Tải bản đầy đủ (.doc) (5 trang)

Bài toán về tiếp tuyến của đường cong

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (136.25 KB, 5 trang )

Bài toán về tiếp tuyến của đường cong.
Cho (C) là đồ thị hàm số y= f(x)
1l) Định lí :Điểm ( C), hệ số góc của tiếp tuyến của (C) tại
M là k=
2) Các bài toán cơ bản :
(*) Dạng 1: lập phương trình tiếp tuyến của (C) tại
Lời giải :
Phương trình tiếp tuyến tại : y=
VD1: Cho h/s .lập phương trình tiếp tuyến của đồ thị hàm số
tại M(2;3)
Lời giải:
Ta có : y’ =
y’(2)= 9
phương trình tiếp tuyến tại M: y= 9(x-2)+3 = 9x-15.
(*) Dạng 2: Lập phương trình tiếp tuyến của (C) biết hệ số góc của tiếp
tuyến bằng k.
Lời giải:
Gọi là tiếp điểm .
Ta có = k =? =?
phương trình tiếp tuyến tại M:
VD2: Cho (C) là đường thẳng : y= . Lập phương trình tiếp tuyến
của (C) biết tiếp tuyến song song với d có phương trình : y= 9x-4.
Lời giải :
Ta có hệ số góc của đường thẳng d là k=9.
Do tiếp tuyến song song với d hệ số góc của tiếp tuyến là k=9.
Gọi là tiếp điểm .
= k
=9
=4
= 2
Với =2 = 3


phương trình tiếp tuyến: y=9(x-2) + 3 = 9x-15
Với = -2 = -1
Phương trình tiếp tuyến : y= 9(x-2)-1= 9x +17
Vậy có 2 tiếp tuyến của (C) cùng song song với d lần lượt có phương trình :
y=9x-15

y=9x+17.
Chú ý: Đồ thị hàm số y=f(x) tiếp xúc với đồ thị hàm số y= g(x)
có nghiệm
Dạng 3 : Lập phương trình tiếp tuyến của đồ thị hàm số y=f(x) biết tiếp
tuyến đi qua
Lời giải :
Đường thẳng đi qua có phương trình dạng: y=
(*)
d là tiếp tuyến có nghiệm .
Giải hệ tìm được k, thay vào (*) phương trình tiếp tuyến .
VD3:Cho (C) là đồ thị hàm số y= lập phương trình tiếp
tuyến của đồ thị hàm số biết tiếp tuyến đi qua A(1;-4)
Giải :
Đường thẳng d đi qua A(1;-4) có phương trình dạng : y= k(x-1)-4.(*)
d là tiếp tuyến có nghiệm .
Thế (2) vào (1) :
=0
(x-2) =0
Với x= -2 k= -9 . Thế vào (*) ta được phương trình tiếp tuyến y= -9x+ 5
Với x=1 k=0 thế vào (*) ta được phương trình tiếp tuyến:y=-4.
Tóm lại: phương pháp chung để giải dạng toán này là sử dụng các kết
quả:
1) Hệ số góc k của cát tuyến AB với đường cong (C): y=f(x), biết A,B theo
thứ tự có hoành độ là , được cho bởi :k=

2) Phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điếm là
:
Một số dạng bài tập có liên quan
Bài tập1:Lập phương trình tiếp tuyến với parabol(P) : = + 4x – 3. tại
những điểm mà (P) cắt trục hoành.
Bài tập 2 Lập phương trình tiếp tuyến với đồ thị (C): y= biết tiếp tuyến
song song với đường thẳng (d): .
Bài tập3:Cho đường cong: (C):y= . viết phương trình tiếp tuyến của
đường cong (C) biết rằng :
a) hệ số góc của tiếp tuyến bằng 1
b) tiếp tuyến song song với đường thẳng (d):x-4y+3= 0
Bài tập4:Cho đường cong (C):y= . Viết phương trình tiếp tuyến của
đường cong :
a) Tại điểm M(-1;-1)
b) Tại điểm có hoành độ bằng 1
c) biết rằng hệ số góc của tiếp tuyến bằng 2

Phương pháp tính tích phân 1 số hàm hữu tỉ
*CÁCH TÍNH TÍCH PHÂN 1 SỐ HÀM HỮU TỈ CƠ BẢN
1.
2.
3.
+nếu có 2 nghiệm phân biệt

+nếu có nghiệm kép

+nếu vô nghiệm

đến đây đặt x + k = theo pp đặt ẩn phụ loại 1
4.

+nếu có 2 nghiệm phân biệt

xét
đồng nhất hệ thức tìm A , B rồi đưa biểu thức trong dấu tích phân về dạng

+nếu có nghiệm kép

xét
đồng nhất hệ thức tìm A , B , đưa tích phân về dạng cơ bản
+nếu vô nghiệm



cách tính đã nêu ở trên

×