Trường THPT Tĩnh Gia 2,
GV: Nguyễn Thị Bình
SỬ DỤNG PHƯƠNG PHÁP DẠY HỌC HỢP TÁC
TRONG DẠY HỌC BÀI TẬP TOÁN CHƯƠNG PHƯƠNG PHÁP TOẠ ĐỘ TRONG KHÔNG GIAN.
1. Đặt vấn đề:
Để có một nền Giáo dục tiên tiến và hiện đại, Giáo dục Việt Nam đã thực hiện
hàng loạt các biện pháp đồng bộ như đổi mới Luật Giáo dục, đổi mới chương trình
dạy-học các cấp và quan trọng hơn hết là cuộc cách mạng về Phương pháp giáo
dục.
Định hướng cơ bản của đổi mới Giáo dục là khắc phục lối truyền thụ tri thức một
chiều, phát huy được tối đa tính tích cực tự giác, chủ động sáng tạo cho người học,
đồng thời rèn luyện cho người học các kỹ năng xã hội và các kỹ năng hợp tác. Với
thực tế ấy, sử dụng Phương pháp dạy học hợp tác sẽ đáp ứng được yêu cầu và xu
hướng đổi mới của Giáo dục hiện nay.
Trong khoa học toán học, việc phát minh ra phương pháp toạ độ được coi như một
cuộc cách mạng lớn. Nó giúp cho tốn học thốt khỏi cái tư duy cụ thể của khơng
gian vật lý thông thường mà nhằm đạt tới những đỉnh cao của sự khái quát và sự
trừu tượng. Mặt khác, nội dung bài tập về phương pháp toạ độ trong không gian ở
trường THPT rất đa dạng và phong phú, nếu khơng có sự phân dạng và nêu phương
pháp giải cho từng dạng cụ thể thì cả học sinh và giáo viên đều thấy rất lan man và
khó có thể chọn được cách giải ngắn gọn. Hàng loạt bài toán nếu khơng có một
phương pháp dạy học phù hợp thì dễ gây nên sự nhàm chán cho học sinh. Với
những lý do trên đề tài được chọn là: “Sử dụng Phương pháp dạy học hợp tác
trong dạy học giải bài tập tốn- chương phương pháp toạ độ trong khơng gian.
2. Giải quyết vấn đề:
2.1. Cơ sở lý luận của vấn đề:
- PPDH hợp tác là một PPDH, trong đó GV là người tổ chức, điều khiển các HĐ
học tập của HS trong môi trường hợp tác, HS là người học tập có sự hợp tác với
nhau nhằm đạt được mục đích chung về kiến thức và kỹ năng hợp tác. Hoạt động
trong giờ dạy học hợp tác bao gồm: hợp tác giữa các học sinh trong cùng một
nhóm, hợp tác giữa các nhóm và hợp tác giữa HS với GV. Với PPDH này, HS
được tham gia vào các nhóm học tập khơng chỉ thúc đẩy q trình học tập, tăng
tính chủ động sáng tạo trong quá trình giải bài tập, tạo niềm vui khi giải được một
bài toán. Đồng thời giúp HS phát triển các kỹ năng giao tiếp bằng ngôn ngữ, phát
triển tư duy hội thoại, nâng cao lòng tự trọng, ý thức trách nhiệm và sự tự tin của
người học, giúp thúc đẩy những mối quan hệ cạnh tranh mang tính tích cực trong
học tập.
- Để thiết kế một tình huống dạy học hợp tác, GV cần thực hiện các nhiệm vụ sau:
*) Chuẩn bị về kiến thức cho tình huống.
SKKN: Sử dụng phương pháp dạy học hợp tác…
1
Trường THPT Tĩnh Gia 2,
GV: Nguyễn Thị Bình
*) Đặt ra mục tiêu của tình huống.
*) Đề ra nhiệm vụ học tập cho HS: có thể phát phiếu học tập hoặc trình chiếu
trên màn hình.
*) Dự kiến các ý kiến, các hướng giải quyết khác nhau của HS.
*) Dự kiến các câu hỏi, gợi ý của GV trong quá trình HS suy nghĩ hoặc thảo
luận nhóm.
*) Chuẩn bị sẵn kết luận của vấn đề.
*) Đặt ra tiêu chí thi đua giữa các nhóm hoặc giữa các cá nhân với nhau nhằm
tạo ra khơng khí học tập tích cực.
- Các bước tổ chức dạy học hợp tác bao gồm:
+ Thiết kế nhiệm vụ học tập cho HS.
+ Tổ chức nhóm học tập:
+ Hướng dẫn kỹ năng hợp tác:
+ Rèn luyện kỹ năng tư duy cho HS khi thảo luận nhóm:
+ Đề ra tiêu chí thi đua:
+ Điều hành các HĐ học tập hợp tác trong giờ học:
+ Tổng kết giờ học:
2.2. Thực trạng của vấn đề:
Qua điều tra 14 GV dạy môn Toán và HS ở 5 lớp 12 của trường THPT Tĩnh Gia 2,
tôi thu được kết quả như sau:
- Đối với GV:
+ 100% GV được điều tra cho biết chưa từng được tập huấn về PPDH hợp tác.
Chỉ có 1 GV đã tập huấn về hình thức dạy học theo nhóm do Sở Giáo dục và Đào
tạo tỉnh Thanh Hóa tổ chức.
+ Chỉ có 1 GV trả lời đúng câu hỏi: Một lớp học hợp tác đảm bảo các yếu tố
nào?
+ 100% GV cho rằng cần thiết phải dạy cho HS những kỹ năng hợp tác với
người khác.
+ Để tạo ra những tình huống nhằm giúp HS rèn luyện các kỹ năng hợp tác thì
chỉ 2 GV cho rằng có tạo ra tình huống nhưng khơng thường xun.
+ Về những khó khăn mà GV gặp khi áp dụng học hợp tác trong lớp họ phụ
trách có :
* 12 GV cho rằng nhà trường chưa khuyến khích.
* 10 GV cho rằng HS khơng tích cực tham gia.
* 14 GV cho rằng họ gặp khó khăn trong việc soạn giáo án và tổ chức lên lớp
theo phương pháp trên.
+ Có 100% GV có quan niệm chưa chính xác về phương pháp dạy học hợp tác.
SKKN: Sử dụng phương pháp dạy học hợp tác…
2
Trường THPT Tĩnh Gia 2,
GV: Nguyễn Thị Bình
+ Có 100% GV trả lời chưa chính xác câu hỏi: Nêu sự giống nhau và khác
nhau giữa dạy học hợp tác và dạy học theo nhóm.
