi ý.
<i>Bước 4: Học sinh tổng quát, khái qt hóa. Giáo viên hỗ trợ học sinh tìm kiếm và làm </i>
sáng tỏ các kiến thức liên quan đến sản phẩm hoặc kết quả học tập. Thơng qua đó, học sinh tiếp thu kiến thức và xây dựng quy trình luyện tập thực hành.
Bước 5: Vận dụng trong các tình huống mới. Từ những hiểu biết về kiến thức liên quan, những khái niệm mới đã được sáng tỏ và quy trình thực hành đã được xây dựng, học sinh tiến hành luyện tập và chủ động thực hành dưới sự hướng dẫn của giáo viên.
Kết thúc quá trình luyện tập, học sinh được củng cố kiến thức và phát triển kĩ năng mới. Từ đó các em dần hình thành kinh nghiệm mới cho bản thân, vận dụng kiến thức và kĩ năng đó cho tiến trình học tập tiếp theo và có thể giải quyết một số vấn đề trong thực tiễn.
</div><span class="text_page_counter">Trang 5</span><div class="page_container" data-page="5"><i>Hình 1: Hình vẽ mơ tả quy trình tổ chức các hoạt động trải nghiệm cho học sinh </i>
<i><b>1.2.3. Giai đoạn đánh giá hoạt động trải nghiệm </b></i>
- Đánh giá quá trình cũng như kết quả hoạt động của học sinh: Tất cả các học sinh trong nhóm đã tham gia chủ động, nhiệt tình trong cơng việc.
- Phân tích, đánh giá hoạt động trải nghiệm để điều chỉnh cho các hoạt động trải nghiệm tiếp theo.
<i>Hình 2: Các bước thiết kế và tổ chức hoạt động trải nghiệm </i>
Thiết kế hoạt động trải nghiệm
</div><span class="text_page_counter">Trang 6</span><div class="page_container" data-page="6"><i><b>1.3. Mơ hình tốn học và xây dựng mơ hình hàm số biểu diễn số liệu thống kê </b></i>
Những hiện tượng phổ quát trong tự nhiên, trong thực tiễn đời sống của con người được khái qt hóa, mơ hình hóa thành những khái niệm, định lí, tính chất trong tốn học.
Mục đích của việc xây dựng mơ hình tốn học cho một hiện tượng phổ qt trong thực tiễn là nhằm hiểu được hiện tượng và dự báo được tiến trình diễn ra của hiện tượng đó trong tương lai.
Để xây dựng mơ hình toán học cho một hiện tượng xảy ra trong thực tiễn, ta sử dụng thống kê. Bằng cách xem xét hiện tượng đó ở những thời điểm khác nhau trong quá khứ, ta thu thập, tổ chức và biểu diễn được một mẫu số liệu thống kê, chẳng hạn ở bảng số liệu thống kê. Để xây dựng mơ hình tốn học bằng các hàm số dựa trên mẫu số liệu thống kê, thực hiện theo các bước như sau:
<i>Bước 1: Lựa chọn cách biểu diễn dữ liệu lên mặt phẳng tọa độ </i>
<i>Bước 2: Căn cứ vào việc biểu diễn dữ liệu trong mặt phẳng tọa độ, lựa chọn hàm số thích hợp. Bước 3: Sử dụng hàm số đã chọn để giải thích và dự đoán hiện tượng xảy ra trong thực tiễn Bước 4: Kiểm tra và điều chỉnh (nếu cần thiết). </i>
<i><b>1.4. Cách sử dụng phần mềm Geogebra </b></i>
Sau khi thực hiện các bước xây dựng mơ hình tốn học bằng các hàm số dựa trên mẫu số liệu thống kê, chúng ta sử dụng Geogebra phần mền toán học để trợ giúp cho q trình tính tốn xây dựng mơ hình hàm số với mục đích của bài tốn. Cơng cụ Geogebra thực sự là hỗ trợ rất tốt trong việc kết nối hình học, đại số và các yếu tố toán học khác theo một cách tương tác và chặt chẽ hơn.
<i>Bước 1: Tải phần mềm Geogebra trền máy tính hoặc điện thoại. Trên máy tính truy cập link </i>
tải Geogebra Classic chọn Run.
Trên điện thoại truy cập vào CH Play hoặc App Store, chúng ta thực hiện gõ từ khóa Geogebra trên thanh tìm kiếm. Khi đó, trên màn hình sẽ xuất hiện nhiều phiên bản Geogebra để lựa chọn, chúng ta cài đặt ở Geogebra Graphing Calculator, nhấn vào Geogebra trên màn hình để mở và sử dụng trên điện thoại.
