Tải bản đầy đủ (.doc) (2 trang)

bai toan ve tiep tuyen

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (113.92 KB, 2 trang )

Bài toán tiếp tuyến Nguyễn Vũ Minh đt: 0914449230
Bài toán về tiếp tuyến của đường cong.
Các bài toán cơ bản :
(*) Dạng 1: lập phương trình tiếp tuyến của (C) tại
Lời giải :
Phương trình tiếp tuyến tại : y=
VD1: Cho h/s .lập phương trình tiếp tuyến của đồ thị hàm số tại M(2;3)
Lời giải:
Ta có : y’ =
y’(2)= 9
phương trình tiếp tuyến tại M: y= 9(x-2)+3 = 9x-15.
(*) Dạng 2: Lập phương trình tiếp tuyến của (C) biết hệ số góc của tiếp tuyến bằng k.
Lời giải:
Gọi là tiếp điểm .
Ta có = k =? =?
phương trình tiếp tuyến tại M:
VD2: Cho (C) là đường thẳng : y= . Lập phương trình tiếp tuyến của (C) biết tiếp tuyến
song song với d có phương trình : y= 9x-4.
Lời giải :
Ta có hệ số góc của đường thẳng d là k=9.
Do tiếp tuyến song song với d hệ số góc của tiếp tuyến là k=9.
Gọi là tiếp điểm .
= k
=9
=4
= 2
Với =2 = 3
phương trình tiếp tuyến: y=9(x-2) + 3 = 9x-15
Với = -2 = -1
Phương trình tiếp tuyến : y= 9(x-2)-1= 9x +17
Vậy có 2 tiếp tuyến của (C) cùng song song với d lần lượt có phương trình : y=9x-15 và



y=9x+17.
Chú ý: Đồ thị hàm số y=f(x) tiếp xúc với đồ thị hàm số y= g(x)
có nghiệm
Dạng 3 : Lập phương trình tiếp tuyến của đồ thị hàm số y=f(x) biết tiếp tuyến đi qua
1
Bài toán tiếp tuyến Nguyễn Vũ Minh đt: 0914449230
Lời giải :
Đường thẳng đi qua có phương trình dạng: y= (*)
d là tiếp tuyến có nghiệm .
Giải hệ tìm được k, thay vào (*) phương trình tiếp tuyến .
VD3:Cho (C) là đồ thị hàm số y= lập phương trình tiếp tuyến của đồ thị hàm số biết
tiếp tuyến đi qua A(1;-4)
Giải :
Đường thẳng d đi qua A(1;-4) có phương trình dạng : y= k(x-1)-4.(*)
d là tiếp tuyến có nghiệm .
Thế (2) vào (1) :
=0
(x-2) =0
Với x= -2 k= -9 . Thế vào (*) ta được phương trình tiếp tuyến y= -9x+ 5
Với x=1 k=0 thế vào (*) ta được phương trình tiếp tuyến:y=-4.
Tóm lại: phương pháp chung để giải dạng toán này là sử dụng các kết quả:
1) Hệ số góc k của cát tuyến AB với đường cong (C): y=f(x), biết A,B theo thứ tự có hoành độ là
, được cho bởi :k=
2) Phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điếm là :

Một số dạng bài tập có liên quan
Bài tập1:Lập phương trình tiếp tuyến với parabol(P) : = + 4x – 3. tại những điểm mà (P) cắt
trục hoành.
Bài tập 2 Lập phương trình tiếp tuyến với đồ thị (C): y= biết tiếp tuyến song song với đường thẳng

(d): .
Bài tập3:Cho đường cong: (C):y= . viết phương trình tiếp tuyến của đường cong (C) biết rằng :
a) hệ số góc của tiếp tuyến bằng 1
b) tiếp tuyến song song với đường thẳng (d):x-4y+3= 0
Bài tập4:Cho đường cong (C):y= . Viết phương trình tiếp tuyến của đường cong :
a) Tại điểm M(-1;-1)
b) Tại điểm có hoành độ bằng 1
c) biết rằng hệ số góc của tiếp tuyến bằng 2

2

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×