- Đối với học sinh:
+ Về nhận thức và thái độ của HS đối với học hợp tác.
Có 90% HS mong muốn thường xuyên được học hợp tác.
+ Về khả năng tự khẳng định mình
* 71% HS mạnh dạn nêu ý kiến riêng của mình.
* 77% HS có cơ hội thể hiện khả năng của mình.
* 75% HS biết tự đánh giá khả năng của mình.
* 62% HS biết đánh giá khả năng của bạn khác.
+ Về trách nhiệm cá nhân đối với nhóm
* 97% HS cho rằng có đóng góp ý kiến cho nhóm, tuy nhiên chỉ có 68% HS
thường xuyên có đóng góp ý kiến cho nhóm.
* 92% HS cho rằng mọi thành viên trong nhóm phải có đóng góp ý kiến cho
nhóm.
+ Về các kỹ năng giao tiếp trong quá trình học hợp tác nhóm :
* 73% HS thường xuyên lắng nghe khi bạn mình đưa ra ý kiến.
* 64% HS sau khi trình bày, hỏi lại bạn xem có hiểu ý mình khơng.
* 93% HS sẵn sàng trao đổi, giải thích lại câu hỏi cho bạn nếu được yêu cầu.
* 61% HS thường xun tóm tắt ý kiến bạn trình bày.
* 70% HS thường xuyên yêu cầu bạn nhắc lại, giải thích lại khi chưa rõ.
* 95% HS thường xuyên tìm mọi cách để bạn hiểu ý mình.
* 66% HS thường xun có đề nghị nhóm để bạn học yếu hơn cũng được trình
bày ý kiến.
* 38% HS đơi khi cịn ngắt lời của bạn khi bạn đang nói khơng giống với suy
nghĩ của mình.
+ Về câu hỏi ý kiến khác của em, có 48% HS khơng trả lời, 52% có trả lời và
hầu hết các em rất mong muốn được thầy, cô của mình tổ chức các tiết học hợp tác.
- Kết luận điều tra
Qua kết quả điều tra tôi nhận thấy rằng:
- Đối với GV: Hầu hết GV được điều tra đều mong muốn tìm hiểu và vận dụng
PPDH hợp tác vào dạy học tại lớp mình, song sự hiểu biết của họ về PPDH hợp tác
còn phiến diện.
- Đối với học sinh: HS cảm thấy hứng thú khi được GV tổ chức dạy học hợp tác
và mong muốn được GV tổ chức nhiều giờ học hợp tác hơn, song các em chưa nắm
rõ các kỹ năng hợp tác.
SKKN: Sử dụng phương pháp dạy học hợp tác…
3
Trường THPT Tĩnh Gia 2,
GV: Nguyễn Thị Bình
2.3. Thiết kế một số tình huống dạy học hợp tác trong dạy học giải bài tập
chương phương pháp toạ độ trong không gian.
- Một tình huống dạy học hợp tác trước hết phải là một tình huống gợi vấn đề, tạo
ra nhu cầu cần hợp tác cho HS. Có thể thiết kế tình huống dạy học hợp tác về bài
tập tốn học theo những hướng sau đây:
+) Theo 4 bước giải toán của G.Pơlya
*) Tìm hiểu bài tốn
*) Tìm hướng giải bài tốn
*) Trình bày lời giải
*) Nghiên cứu sâu lời giải bài tốn
+) Theo các nội dung
*) Tìm qui trình giải cho một dạng bài tập
*) Tổng kết các phương pháp giải cho một dạng bài tập
*) Tìm nhiều cách giải cho một bài tốn
*) Tìm và sửa chữa những sai lầm thường gặp
*) Tổng hợp kiến thức thông qua lớp các bài tập cụ thể
*) Thi giải toán tiếp sức
*) Tương tự hóa, khái quát hóa, đặc biệt hóa một bài hoặc
một dạng toán
- Khi dạy học giải bài tập tốn, GV có thể sử dụng một số hình thức hợp tác như:
ghép nhóm khoảng từ 4-8 HS bao gồm các thành viên với nhiều trình độ học lực
khác nhau; hợp tác theo từng cặp; thi giải toán theo đội; … Ngồi ra tuỳ theo nội
dung và mục đích dạy học đan xen hoạt động nhóm với hoạt động cá nhân. Sau đây
là một số tình huống dạy học hợp tác về bài tập chương phương pháp tọa độ trong
không gian.
Tình huống 1: Tổng hợp kiến thức thơng qua hệ thống bài tập về véctơ trong
không gian.
*) Kiến thức chuẩn bị:
- Định nghĩa tích có hướng của 2 véctơ trong không gian;
- Điều kiện để 2 véctơ cùng phương, ( không cùng phương);
- Điều kiện để 3 điểm trong không gian thẳng hàng, ( không thẳng hàng);
- Điều kiện để 3 véctơ đồng phẳng, ( không đồng phẳng);
- Các công thức tính chu vi tam giác, diện tích tam giác, diện tích hình bình hành,
thể tích hình hộp.
*) Mục tiêu của phiếu học tập là tổng hợp các ứng dụng của tích có hướng để giải
tốn.
*) Phiếu học tập:
Cho các bài tập sau:
Bài tập 1: Cho 2 véctơ u (1;3;2), v(2;6;4) . CMR 2 véctơ đã cho cùng phương.
SKKN: Sử dụng phương pháp dạy học hợp tác…
4
Trường THPT Tĩnh Gia 2,
GV: Nguyễn Thị Bình
Bài tập 2: Cho 3 điểm A(1;1;1), B( 0;1;2), C( 0;0;1). CMR: A, B, C không thẳng
hàng (hoặc chứng minh A, B, C là 3 đỉnh một tam giác)
Bài tập 3: Cho 3 vécơ u (4;3;4), v(2;−1;2), w(1;2;1) . CMR: 3 véctơ đồng phẳng.
Bài tập 4: Cho 4 điểm A(1;0;0),B(0;1;0),C(0;0;1),D(-2;1;-1).
CMR: 4 điểm A, B, C, D không đồng phẳng
Bài tập 5: Cho tam giác ABC có A( 1;-1;-3), B( 2;1;-2), C( -5;2;-6). Tính diện
tích tam giác ABC.
Bài tập 6: Cho hình hộp ABCDA’B’C’D’ có A( 1;0;1), B( 2;1;2),
D( 1;-1;1), C( 2;0;2), A’( 3;5;-6), B’( 4;6;-5), C’( 4;5;-5), D’( 3;4;-6).