</div><span class="text_page_counter">Trang 7</span><div class="page_container" data-page="7"><small> </small>
<i>Hình 3: Tải phần mềm Geogebra trền máy tính hoặc điện thoại </i>
<i>Bước 2: Vào phần mền Geogebra, xuất hiện giao diện như hình dưới đây và thực hiện các lệnh </i>
xác định điểm biểu diễn trên mặt phẳng tọa độ và lệnh xác định hàm số đi qua các điểm đó.
<i>Thanh Input Bar ở cửa sổ bên phải hoặc cuối của Geogebra sử dụng để nhập trực tiếp các tọa độ, phương trình, dấu hoặc hàm số. Sau khi ấn Enter, biểu thị đại số sẽ hiện trong phần Algebra </i>
View và biểu thị đồ thị hiển thị trong phần Graphics View.
<i>Hình 4: Giao diện phần mềm Geogebra để xác định hàm số </i>
</div><span class="text_page_counter">Trang 8</span><div class="page_container" data-page="8">- Vẽ điểm <i>A x</i>
<i>B C D bằng câu lệnh giống như trên. </i>
- Xác định hàm số đi qua các điểm đã biểu diễn sao cho đồ thị hàm số gần nhất với những điểm này.
- Sử dụng câu lệnh “=FitPoly ({ , , ,<i>A B C D },1)” để kết quả có được đồ thị hàm số bậc nhất còn </i>
“=FitPoly ({ , , ,<i>A B C D },2)” để có được đồ thị hàm số bậc hai. </i>
<i>Hình 5: Lệnh FitPoly vẽ hàm số khi biết các điểm đi qua và bậc của hàm số </i>
<i><b>1.5. Thực trạng dạy học toán thông qua hoạt động trải nghiệm ở trường phổ thông </b></i>
Thống kê những thuận lợi và khó khăn trong việc đưa tình huống thực tiễn vào việc giảng dạy mơn Tốn.
<i>* Thuận lợi: </i>
- Trường học có cơ sở vật chất thuận lợi (máy chiếu, ti vi), các cơng cụ máy tính và phần mềm hỗ trợ dạy học được đưa vào sử dụng, học sinh có khả năng tiếp thu tốt.
- Ban giám hiệu nhà trường tạo điều kiện cho giáo viên được nghiên cứu. - Tổ chức các giờ hoạt động ngoại khố cho học sinh.
- Giáo viên có mong muốn giảng dạy gắn liền thực tiễn.
<i>* Khó khăn: </i>
- Việc lựa chọn nội dung, những câu hỏi thực tiễn là khó. - Khả năng liên hệ Tốn học với thực tế còn nhiều hạn chế. - Nội dung kiến thức khơng có nhiều ví dụ, mơ hình thực tiễn.
</div><span class="text_page_counter">Trang 9</span><div class="page_container" data-page="9"><b>Phần 2. Nội dung. </b>
Nhận thức một hiện tượng xảy ra trong thực tiễn thông qua những dữ liệu thông tin thu thập được tại hữu hạn thời điểm, dữ liệu đó thường có tính rời rạc, khơng đủ để phản ánh tiến trình diễn ra của hiện tượng đó theo thời gian liên tục. Việc xây dựng mơ hình tốn học cho phép chúng ta khắc phục điều đó. Nhờ vậy, chúng ta có thể hiểu được bản chất hiện tượng và
<b>dự báo được tiến trình diễn ra của hiện tượng đó trong tương lai. </b>
<i><b>2.1. Giai đoạn thiết kế hoạt động trải nghiệm </b></i>
<i>Bước 1: Xác định nội dung toán học cần tổ chức hoạt động trải nghiệm. Xây dựng mơ hình </i>
hàm số bậc nhất, bậc hai biểu diễn số liệu dạng bảng cho một hiện tượng phổ quát trong thực tiễn với mục đích hiểu được hiện tượng và dự báo được tiến trình diễn ra của hiện tượng đó trong tương lai.
<i>Bước 2: Lựa chọn phương thức và đặt tên cho hoạt động trải nghiệm. Hoạt động trải nghiệm </i>
được tổ chức bằng phương pháp khám phá và chia nhóm làm nhiệm vụ. Tên nhóm dựa vào nhiệm vụ của nhóm:
<i>Bước 3: Xác định mục tiêu và yêu cầu của hoạt động trải nghiệm. Sau khi tham gia hoạt động </i>
trải nghiệm, học sinh biết được hàm số bậc nhất, hàm số bậc hai có ứng dụng gì trong thực tế, hiểu được cách vận dụng kiến thức toán học vào giải các bài toán thực tế.
<i>Bước 4: Phân bậc các hoạt động trải nghiệm thành các hoạt động thành phần phù hợp với nội </i>
dung của hoạt động trải nghiệm
<i><b>- Hoạt động 1: Học sinh cần nắm được các kiến thức cơ bản về hàm số bậc nhất, bậc hai gồm </b></i>
các khái niệm, tính chất, đồ thị.