Tính thể tích hình hộp đã cho.
Câu hỏi 1: Hãy nêu các cách giải các bài toán trên?
Câu hỏi 2: Tổng hợp các ứng dụng về tích có hướng của 2 véctơ?
*) Tổ chức học hợp tác:
Bước 1: GV phát phiếu học tập cho từng HS. Mỗi HS độc lập suy nghĩ và trình
bày ý kiến vào phiếu học tập của riêng mình.
Bước 2: Các thành viên trong mỗi nhóm thảo luận, so sánh và thống nhất chọn
ra những phương án trả lời đúng.
*) Dự kiến các tình huống trong thảo luận nhóm:
- Đa phần HS đã biết cách giải nhưng cần hợp tác với nhau để có nhiều cách giải
đúng và nhanh.
- Dự kiến các hướng giải:
+ Bài tập 1: Hướng 1: u, v cùng phương ⇔ u = k v (k ≠ 0);
Hướng 2: u, v cùng phương ⇔ [u, v] = 0 ;
u
u
u
3
1
2
Hướng 3: u (u1 ,u 2 ,u 3 ), v(v1 ,v 2 ,v 3 ) cùng phương ⇔ v = v = v
1
2
3
với vi ≠ 0, i=1,2,3 còn nếu vi=0 thì ui tương ứng cũng bằng 0.
+ Bài tập 2: Tính toạ độ AB, AC ;
uuu uuu
r r
Chứng tỏ AB, CD không cùng phương
u , v, w đồng phẳng ⇔ [u , v].w = 0
+ Bài tập 3:
u , v, w không đồng phẳng ⇔ [u , v].w ≠ 0 .
+ Bài tập 4: Hướng 1: - Viết PT mặt phẳng đi qua 3 trong 4 điểm đã cho.
- Thay toạ độ điểm còn lại vào PT mp vừa viết: Nếu được giá trị bằng 0 thì 4 điểm
đồng phẳng; Nếu được giá trị khác 0 thì 4 điểm khơng đồng phẳng;
Hướng 2: - Tính toạ độ AB, AC , AD và làm như cách nhóm 3.
Hướng 3: - Viết PT mặt phẳng đi qua 3 trong 4 điểm đã cho.
- Tính khoảng cách từ điểm cịn lại đến mp vừa viết: nếu được giá trị bằng 0 thì 4
điểm đồng phẳng; nếu được giá trị khác 0 thì 4 điểm không đồng phẳng;
SKKN: Sử dụng phương pháp dạy học hợp tác…
5
Trường THPT Tĩnh Gia 2,
GV: Nguyễn Thị Bình
+ Bài tập 5: - Diện tích tam giác ABC có thể tính theo một trong các công thức:
1
2
1
2
S= │ [ AB, AC ] │; S= BC.AH (H là chân đường cao hạ từ A);
1
2
S= AB.AC.sinA; S= p( p − AB)( p − AC )( p − BC ) (với p là nửa chu vi);
+ Bài tập 6: Thể tích hình hộp: V=│ [ AB, AC ]. AD │; V=B.h
Tình huống 2: Tìm qui trình giải dạng bài tập lập PT mặt cầu.
*) Kiến thức chuẩn bị:
- Phương trình mặt cầu;
- Phương trình mặt phẳng;
- Điều kiện cần và đủ để mặt phẳng tiếp xúc với mặt cầu.
*) Mục tiêu: Tìm qui trình giải dạng toán viết PT mặt cầu tiếp xúc với mặt
phẳng.
*) Phiếu học tập:
Cho các bài tập:
Bài tập 1: Lập PT mặt cầu có tâm là gốc tọa độ và tiếp xúc với mặt phẳng (P):
16x-15y-12z+75=0
Bài tập 2: Lập PT mặt cầu có tâm nằm trên đt (d):
x −1 y + 2 z
=
= , tiếp xúc với
3
1
1
mặt phẳng (P): 2x+y-2z+2=0 và có bán kính R=1.
Bài tập 3: Lập PT mặt cầu có tâm nằm trên (d) và tiếp xúc với 2 mp (P) và (P’),
x = t
biết: (d): y = 0 , t ∈ R, ( P) : 3x + 4 y + 3 = 0, ( P ') : 2 x + 2 y − z + 39 = 0
z = −1
Bài tập 4: Lập PT mặt cầu có tâm nằm trên 2 mặt phẳng ( α ): x+y+z+1=0 và ( β
): x-y+z-1=0, đồng thời tiếp xúc với 2 mp (P) và (P’) có phương trình lần lượt:
x + 2 y + 2 z + 3 = 0, x + 2 y + 2 z + 7 = 0
Câu hỏi: 1) Em hãy nhận xét sự giống nhau và khác nhau giữa các bài tập?
2) Một bạn bảo rằng các bài tập trên có cùng hướng giải, theo em ý kiến đó đúng
hay sai? Hãy đưa ra hướng giải của các bài tập trên?
*) Hoạt động tư duy trong thảo luận nhóm:
Bước 1: HS mỗi nhóm nhận phiếu học tập, độc lập suy nghĩ và tìm hướng giải
quyết.
Bước 2: Thảo luận trong nhóm:
Dự kiến các ý kiến thảo luận của HS:
Ý kiến 1: Các bài tập đều yêu cầu viết PT mặt cầu tiếp xúc với mặt phẳng nào đó.
Ý kiến 2: Các bài tập 1, 2, yêu cầu viết PT cầu tiếp xúc với một mp.
Ý kiến 3: Các bài tập 3, 4 yêu cầu viết PT cầu tiếp xúc với 2 mp.
SKKN: Sử dụng phương pháp dạy học hợp tác…
6
Trường THPT Tĩnh Gia 2,
GV: Nguyễn Thị Bình
Ý kiến 4: Các bài tập cùng phải sử dụng điều kiện tiếp xúc của mặt cầu và mp là
khoảng cách từ tâm mặt cầu đến mp bằng bán kính.
Ý kiến 5: Bài tập 1: cho biết tâm mặt cầu, bài tập 2 cho biết bán kính của mặt cầu.
Ý kiến 6: Ở bài tập 3 và 4 có sự khác nhau ở dạng PT đt (d).
Ý kiến 7: Ở bài tập 4, mặt cầu tiếp xúc với 2 mp cắt nhau, còn bài tập 5 thì mặt cầu
tiếp xúc với 2 mp song song.