<i><b>- Hoạt động 2: Chia lớp thành các nhóm học sinh với các chủ đề liên quan. </b></i>
<i><b>-Hoạt động 3: Lựa chọn các lĩnh vực phù hợp với điều kiện thực tế ở địa phương, trả lời câu </b></i>
</div><span class="text_page_counter">Trang 10</span><div class="page_container" data-page="10"><i><b>- Hoạt động 4: Liệt kê các yếu tố có liên quan đến vấn đề cần giải quyết nhằm thiết lập điều </b></i>
kiện ban đầu của bài tốn. u cầu các nhóm lựa chọn yếu tố quan trọng, cần thiết.
<i><b>- Hoạt động 5: Yêu cầu các nhóm khảo sát những yếu tố, tham số đã được xác định hoạt động </b></i>
trước để tìm hiểu ý nghĩa liên qua đến bài toán.
<i><b>- Hoạt động 6: Định hướng cho học sinh thiết lập điều kiện ban đầu, Xây dựng mơ hình để </b></i>
giải quyết.
<i><b>- Hoạt động 7: Yêu cầu học sinh sử dụng các số liệu hàm số, đồ thị và cách sử dụng phần </b></i>
mềm Geogebra để giải quyết vấn đề đặt ra.
<i><b>- Hoạt động 8: Yêu cầu học sinh đọc được kết quả từ hoạt động trước. </b></i>
<i><b>- Hoạt động 9: Yêu cầu học sinh đưa ra câu trả lời và kết luận vấn đề đã đặt ra. </b></i>
<i><b>- Hoạt động 10: Thảo luận những ưu điểm, hạn chế của mơ hình đã dung, những kiến thức </b></i>
tốn học đã sử dụng trong quá trình đã sử dụng để giải quyết vấn đề.
<i><b>2.2. Giai đoạn tổ chức hoạt động trải nghiệm </b></i>
Hoạt động trải nghiệm diễn ra kết hợp giữa việc thực hiện trong và ngồi mơi trường lớp học, trang bị kiến thức toán học cơ bản tổ chức một số hoạt động chuẩn bị cho học sinh.
<b>- Giao nhiệm vụ để học sinh tìm hiểu và lựa chọn lĩnh vực tìm hiểu từ những chủ đề được gợi </b>
ý và đề xuất. Theo dõi, hướng dẫn, giúp học sinh thực hiện và điều chỉnh các hoạt động.
<b>- Dưới sự hướng dẫn của giáo viên, nhóm đã thảo luận và thống nhất các vấn đề trong bài </b>
toán: Chủ đề dân số, chủ đề nhiệt độ, thời tiết, chủ đề hàng hóa, kinh doanh mua bán xe cộ, chủ đề hàng hóa, kinh doanh may mặc, thực phẩm.
<i><b>- Mục tiêu: Học sinh biết xây dựng mơ hình hàm số bậc nhất từ bảng số liệu về doanh số sản </b></i>
phẩm bán được của một công ty qua các năm bằng GeoGebra.
<i><b>- Hoạt động 1: Học sinh được chia theo nhóm. Mỗi nhóm lựa chọn dữ liệu và phân công thu </b></i>
thập dữ liệu, điền kết quả thu thập dữ liệu vào bảng.
<i><b>- Hoạt động 2: Mỗi nhóm thực hành xây dựng mơ hình tốn học dạng hàm số bậc nhất hoặc </b></i>
hàm số bậc hai để biểu diễn số liệu ở bảng thống kê.
</div><span class="text_page_counter">Trang 11</span><div class="page_container" data-page="11"><i><b>2.2.1. Chuyển giao nhiệm vụ học tập </b></i>
Đây là bước đầu của quá trình tổ chức hoạt động trải nghiệm. Ở bước này giáo viên thực hiện qua một số hoạt động cụ thể như sau:
<i><b>- Xác định chính xác, rõ ràng mục tiêu của bài </b></i>
<b>- Xác định hình thức hoạt động trải nghiệm </b>
<b>- Định hướng và chuyển giao nhiệm vụ hoạt động trải nghiệm - Định hướng sản phẩm đầu ra cho học sinh </b>
Về phía học sinh các em thực hiện công việc tiếp nhận nhiệm vụ trải nghiệm từ giáo viên. Sau khi tiếp nhận nhiệm vụ học sinh có thể nêu ý kiến phản hồi về nhiệm vụ, những băn khoăn, thắc mắc để giáo viên giải thích rõ nhiệm vụ, yêu cầu trước khi bắt đầu trải nghiệm.
Giáo viên chia lớp thành 4 nhóm, phân cơng nhóm trưởng, u cầu học sinh thảo luận hợp tác giải quyết bài toán. Bằng cách sử dụng hàm số bậc nhất, nêu mơ hình tốn học biểu diễn số liệu ở bảng. Dựa theo mơ hình đó, nêu dự đốn số sản phẩm bán được trong các năm tiếp theo. Giáo viên gợi ý một số chủ đề hàm số bậc nhất, hàm số bậc hai gắn với tình huống trong thực tế:
nhuận.
- Bài tốn tính số vé cần in, số lượng người được mời cho sự kiện.
- Hàm số bậc nhất được biểu diễn bằng bảng và đồ thị. - Hệ phương trình bậc nhất hai ẩn.
chuyển động phóng ra, quỹ đạo vệ tinh, đèn pha rọi, diễn biến thời tiết, bếp năng lượng mặt trời.
- Hàm số bậc hai, phương trình bậc hai.
</div><span class="text_page_counter">Trang 12</span><div class="page_container" data-page="12"><i><b>2.2.2. Trải nghiệm </b></i>
Để tổ chức hoạt động trải nghiệm hiệu quả, giáo viên cần chú ý thực hiện tốt vai trò của người hướng dẫn, hỗ trợ học sinh. Khi học sinh trải nghiệm, giáo viên cần phải thực hiện các nhiệm vụ:
<b>- Là người bao quát kịp thời điều chỉnh, hướng học sinh vào các hoạt động trải nghiệm. - Tạo điều kiện cho các nhóm, các cá nhân học sinh đều được tham gia trải nghiệm. </b>
<i><b>Sản phẩm của Nhóm 1: Qua tìm hiểu về tỉ lệ dân số và dựa vào bài học trong môn Địa lý, với </b></i>
mục tiêu tìm hiểu về tình hình dân số, cụ thể là tỉ lệ dân số thành thị Nhóm 1 đề xuất bài toán về số dân và số dân thành thị của thế giới giai đoạn 1950-2020.
Tỉ lệ dân thành thị là chỉ báo về mức độ đơ thị hóa của một quốc gia. Tỉ lệ dân thành thị lớn thường thể hiện ở mức độ đơ thị hóa cao. Tỉ lệ dân thành thị cao cho biết trình độ phát triển kinh tế-xã hội của một quốc gia. Những khu vực và các nước có tỉ lệ dân thành thị cao thường có hoạt động kinh tế và chất lượng cuộc sống của cư dân cao hơn.
<b>Bảng thống kê số dân và số dân thành thị của thế giới giai đoạn 1950-2020: </b>
<i>Bảng 1: Số dân và số dân thành thị của thế giới giai đoạn 1950-2020(Đơn vị: Triệu người) </i>
Từ bài toán xuất phát trên, dựa vào bảng 1 các thành viên của nhóm đã tiến hành tính tỉ lệ dân số thành thị đơn vị %.
</div><span class="text_page_counter">Trang 13</span><div class="page_container" data-page="13">Năm 1950 1970 1990 2020
<i>Bảng 2: Số dân và số dân thành thị của thế giới giai đoạn 1950-2020 (Tỉ lệ %) </i>
Nhóm 1 thực hiện các bước tính tốn để có thể sử dụng phần mền Geogebra vẽ minh họa đồ thị hàm số thể hiện tỉ lệ dân số thành thị của thế giới giai đoạn 1950 – 2020. Lựa chọn cách biểu diễn trên mặt phẳng tọa độ bằng cách lựa chọn biến số, tham số phù hợp. Đặt <i>x</i>= −<i>t</i> 1950 với <i>t </i>
Số dân tương ứng với
<i>Bảng 3: Lựa chọn biến số, tham số phù hợp biểu diễn trên mặt phẳng tọa độ</i>
<i>Hình 6: Biểu diễn các điểm trên mặt phẳng tọa độ </i>
</div><span class="text_page_counter">Trang 14</span><div class="page_container" data-page="14">Xét các điểm <i>A</i>
Ta chọn hàm số <i>f x</i>
Căn cứ vào bốn điểm <i>A</i>
Vẽ các điểm <i>A</i>
Sử dụng câu lệnh “= FitPoly
<i>Hình 7: Học sinh nhóm 1 trình bày và thảo luận với các nhóm những kết quả tìm hiểu được về bài tốn và cách thực hiện </i>
</div><span class="text_page_counter">Trang 15</span><div class="page_container" data-page="15">16
</div><span class="text_page_counter">Trang 17</span><div class="page_container" data-page="17">Từ những số liệu kết quả thu được, kết hợp với sự phù hợp trong thực tế, nhóm 1 đã kết luận dự đốn trên là hợp lí, vì thế chúng ta khơng cần điều chỉnh mơ hình tốn học đã chọn. Dựa vào mơ hình này, chúng ta sẽ dự đốn được kết quả trong những năm tiếp theo.