*) Kết luận vấn đề:
1) Lập PT mặt cầu tiếp xúc với mp (P) và thỏa mãn điều kiện K cho trước.
Bước 1: Giả sử mặt cầu (S) có tâm I(a;b;c) và bán kính R.
Bước 2: (S) tiếp xúc với (P) khi và chỉ khi:
d ( I , ( P )) = R =
A.a + B.b + C .c + D
A2 + B 2 + C 2
(1)
Bước 3: Sử dụng điều kiện K để thiết lập thêm các PT theo a, b, c, R. Từ đó xác
định tọa độ tâm I và bán kính R.
Bước 4: Khi đó PT (S) là: (x-a)2+(y-b)2+(z-c)2=R.
2) Lập PT mặt cầu tiếp xúc với 2 mp (P) và (Q) đồng thời thỏa mãn điều kiện K
cho trước:
Bước 1: Giả sử mặt cầu (S) có tâm I(a;b;c) và bán kính R.
Bước 2: (S) tiếp xúc với (P) và (Q) khi và chỉ khi:
d ( I , ( P)) = d ( I , (Q)) = R
Bước 3: Sử dụng điều kiện K để thiết lập thêm các PT theo a, b, c, R. Từ đó xác
định tọa độ tâm I và bán kính R.
Bước 4: Khi đó PT (S) là: (x-a)2+(y-b)2+(z-c)2=R.
Chú ý: Khi (P)//(Q) thì 2R=d((P),(Q)).
Tình huống 3: Tìm qui trình giải dạng bài tập xác định tâm và bán kính đường trịn
trong khơng gian.
*) Kiến thức chuẩn bị:
- Phương trình mặt cầu. Tâm và bán kính mặt cầu;
- Phương trình mặt phẳng;
- Phương trình đt đi qua 1 điểm và vng góc với 1 mp;
- Định lý Pitago.
*) Mục tiêu: Tìm qui trình giải dạng bài tập xác định tâm và bán kính đường
trịn trong không gian.
*) Phiếu học tập:
SKKN: Sử dụng phương pháp dạy học hợp tác…
7
Trường THPT Tĩnh Gia 2,
GV: Nguyễn Thị Bình
Cho các bài tập:
Bài tập 1: Tìm hình chiếu vng góc của M(3;-1;1) lên mp (P):
x+2y-2z+1=0
Bài tập 2: Xác định tâm và tính bán kính đường trịn là giao của mặt cầu (S):
x2+y2+z2-6x+2y-2z+10=0 và mp (P): x+2y-2z+1=0
Câu hỏi thảo luận: 1) Tìm mối liên hệ giữa hai bài tập?
2) Nêu các hướng giải bài tập 1?
3) Nêu các hướng giải bài tập 2?
*) Tổ chức học hợp tác:
Bước 1: GV phát phiếu học tậpcho từng HS. Mỗi HS độc lập suy nghĩ và trình
bày ý kiến vào phiếu học tập của riêng mình.
Bước 2: Các thành viên trong mỗi nhóm thảo luận, so sánh và thống nhất chọn
ra những phương án trả lời đúng.
*) Dự kiến các ý kiến trong thảo luận nhóm:
Mối liên hệ giữa 2 bài tập:
Ý kiến 1: Bài tập 1 là một phần của BT 2;
Ý kiến 2: Kết quả BT 1 là tọa độ tâm của đường tròn trong BT 2.
Ý kiến 3: Không thấy mối liên quan nào.
Ý kiến 4: Hướng giải BT 1 cũng là huớng giải BT 2 tìm tâm đường trịn.
*) Kết luận vấn đề:
1) Qui trình xác định tọa độ hình chiếu vng góc của điểm M trên một (P).
Cách 1: Thực hiện theo các bước:
Bước 1: Xác định VTPT của (P);
Bước 2: Lập PTđt (d) đi qua M và vng góc (P);
Bước 3: H là giao điểm của (d) và (P).
Cách 2: Thực hiện theo các bước:
Bước 1: Xác định VTPT của (P);
H ∈ ( P)
MH ⊥ ( P )
Bước 2: Giả sử hình chiếu là H. Tìm tọa độ H từ hệ:
2) Qui trình tìm bán kính r đường tròn: ( Sau khi đã xác định được tọa độ tâm)
Bước 1: Tính bán kính mặt cầu R trong PT đường trịn;
Bước 2: Tính khoảng cách giữa 2 tâm MH;
Bước 3: Bán kính đường trịn r = R 2 − MH 2 .
Tình huống 4: Tìm phương pháp giải cho dạng bài tập viết PT mp
*) Kiến thức chuẩn bị:
- Tích có hướng của 2 véctơ;
- Phương trình mặt phẳng;
SKKN: Sử dụng phương pháp dạy học hợp tác…
8
Trường THPT Tĩnh Gia 2,
GV: Nguyễn Thị Bình
- Giải hệ phương trình;
*) Mục tiêu: Tổng hợp các phương pháp lập phương trình mặt phẳng.
*) Phiếu học tập:
Cho các bài tập:
1) Viết PTmp đi qua 3 điểm A, B, C phân biệt không thẳng hàng.
2) Viết PT mp chứa đi thẳng (d) và vng góc với mp cho trước;
3)Viết PTmp chứa đt (d) và tạo với mp (Q) góc ϕ cho trước;
4) Viết PTmp đi qua 2 điểm A, B phân biệt và cách điểm M một khoảng cho
trước;
5) Viết PT mp đi qua 2 điểm A, B và tiếp xúc với mặt cầu tâm I, bán kính R;
Yêu cầu 1: Nêu các hướng giải của mỗi bài tập.
Yêu cầu 2: Nêu qui trình tổng quát để giải dạng bài tập viết PT mp?
*) Tổ chức học hợp tác:
- GV phát phiếu học tập cho từng HS, yêu cầu HS suy nghĩ và tìm hướng giải mỗi
bài tập vào phiếu của riêng mình.
- GV chú ý nhắc HS chỉ nêu các bước để giải mỗi bài toán. Do số lượng các bài tập
nhiều mà yêu cầu giải quyết trong thời gian ngắn, nên HS cần hợp tác với nhau để
có kết quả sớm nhất.
- Sau 5 phút suy nghĩ, yêu cầu mỗi đội cử đại diện lên trình bày vào bảng.