<i>Hình 10: Học sinh nhóm 1 trình bày và thảo luận với các nhóm </i>
<i><b> Một số nhận xét và giải thích mà cả nhóm thảo luận và đã đưa ra: </b></i>
<i>* Nhận xét: Quy mơ dân số và tỉ lệ dân thành thị có xu hướng tăng nhanh và tăng liên tục giai </i>
đoạn 1950 – 2020:
- Quy mô dân số tăng nhanh từ 2536 triệu người (1950) lên 7 795 triệu người (2020), tăng 5259 triệu người.
- Tỉ lệ dân thành thị tăng từ 29,6% (1950) lên 56,2% (2020), tăng 26,6%.
<i>* Giải thích: Tỉ lệ dân thành thị có xu hướng tăng nhanh do ảnh hưởng của nhiều nhân tố tự </i>
và xã hội phát triển, do tác động từ q trình đơ thị hóa với số lượng đơ thị, không gian đô thị ngày càng mở rộng, tỉ lệ gia tăng dân số tại đô thị tương đối cao.
</div><span class="text_page_counter">Trang 18</span><div class="page_container" data-page="18">-Vận dụng mơ hình tốn học trên cả nhóm đi tìm hiểu tình hình phát triển dân số Việt Nam
Thực hiện các bước xây dựng mơ hình theo hàm số bậc nhất: Lựa chọn cách biểu diễn trên mặt phẳng tọa độ bằng cách lựa chọn biến số, tham số phù hợp. Đặt <i>x</i>= −<i>t</i> 1995 với phẳng tọa độ. Xem tỉ lệ số dân thành thị <i>f x</i>
<i>BC</i>
<i><b>Một số nhận xét và giải thích mà cả nhóm thảo luận và đã đưa ra: </b></i>
<i>* Nhận xét </i>
- Số dân thành thị tăng mạnh, từ 14938,1 nghìn người năm 1995 lên 26515,9 nghìn người năm 2010, tăng 11577,8 nghìn người (tăng gấp 1,78 lần). Tỉ lệ dân thành thị tuy chưa cao, nhưng ngày càng tăng (từ 20,7% năm 1995 lên 30,5% năm 2010).
<i>* Giải thích </i>
- Nhờ kết quả của q trình đơ thị hố, cơng nghiệp hố nên số dân thành thị tăng cả về quy mô lẫn tỉ trọng.
<i>Hình 11: Mơ hình về lý thuyết 3 thành phần lao động I: Lao động nông nghiệp, II: Lao động công nghiệp, III: Lao động khoa học dịch vụ </i>
</div><span class="text_page_counter">Trang 20</span><div class="page_container" data-page="20">Đơ thị hóa đẩy nhanh q trình cơng nghiệp hóa. Xác định cơng nghiệp hóa, hiện đại hóa là q trình chuyển đổi căn bản, toàn diện nền kinh tế và đời sống xã hội.
<i>Hình 12: Bốn cuộc cách mạng cơng nghiệp </i>
<i>Hình 13: Cơ cấu tổng sản phẩm của Nam Định (theo giá hiện hành) từ năm 2015- 2019 Mục tiêu phát triển kinh tế xã hội của tỉnh Nam Định giai đoạn 2021-2025: Hoạt động, </i>
khai thác và sử dụng có hiệu quả các nguồn lực, tiềm năng lợi thế của tỉnh để kinh tế phát triển nhanh và bền vững, chuyển dịch mạnh mẽ cơ cấu kinh tế gắn với đổi mới mơ hình tăng cường, chú trọng phát triển nông nghiệp sạch, công nghiệp công nghệ cao, phát triển vùng kinh tế bền vững, vùng kinh tế động lực. Đẩy mạnh cải cách hành chính, xây dựng chính quyền điện tử, đơ thị thơng minh, nơng thôn mới nâng cao, kiểu mẫu. Chú trọng bảo vệ mơi trường và phát triển tồn diện lĩnh vực văn hóa xã hội, nâng cao đời sống vật chất tinh thần của Nhân dân.
</div><span class="text_page_counter">Trang 21</span><div class="page_container" data-page="21"><i><b>Sản phẩm của Nhóm 2: Thơng qua việc tính tốn biên độ nhiệt độ trung bình tháng và năm, </b></i>
ta có thể thu thập được thông tin quan trọng về biến đổi khí hậu trong một thời gian cụ thể. Điều này giúp cung cấp cái nhìn sâu sắc hơn về sự thay đổi của nhiệt độ và khả năng tương tác của các yếu tố khí hậu trong q trình quan sát.
Những biến đổi nhiệt độ có thể liên quan đến mùa vụ, thay đổi trong các mơ hình thời tiết, hoặc thậm chí là tác động của biến đổi khí hậu tồn cầu. Việc hiểu rõ về biên độ nhiệt có thể giúp cho việc dự báo thời tiết và dự đoán các xu hướng khí hậu trong tương lai.