*) Dự kiến các hướng giải:
Câu 1: Hướng 1: -Tìm toạ độ 1 VTPT n = [ AB, AC ]
- mp cần tìm: đi qua A, (hoặc B, hoặc C), có VTPT là n
Hướng 2: - Gọi PTmp dạng ax+by+cz=0 hoặc ax+by+cz+1=0;
- Thay toạ độ A, B, C và PT để tìm a,b,c.
a 1 x + b 1 y + c 1 z + d 1 = 0
a 2 x + b 2 y + c 2 z + d 2 = 0
Hướng 3: - Viết PTTQ của đt đi qua BC;
- mp (P) thuộc chùm mp có trục là BC nên PT có dạng:
λ (a1 x + b1 y + c1 z + d 1) + µ (a 2 x + b2 y + c 2 z + d 2 ) = 0, λ2 + µ 2 ≠ 0
- Thay toạ độ điểm A vào PT để tìm λ , µ
Câu 2:
Hướng 1: - Tìm toạ độ điểm M thuộc (d);
- Tìm toạ độ 2 VTCP của 2 đt đã cho;
- mp (P) đi qua M và có VTPT là tích có hướng của 2 VT trên.
Hướng 2: - Lấy M thuộc (d);
-Từ toạ độ M gọi PT (P) dạng ax+by+cz=0 hoặc ax+by+cz+1=0
- Tìm a, b, c từ hệ 3 PT sau:
PT 1: thay toạ độ M;
PT 2: VTPT của (P) vng góc với VTCP của (d);
PT 3: VTPT của (P) vng góc với VTCP của (d’).
Hướng 3: - mp (P) thuộc chùm mp có trục là đt (d);
SKKN: Sử dụng phương pháp dạy học hợp tác…
9
Trường THPT Tĩnh Gia 2,
GV: Nguyễn Thị Bình
- (P)//(d’) nên VTPT của (P) và VTCP của (d’) vng góc.
Câu 3: Hướng 1: - mp (P) thuộc chùm mp có trục là đt d;
- Áp dụng cơng thức tính góc giữa 2 mp để tìm ra PT (P).
Hướng 2: - Lấy bất kỳ A thuộc d và VTCP của d;
-Từ toạ độ A gọi PT (P) dạng ax+by+cz=0 hoặc ax+by+cz+1=0
- Tìm a, b, c từ hệ 3 PT sau:
PT 1: thay toạ độ A;
PT 2: VTPT của (P) và VTCP của (d) vng góc;
PT 3: Áp dụng cơng thức tính góc giữa (P) và (Q).
Câu 4: - Gọi M(x;y;z) thuộc mp phân giác (P);
- Sử dụng cơng thức tính khoảng cách: d (M,(Q) )=d (M,(R) ).
- Rút gọn PT ta được PT của (P).
Câu 5:
Hướng 1: - Viết PT của AB dưới dạng giao 2 mp;
- mp (P) thuộc chùm mp có trục là đt AB;
- Áp dụng cơng thức tính khoảng cách từ điểm I đến mp (P) bằng R.
Hướng 2: -Từ toạ độ A gọi PT (P) dạng ax+by+cz=0 hoặc ax+by+cz+1=0
- Tìm a, b, c từ hệ 3 PT sau:
PT 1: thay toạ độ A;
PT 2: thay toạ độ B
PT 3: khoảng cách giữa I và (P) bằng R.
*) Kết luận vấn đề:
Qua tổng kết các hướng giải của HS và bổ sung của GV, ta thấy dạng toán này có
nhiều cách giải, nhưng tuỳ từng bài tốn mà sử dụng cách nào cho phù hợp. Có thể
tổng kết các PP giải dạng toán này như sau: (Gọi HS bất kỳ trong đội tổng kết các
PP giải loại bài tập của đội mình. Cuối cùng GV mới đưa ra tổng kết chung)
PP 1: - Biết toạ độ điểm M thuộc mp (P);
- GT cho để xác định VTPT:
+ nếu (P)//(Q) thì chọn n P = n Q
+ nếu (P) ⊥ d thì chọn VTPT của (P) là VTCP của (d);
+ nếu GT cho để xác định 2 VTCP của (P) thì PT của (P) là tích có hướng 2
VTCP.
PP 2: Mp chứa 1 đt (d) hoặc đi qua 2 điểm phân biệt A,B.
+ Hướng 1: Xác định 1 điểm thuộc mp và 2 VTCP.
+ Hướng 2: Sử dụng PP chùm mp: (P) thuộc chùm mp có trục là đt (d) hoặc đt AB;
Từ GT còn lại xác định mối quan hệ giữa 2 hệ số trong PT (P) dạng chùm. Chọn
cặp số sao cho chúng không đồng thời bằng 0. Thay trở lại thì được PT (P).
PP 3: GT cho có liên quan đến góc hoặc khoảng cách.
- Gọi PT (P) dạng tổng quát hoặc dạng chùm sao cho số ẩn phải tìm là ít nhất;
- Sử dụng cơng thức tính góc giữa 2 mp (hoặc mp và đt tuỳ GT);
SKKN: Sử dụng phương pháp dạy học hợp tác…
10
Trường THPT Tĩnh Gia 2,
GV: Nguyễn Thị Bình
- Sử dụng cơng thức tính khoảng cách từ 1 điểm đến 1 mp, đt và mp…
Tình huống 5: Phát hiện và sửa chữa sai lầm khi giải bài tập lập PT hình chiếu
vng góc của 1 đt trên 1 mp.
*) Kiến thức chuẩn bị:
- Phương trình mặt phẳng; Phương trình đường thẳng;
- Giao điểm của đường thẳng và mặt phẳng.
*) Mục tiêu: Đưa ra nhiều cách giải cho dạng bài tập lập PT hình chiếu vng
góc của 1 đt trên 1 mp.
*) Phiếu học tập:
Cho bài tập sau: Hãy tìm hình chiếu vng góc của (d) trên (P) biết:
(d):
x−2 y −4 z −3
=
=
; (P): x+3y+2z-6=0.
3
1
−3
Một bạn đưa ra các hướng giải bài toán trên như sau:
Cách 1: - Lấy bất kỳ A thuộc (d);
- Tìm toạ độ hình chiếu vng góc H của A trên (P);
- Đt cần tìm đi qua H và giao điểm của (d) và (P).
Cách 2: - Tìm toạ độ B là giao của (d) và (P);
- Lấy A thuộc (d) và A khác B;
- Tìm toạ độ H là hình chiếu vng góc của A lên (P);
- Đt cần tìm đi qua BH.
Cách 3:
- Lấy 2 điểm phân biệt A, B thuộc (d);
- Tìm toạ độ hình chiếu vng góc của A, B lên (P);
- Đt cần tìm đi qua 2 hình chiếu vừa tìm được.