<b>Bài tốn (Nhiệt độ trung bình theo tháng trong năm của tỉnh Nam Định-2022): </b>
Nhiệt độ trung bình (<small>0</small>
<i>C ) 17,5 C </i><sup>0</sup> <i>20 C </i><sup>0</sup> <i>27,5 C </i><sup>0</sup> <i>30 C </i><sup>0</sup> <i>27,5 C </i><sup>0</sup> <i>Bảng 6 </i>
Thực hiện các bước xây dựng mơ hình hàm số từ bảng trên với mục đích tìm hiểu về nhiệt độ trung bình theo tháng của tỉnh Nam Định và có thể dự báo về nhiệt trong các tháng tiếp theo của năm: Lựa chọn cách biểu diễn trên mặt phẳng tọa độ bằng cách lựa chọn biến số, tham số phù hợp.
Xét các điểm <i>A</i>
đồ thị gần nhất với các điểm trên.
</div><span class="text_page_counter">Trang 22</span><div class="page_container" data-page="22">Sử dụng phần mềm Geogebra để xác định hàm số bậc hai nói trên như sau:
<i>Hình 14 </i>
<i>Hình 15: Biểu đồ nhiệt độ khơng khí trung bình trong năm của thành phố Nam Định </i>
</div><span class="text_page_counter">Trang 23</span><div class="page_container" data-page="23">Sử dụng câu lệnh “=FitPoly({ , , , , <i>A B C D E },2)”, ta được hàm số bậc hai như sau:</i>
</div><span class="text_page_counter">Trang 24</span><div class="page_container" data-page="24"><i>Hình 18: Hình ảnh đường đi lại, khơng khí, thời tiết nơi các em ở </i>
+ Thành Phố Nam Định, mùa ẩm ướt thì nóng, ngột ngạt và mây bao phủ và mùa khơ thì thoải mái, ẩm ướt và gần như trong xanh.
<i>+ Theo diễn tiến trong năm, nhiệt độ thường thay đổi từ 15°C đến 33°C và hiếm khi dưới 11°C hoặc trên 36°C. </i>
+ Dựa vào biểu đồ, thời gian tốt nhất trong năm để đến thăm Thành Phố Nam Định cho những
<i>hoạt động thời tiết ấm áp từ Tháng 11 đến Tháng 4. </i>
+ Nhiệt độ trung bình trong năm từ <small>0</small>
<i>23 C đến 24 C . Tháng lạnh nhất là tháng 12 và tháng 1, </i><sup>0</sup>
với nhiệt độ trung bình từ <small>0</small>
<i>16 C đến 17 C . Tháng 7 nóng nhất, nhiệt độ khoảng </i><sup>0</sup> <i>29 C . </i><sup>0</sup>
+ Trong các năm trước từ năm 2015-2019, nhiệt độ trung bình tháng giữa mùa hè và mùa đơng trong từng năm có sự chênh lệch từ <small>0</small>
<i>11, 6 C</i>đến <small>0</small>
<i>13,3 C . </i>
<i>Bảng 7: Nhiệt độ trung bình tỉnh Nam Định các tháng từ năm 2015-2019 </i>
</div><span class="text_page_counter">Trang 25</span><div class="page_container" data-page="25"><i>Hình 19: Nhiệt độ cao (đường đỏ) và thấp (đường xanh) trung bình mỗi ngày, với các dải một trong các nhóm 25 đến 75 và 10 đến 90. Đường chấm mỏng là các mức nhiệt độ nhận </i>
<i>thấy trung bình tương ứng. </i>
<i>Hình 20: Nhiệt độ trung bình tỉnh Nam Định theo các tháng </i>
Qua tìm hiểu về chủ đề thời tiết, chỉ số nhiệt độ trung bình hàng tháng trong năm, học sinh biết được diễn biến khí hậu của q hương mình, các em rất hứng thú và có động lực học hỏi trong suốt quá trình học tập.
</div><span class="text_page_counter">Trang 26</span><div class="page_container" data-page="26">Hiện nay có nhiều sinh viên, nhân viên văn phịng, người dân có nhu cầu đi xe 50 phân khối tăng lên cũng chính vì cuộc sống bận rộn hơn. Một số sinh viên tham gia nhiều hoạt động học tập, thể thao, cộng đồng. Thế nhưng đường về nhà lại xa khiến cho việc đi lại mất nhiều thời gian. Vì thế chọn mua xe 50 phân khối khá phù hợp, với ưu điểm của xe là thiết kế nhỏ gọn, động cơ tương đối nhẹ nhàng.