Cách 4: - Viết PTmp (Q) chứa (d) và vng góc với (P);
- Đt cần tìm là giao tuyến của (P) và (Q).
Câu hỏi 1 : Xét xem các cách giải trên đúng không? Nếu sai, hãy sửa lại cho
đúng?
Câu hỏi 2: Hãy nêu các cách giải bài tập trên?
*) Tổ chức học hợp tác:
HĐ 1: HS nhận phiếu học tập và độc lập suy nghĩ trả lời
HĐ 2: Thảo luận theo nhóm: mỗi thành viên trình bày suy nghĩ của mình, các
thành viên khác lắng nghe, ghi lại ý kiến của bạn, phân tích, đối chiếu với ý kiến
của mình. Chỉ ra chỗ sai cho bạn biết.
*) Dự kiến các ý kiến trong thảo luận:
Nếu khơng phân tích kỹ thì thấy mỗi cách trên đều có lý. Như vậy cũng rất
nhiều HS cho rằng các cách trên đều đúng. Điều đó thúc đẩy nhu cầu hợp tác
càng cao nếu như GV biết cách gợi ý một chút vô lý của từng cách như sau:
*) Dự kiến câu hỏi gợi ý:
Cách 1: Nếu lấy A là giao của (d) và (P) thì điều gì xảy ra?
SKKN: Sử dụng phương pháp dạy học hợp tác…
11
Trường THPT Tĩnh Gia 2,
GV: Nguyễn Thị Bình
Cách 2: Khi (d) // (P) thì có B khơng?
Cách 4: Nếu (d) vng góc (P) thì có (Q) khơng?
*) Tiêu chí thi đua:
- GV thu phiếu trả lời và chấm điểm theo tiêu chí như sau:
+ Phân tích và sửa sai chính xác mỗi cách 20 điểm;
+ Tổng kết các cách giải: 10 điểm;
+ Nhóm hoạt động tích cực và thành viên nhóm (bất kỳ) trình bày quan điểm
đại diện cho nhóm tốt: 10 điểm.
*) Kết luận vấn đề::
Cách 1: Chỉ dùng trong trường hợp (d) và (P) cắt nhau, điểm A phải lấy khác giao
điểm của (d) và (P).
Cách 2: Chỉ sử dụng trong trường hợp (d) và (P) cắt nhau.
Cách 3: Có thể sử dụng trong mọi trường hợp.
Cách 4: Chỉ sử dụng khi (d) và (P) cắt nhau hoặc song song.
* Tổng hợp các cách giải dạng bài tập này:
Nếu (d) ⊂ Nếu (d) cắt Nếu (d) //(P)
Nếu (d) ⊥ (P)
(P)
(P)
(d’) ≡ (d)
Dùng
một - Dùng cách 3, 4.
Hình chiếu vng
trong các cách - Hoặc:
góc của (d) trên (P)
2, 3, 4.
+ Lấy A thuộc (d)
chỉ là 1 điểm ( giao
+ Tìm H là hình chiếu điểm của (d) và (P)
vng góc của (d) trên (P)
+ (d’) là đt qua H và //(d).
Tình huống 6: Xây dựng qui trình giải dạng bài tập xác định toạ độ hình chiếu
vng góc của một điểm trên một đt.
*) Kiến thức chuẩn bị:
- Phương trình mặt phẳng;
- Phương trình đường thẳng;
- Giao tuyến của 2 đường thẳng;
- Giao điểm của đường thẳng và mặt phẳng.
*) Mục tiêu: Xây dựng qui trình xác định toạ độ hình chiếu vng góc của một
điểm trên một đt.
*) Phiếu học tập:
Cho các bài tập sau:
Bài tập 1: Cho điểm A ( 2;3;-1) và đt (d):
x y z −3
= =
2 4
1
Xác định toạ độ hình chiếu vng góc H của A trên đt (d).
SKKN: Sử dụng phương pháp dạy học hợp tác…
12
Trường THPT Tĩnh Gia 2,
GV: Nguyễn Thị Bình
x = 1 + t
Bài tập 2: Cho điểm A ( 2;1;4) và đt (d): y = 2 + t
z = 1 + 2t
Xác định toạ độ hình chiếu vng góc H của A trên đt (d).
Bài tập 3: Cho điểm A ( 1;2;-1) và đt (d) là giao tuyến của 2 mp (P): x+y+z-3=0
và (Q): y+z-1=0
Xác định toạ độ hình chiếu vng góc H của A trên đt (d).
Câu hỏi 1: Hãy nêu các hướng tìm điểm H?
Câu hỏi 2: Hãy nêu các bước giải bài toán trên?
*) Tổ chức học hợp tác:
HĐ 1: GV chiếu phiếu học tập lên màn hình, mỗi HS độc lập suy nghĩ và trả
lời vào phiếu trả lời của riêng mình.
HĐ 2: Các nhóm thảo luận như đã qui định.
*) Dự kiến các ý kiến trong thảo luận:
- Hướng tìm điểm cần tìm H:
+ Điểm cần tìm là giao điểm của đt (d) và mp (P) đi qua A và vng góc với (d);
+ Điểm cần tìm là giao điểm của (d) và đt đi qua A và vng góc với (d);
+ Điểm cần tìm là điểm thuộc (d) và thoả mãn AH .u = 0 ;
+ Điểm cần tìm là điểm H thuộc (d) sao cho độ dài đoạn AH ngắn nhất;
+ Điểm cần tìm là trung điểm của đoạn thẳng AA’, với A’ là điểm đối xứng của A
qua đt (d);
*) Câu hỏi gợi ý khi cần thiết.
Từ những nhận định đúng về điểm cần tìm hãy nêu các bước để tìm điểm đó?
*) Kết luận vấn đề:
Cách 1: Áp dụng khi (d) được cho dưới dạng tham số:
Bước 1: Xác định VTCP u của (d);
Bước 2: H thuộc (d) nên toạ độ H thoả mãn PT tham số;
Bước 3: AH vuông góc (d) nên AH .u = 0 suy ra toạ độ H.
Cách 2: Áp dụng cho PTTQ của (d):
Bước 1: Xác định VTCP của (d). (Bằng tích có hướng 2 VTPT của 2 mp (P) và
(Q).
Bước 2: Gọi H(x;y;z) là điểm cần tìm. Ta có:
H ∈ d
H ∈ d
H ∈ d
⇔
⇔
⇒ toạ độ H
AH ⊥ u
AH .u = 0
AH ⊥ d
Cách 3: Có thể áp dụng cho cả 3 loại PTđt.