<i><b>Tình huống 1: Anh Tuấn đang dự định mua xe máy 50cc cho con mình đi học và muốn chọn </b></i>
<i>một trong hai loại xe: </i>
<i>Loại 1: Có giá 21 triệu 900 nghìn đồng và dòng xe này mức tiêu thụ nhiên liệu là 2,1 lít xăng cho 100km. Tổng chi phí sử dụng trong thời gian theo mỗi năm như sau: </i>
Tổng chi phí sử dụng trong thời gian theo mỗi năm (tính cả giá sản phẩm, đơn vị: triệu đồng)
24,2814 26,6628 29,0442
<i>Bảng 8 </i>
<i>Loại 2: Có giá 26 triệu 500 nghìn đồng và dịng xe này mức tiêu thụ nhiên liệu là 1,8 lít xăng cho 100km. Tổng chi phí sử dụng trong thời gian theo mỗi năm (mỗi năm số km đi được giống như xe loại 1) như sau: </i>
Tổng chi phí sử dụng trong thời gian theo mỗi năm (tính cả giá sản phẩm, đơn vị: triệu đồng)
28,5433 30,5866 32,6299
<i>Bảng 9 </i>
</div><span class="text_page_counter">Trang 27</span><div class="page_container" data-page="27"><i>- Anh Tuấn nên chọn loại xe nào? Vì sao? Thời gian sử dụng bao lâu thì nên mua xe loại 1? </i>
Với hai bảng tổng chi phí sử dụng trong thời gian theo mỗi năm (tính cả giá sản phẩm, đơn vị: triệu đồng) ở trên, học sinh sẽ tiến hành xây dựng mơ hình hàm số và thể hiện đồ thị trên cùng một mặt phẳng tọa độ, để thấy được các giá trị có được tương ứng với mỗi biến khác nhau, tức là trong những năm tiếp theo thì tổng chi phí sử dụng mỗi năm là bao nhiêu, từ đó có thể đưa ra quyết định mua và sử dụng hợp lí.
Lựa chọn cách biểu diễn trên mặt phẳng tọa độ bằng cách lựa chọn biến số, tham số phù hợp. Xét các điểm <i>A</i>
Xem tổng chi phí sử dụng trong thời gian theo mỗi năm (tính cả giá sản phẩm, đơn vị: triệu đồng) <i>f x</i>
Thực hiện chọn hàm số <i>f x</i>
<i>x </i> .
Căn cứ vào các điểm<i>A</i>
<i>y</i>= <i>f x</i> có đồ thị gần nhất với các điểm trên.
Xét các điểm <i>D</i>
Chúng ta chọn hàm số <i>g x</i>
Căn cứ vào các điểm <i>D</i>
<i>y</i>=<i>g x</i> có đồ thị gần nhất với các điểm trên.
Sử dụng phần mềm Geogebra để xác định hai hàm số bậc nhất nói trên trên cùng một mặt phẳng tọa độ như sau:
</div><span class="text_page_counter">Trang 28</span><div class="page_container" data-page="28"><i>Hình 21: Thực hiện dùng lệnh biểu diễn các điểm và vẽ đồ thị hàm số trên Geogebra </i>
<i>Hình 22: Đồ thị mơ tả tổng chi phí sử dụng của hai loại xe theo mỗi năm với d là đồ thị của </i><sub>1</sub> <i>hàm số y</i>= <i>f x</i>
Sử dụng câu lệnh “=FitPoly({ , , <i>A B C },1)”, ta được hàm số bậc nhất như sau:</i>
<i>f x</i> = <i>x</i>+ và “=FitPoly({<i>D E F },1)” ta được hàm số bậc nhất như sau:</i>, ,
<i>g x</i> = <i>x</i>+ . Dựa vào mơ hình hàm số <i>f x</i>
<i>Nếu anh cần sử dụng trong 10 năm thì trong thời gian sử dụng 10 năm (t=10), xe loại 1 </i>
Do vậy, anh nên chọn xe loại 1 sẽ tiết kiệm hơn. Với thời gian sử dụng khoảng 14 năm hoặc nhiều hơn thì nên anh nên chọn mua xe loại 2.
<i>Nhóm các em học sinh có một số bình luận về chủ đề này: Một chiếc xe máy 50cc tốt là một </i>
chiếc xe có khả năng vận hành đáp ứng nhu cầu di chuyển của người dùng. Vì vậy thông số kĩ thuật rất quan trọng, chúng ta nên lựa chọn những thương hiệu có tên tuổi trên thị trường, chế độ bảo hành lâu dài.
<i><b>Hình 23: Học sinh nhóm 3 tìm hiểu giá cả và chi phí tiêu thụ của xe </b></i>
</div><span class="text_page_counter">Trang 30</span><div class="page_container" data-page="30"><i><b>Tình huống 2: Bảng giá cước của một hãng Taxi như sau: </b></i>
<b>BẢNG GIÁ CƯỚC -Taxi Fare Giá mở cửa </b>
<i>Commencement rate up 0.6km </i>
<b>Giá km tiếp theo </b>
<i>From the following km to </i>
25<i><sup>th</sup>km </i>
<b>Từ km thứ 26 </b>
<i>For each km from the 26<sup>th</sup>km+ </i>
Phí thời gian chờ: 2000 đ/phút (Every 4 times is 2000 VND for waiting) Giá trên đã bao gồm 10% Thuế Giá trị gia tăng
<i>Giảm 60% chiều về cho khách đi đường dài 2 chiều phạm vi từ 40 km trở đi (chiều về tương ứng với chiều đi) </i>
<i> Please pay toll and parking fee if required </i>
<i><b>Thank you for using taxi services Mai Linh </b></i>
Taxi Mai Linh cam kết tính giá cước theo đồng hồ tính tiền
<i>- Nếu đi với quãng đường dài 30 km phải trả số tiền là bao nhiêu? </i>
<i>- Nếu đi đường dài 2 chiều với quãng đường 40 km thì tổng chi phí là bao nhiêu? </i>
Nhóm 3 thực hiện các bước tính tốn để có thể sử dụng phần mền Geogebra vẽ minh họa đồ thị hàm số thể hiện số tiền tương ứng với quãng đường đi được của hành khách. Các em thảo luận và tính toán việc lựa chọn cách biểu diễn trên mặt phẳng tọa độ bằng cách lựa chọn biến số, tham số phù hợp.
</div><span class="text_page_counter">Trang 31</span><div class="page_container" data-page="31">Xét các điểm <i>A</i>
chọn hàm số <i>f x</i>
Căn cứ vào bốn điểm <i>A</i>
<i>Hình 24 </i>
<i>- Nếu bác đi với quãng đường dài 30 km phải trả số tiền là f</i>
<i>-Nếu bác đi đường dài 2 chiều với quãng đường 40 km thì tổng chi phí là </i>
<i>f</i> + <i>f</i> − <i>f</i> = (tức là 680400 đồng).
<b>* Một số nhận xét của Nhóm 3: Xây dựng mơ hình hàm số từ một bảng biểu đã cho trước. </b>
<i>Khi đó, từ cơng thức biểu diễn của giá tiền y (đồng) với số tiền khách hàng phải trả sau đi </i>
<i>x km, đây chính là hàm số bậc nhất của y theo x . Khi một hành khách đi xe tương ứng với số km, bằng cách thay số liệu vào phương trình hàm số chúng ta vừa xây dựng, sẽ tính </i>
được chi phí phải trả của người khách đó.
<i>Đối chiếu, kiểm định kết quả </i>
Trên thực tế, các kết quả của bài toán thu được phù hợp với giá tiền thực tế hành khách phải trả. Mơ hình được xây dựng có ưu điểm sau:
+ Đưa bài tốn thực tế về mơ hình tốn học.
+ Giải quyết được bài toán thực tế phức tạp trở về bài toán toán học quen thuộc được giải quyết đơn giản và dễ hiểu.
+ Phát triển được năng lực ứng dụng kiến thức toán học vào thực tiễn.
Trong khi những cửa hàng quần áo thời trang mở ra rất nhiều hiện nay, làm gia tăng sức cạnh tranh mạnh mẽ giữa các chủ cửa hàng thì đâu mới là những khó khăn khi kinh doanh thời trang mà chủ cửa hàng cần biết và khắc phục.
Những cửa hàng kinh doanh quần áo thời trang lớn nhỏ hiện nay đều gặp khó khăn trong việc quản lý, kiểm sốt tình hình kinh doanh của mình. Nhưng cụ thể, những khó khăn mà họ trải qua là gì? Khắc phục như thế nào? Người mới bắt đầu kinh doanh thời trang nên chú ý
<b>những gì? </b>
</div><span class="text_page_counter">Trang 33</span><div class="page_container" data-page="33"><b>Bài tốn (thống kê số sản phẩm): Một cửa hàng bán quần áo thống kê số sản phẩm bán được </b>
mỗi tháng từ tháng 5 đến tháng 8 như sau:
Nhóm 4 thực hiện các bước tính tốn để có thể sử dụng phần mền Geogebra vẽ minh họa đồ thị hàm số thể hiện số sản phẩm bán được theo các tháng.
Lựa chọn cách biểu diễn trên mặt phẳng tọa độ bằng cách lựa chọn biến số, tham số phù hợp. Đặt <i>x</i>= − với <i>t</i> 5 <i>t </i>
Nhóm 4 thực hiện các bước tính tốn để có thể sử dụng phần mền Geogebra hỗ trợ vẽ minh họa đồ thị hàm số thể hiện số sản phẩm bán ra của cửa hàng.
Xét các điểm <i>A</i>
Ta chọn hàm số <i>f x sao cho kết quả dự đoán càng chính xác càng tốt số sản phẩm bán </i>
Căn cứ vào bốn điểm <i>A</i>
<i>y</i>= <i>f x</i> có đồ thị gần nhất với bốn điểm trên.
Sử dụng phần mềm Geogebra để xác định hàm số bậc nhất nói trên như sau:
</div>