Bước 1: Xác định VTCP của (d);
Bước 2: Lập PTmp (P) đi qua A và vng góc (d)
Bước 3: H=d ∩ P
SKKN: Sử dụng phương pháp dạy học hợp tác…
13
Trường THPT Tĩnh Gia 2,
GV: Nguyễn Thị Bình
Tình huống 7: Tìm hiểu về đường vng góc chung của 2 đường thẳng chéo nhau.
*) Kiến thức chuẩn bị:
- Phương trình mặt phẳng;
- Phương trình đường thẳng;
- Giao tuyến của 2 đường thẳng;
- Giao điểm của đường thẳng và mặt phẳng.
*) Mục tiêu: Nhận định đúng đắn về đường vng góc chung của 2 đường thẳng
chéo nhau. Đồng thời nêu ra các cách giải dạng bài tập này.
*) Phiếu học tập:
Cho bài tập sau: Lập phương trình đường vng góc chung của 2 đt (d) và (d’),
biết: (d):
x−7 y −3 z −9
x − 3 y −1 z −1
=
=
=
=
; (d’):
1
2
−1
−7
2
3
Một nhóm bạn đưa ra các kết luận về đường vng góc chung của 2 đường thẳng
chéo nhau như sau:
Ý kiến 1: Là đt đi qua 2 điểm bất kỳ trên 2 đt ấy;
Ý kiến 2: Là giao tuyến của 2 mp lần lượt chứa đt này và song song với đt kia.
Ý kiến 3: Là giao tuyến của 2 mp lần lượt chứa đt này và vng góc với đt kia.
Ý kiến 4: Là giao tuyến của 2 mp (P) và (Q): trong đó:
+ (P) là mp đi qua M thuộc (d 1) và có cặp VTCP là VTCP của (d 1) với tích có
hướng 2 VTCP của (d1), (d2)
+ (Q) là mp đi qua N thuộc (d 2) và có cặp VTCP là VTCP của (d 2) với tích có
hướng 2 VTCP của (d1), (d2)
Ý kiến 5: Là đt qua 1 điểm bất kỳ trên đt này và có VTCP là tích có hướng 2
VTCP của (d1), (d2).
Ý kiến 6: Với (P) xác định như trong ý kiến 4. Đường vng góc chung là đt đi
qua giao điểm của (P) với (d2) và có VTCP là tích có hướng 2 VTCP của (d1),
(d2).
Ý kiến 7: Là đt đi qua 2 điểm A, B là chân đường vng góc chung của (d1), (d2).
Ý kiến 8: Có vơ số đường vng góc chung của 2 đt chéo nhau.
Câu hỏi 1 : Hãy xét tính đúng sai của các ý kiến trên? Giải thích tại sao?
Câu hỏi 2: Hãy nêu các hướng giải bài toán trên?
*) Tổ chức học hợp tác:
-HĐ 1: HS nhận phiếu học tập và độc lập suy nghĩ trả lời.
-HĐ 2: Thảo luận theo nhóm: mỗi thành viên trình bày suy nghĩ của mình, các
thành viên khác lắng nghe, ghi lại ý kiến của bạn, phân tích, đối chiếu với ý kiến
của mình.
*) Dự kiến các tình huống trong thảo luận:
- Sẽ có nhiều ý kiến tranh luận khác nhau.
SKKN: Sử dụng phương pháp dạy học hợp tác…
14
Trường THPT Tĩnh Gia 2,
GV: Nguyễn Thị Bình
- Để hướng đích đúng cho HS thì GV cần nhắc lại cho HS nhớ định nghĩa đường
vng góc chung của 2 đt chéo nhau đã học ở hình học lớp 11. Có thể vẽ hình minh
hoạ cho các ý kiến trên xem có đúng khơng.
*) Kết luận vấn đề:
Ý kiến 1: Sai. Có rất nhiều đt như thế và khơng vng góc với 2 đt đã cho.
Ý kiến 2: Sai. Hai mp này không cắt nhau.
Ý kiến 3: Chỉ đúng trong trường hợp 2 đt vng góc.
Ý kiến 4: Đúng.
Ý kiến 5: Sai. Có vơ số đt như thế và khơng vng góc với 2 đt đã cho.
Ý kiến 6: Đúng.
Ý kiến 7: Đúng.
Ý kiến 8: Sai. Chỉ có duy nhất.
Tình huống 8: : Thiết lập hệ trục tọa độ phù hợp cho các hình khơng gian.
Để giải bài tốn hình học khơng gian bằng phương pháp tọa độ thì việc quan trọng
đầu tiên là biết chọn hệ trục tọa độ phù hợp cho mỗi hình. Sau đây là hoạt động rèn
luyện cho HS năng lực đó.
*) Phiếu học tập:
Hãy lựa chọn những hình đã thiết kế hệ trục tọa độ phù hợp và giải thích tại sao?
1) Hình chóp tam giác SABC có SA vng góc với đáy và đáy là tam giác
vng tại A;
z
S
2) Hình chóp SABC có SA vng góc với đáy và đáy là tam giác vng tại B;
x
A
B
C
1
y
S
z
2
3
1
x
B
3)
là
Hình chóp SABC có SA vng góc
tam giác cân tại A;
với đáy và đáy
5
C
y
4
z
z
4
)
S
S
x
A
B
A
4)
A
y
6
C
B
I
Hình chóp tam giác đều SABC;
y
7
C
x
z
z
S
S
B
C
O
x
A
5) Hình chóp tứ giác đều SABCD;
C
9
y
x
B
A
z
z
10
0
0
0
SKKN: Sử dụng phương pháp dạy học hợp tác…
0
0
2
0
y
S
S
D
B
C
O
O
x
C
D
A
y
A
B
11
12
y
x
15
Trường THPT Tĩnh Gia 2,
GV: Nguyễn Thị Bình
6) Hình chóp tứ giác SABCD có SA vng góc với đáy và đáy là hình chữ nhật;
z
z
S
S
D
x
A
A
B
x
C
7) Hình chóp tứD giác SABCD có SA vng góc với đáy và đáy là hình thang
C
13
14
vng tại A, D.
B
z
y
y
S
x
A
B
8) Hình hộp chữ nhật ( hoặc hình lập phương) ABCD.A’B’C’D’;
D
C
z
y
15
A'
5
C
D
19
B'
z
17
7
C'
B
A
x
9) Hình hộp có đáy là hình thoi;
C'
16
B'
D'
B
A
y
z
O
D
x
C
y
18
A'
D'
B
O
10) Lăng trụ
vng tại A;
A
C
z
x
D
y
đứng ABCA’B’C’ có đáy là tam giác ABC
20
B'
C'
A
x
21
C
y
2
2
B
11) Lăng trụ đứng ABCA’B’C’ có đáy là tam giác
ABC cân tại A;
z
A'
B'
23
C'
12) Lăng trụ đứng ABCDA’B’C’D’ có đáy là hình
đáy AB;
A
x
z
C
A'
D'
26
thang cân có
B
y
B'
C'
B
A
x
27
*) Mục tiêu của phiếu học tập:
Rèn luyện kỹ năng chọn hệ trục tọa độ phù hợp cho hình khơng gian.
*) Tổ chức học hợp tác:
- Bước 1: HS nhận phiếu học tập và độc lập suy nghĩ trả lời.
- Bước 2: Thảo luận theo nhóm: mỗi thành viên trình bày suy nghĩ của mình, các
thành viên khác lắng nghe, ghi lại ý kiến của bạn, phân tích, đối chiếu với ý kiến
của mình.
y
D
C
SKKN: Sử dụng phương pháp dạy học hợp tác…
16
Trường THPT Tĩnh Gia 2,
GV: Nguyễn Thị Bình
*) Dự kiến các tình huống trong thảo luận:
- Sẽ có nhiều ý kiến tranh luận khác nhau.
- Để hướng đích đúng cho HS thì GV cần nhắc cho HS lựa chọn hệ trục sao cho
việc xác định tọa độ các điểm được dễ dàng.
*) Kết luận vấn đề:
Câu 1: Hình thiết kế phù hợp: 1
Câu 7: Hình thiết kế phù hợp: 15
Câu 2: Hình thiết kế phù hợp: 4
Câu 8: Hình thiết kế phù hợp: 17
Câu 3: Hình thiết kế phù hợp: 7
Câu 9: Hình thiết kế phù hợp: 19
Câu 4: Hình thiết kế phù hợp: 10
Câu 10: Hình thiết kế phù hợp: 21
Câu 5: Hình thiết kế phù hợp: 11
Câu 11: Hình thiết kế phù hợp: 23
Câu 6: Hình thiết kế phù hợp: 13
Câu 12: Hình thiết kế phù hợp: 25
*) Tiêu chí đánh giá: GV sẽ chấm điểm trong phiếu học tập chung của cả nhóm,
chấm điểm của HS bất kỳ trong nhóm khi trình bày ý kiến đại diện cho nhóm cộng
vào thành điểm của hoạt động trên.
2.4. Kiểm nghiệm:
Qua kết quả về các bài kiểm tra của HS ở 2 lớp có lực học tương đương nhau, dạy
lớp 12C2 có thường xun sử dụng PPDH hợp tác, cịn lớp 12C3 thì khơng được
học hợp tác. Đồng thời tổng kết các kết quả về thăm dò ý kiến của GV và HS qua
các giờ dạy học hợp tác, tôi rút ra kết luận như sau:
- Kết quả thực nghiệm cho thấy, vận dụng phương pháp dạy học hợp tác trong
dạy học giải bài tập chương tọa độ trong không gian là có tính khả thi.
- Học hợp tác đã làm tăng khả năng nhận thức của HS;
- Học hợp tác đã làm tăng cơ hội cho HS yếu kém vươn lên;
- Học hợp tác giúp HS phát triển kỹ năng giao tiếp như: Kỹ năng trình bày ý
kiến của mình; Kỹ năng chấp nhận ý kiến của bạn; Kỹ năng giải quyết vấn
đề trên tinh thần xây dựng.
- Học hợp tác làm tăng khả năng tự khẳng định mình, tăng mối quan hệ bạn
bè, làm cho trường học trở nên thân thiện hơn.
3. Kết luận và đề xuất
3. 1. Kết luận
* Trên đây tơi đã trình bày cơ sở lí luận về PPDH hợp tác, về dạy học giải bài tập
toán học và điều tra nhu cầu và sự hiểu biết của GV và HS THPT về PPDH hợp
tác.
* Tác giả đã thiết kế được 8 tình huống dạy học hợp tác theo hệ thống các dạng bài
tập về chương tọa độ trong khơng gian theo chương trình SGK lớp 12- THPT.
SKKN: Sử dụng phương pháp dạy học hợp tác…
17
Trường THPT Tĩnh Gia 2,
GV: Nguyễn Thị Bình
* Đặc biệt việc thực hiện giảng dạy ở một số lớp 12 của trường Tĩnh Gia 2 - Thanh
Hóa đã chứng tỏ được tính khả thi và hiệu quả của các biện pháp vận dụng PPDH
hợp tác trong dạy học giải bài tập chương tọa độ trong không gian. Tôi nhận thấy
vận dụng PPDH hợp tác trong dạy học giải bài tập chương tọa độ trong không gian,
không những làm tăng khả năng nhận thức của HS mà còn giúp HS phát triển các
kỹ năng hợp tác và năng lực xã hội.
* Từ các kiến thức ở đây, GV có thể thiết kế các tình huống dạy học hợp tác ở bất
kỳ chương nào trong chương trình tốn học phổ thơng, cũng như trong các bộ môn
khác. Tôi hy vọng rằng, sáng kiến kinh nghiệm này là tài liệu tham khảo bổ ích cho
GV và các em học sinh THPT.
3.2. Đề xuất:
Để tổ chức dạy học hợp tác có hiệu quả ở trường THPT, tơi có một số đề nghị sau:
- Tập huấn, đào tạo giáo viên về dạy học hợp tác
- Tạo cơ sở vật chất, thiết bị dạy học như phịng học, loa, đài, máy chiếu...
- Động viên, khuyến khích giáo viên vận dụng phương pháp dạy học hợp tác
trong dạy học mơn Tốn.
XÁC NHẬN CỦA THỦ TRƯỞNG ĐƠN VỊ
Thanh Hóa, ngày 27 tháng 5 năm 2013
Tơi xin cam đoan đây là SKKN của
mình viết, khơng sao chép nội dung
của người khác.
Nguyễn Thị Bình
SKKN: Sử dụng phương pháp dạy học hợp tác…
18
Trường THPT Tĩnh Gia 2,
GV: Nguyễn Thị Bình
SKKN: Sử dụng phương pháp dạy học hợp tác…
19