ĐỀ 1
Câu 1: Cho hàm số y
1
22
2
+
++
=
x
xx
1) Khảo sát đồ thị (C) hàm số.
2) Tìm các điểm thuộc hai nhánh khác nhau của (C) sao cho
khoảng cách giữa 2 điểm đó là ngắn nhất.
Câu 2: Cho phương trình
01)1(
234
=+−++− mxxmmxx
(m là tham số)
1) Giải phương trình khi m=3.
2) Định m để phương trình có nghiệm.
Câu 3: Giải phương trình
02
cos
3
cos
6
108
42
2
24
=++−−
xx
xtg
xtgxtg
Câu 4: Tính diện tích hình phẳng giới hạn bởi các đừơng
xxy 4
2
−=
và
xy 2=
Câu 5: Trong mặt phẳng với hệ trục toạ độ Oxy, cho tam giác ABC có A(1;5);
B(-4;-5);C(4;-1). Tìm toạ độ tâm đừơng tròn nội tiếp tam giác ABC.
Câu 6: Trong không gian Oxyz cho 4 điểm A(2;-1;5);B(1;0;2);C(0;2;3);D(0;1;2).
Tìm toạ độ điểm A’ là điểm đối xứng của A qua mặt phẳng (BCD).
Câu 7: Cho hình chóp tứ giác đều S.ABCD có cạnh bên bằng a, góc của mặt bên
và đáy là 60
0
.Tính thể tích của hình chóp đã cho.
Câu 8: Có bao nhiêu số tự nhiên gồm 6 chữ số khác nhau từng đôi một trong đó
nhất thiết phải có mặt 2 chữ số 7,8 và hai chữ số này luôn đứng cạnh nhau.
Câu 9: Cho tam giác ABC có BC=a; CA=b; AB=c. Chứng minh rằng nếu có:
222
222
2
sin2
2
cos
2
sin2
2
cos
2
sin2
2
cos
cba
C
BA
c
B
AC
b
A
CB
a
++=
−
+
−
+
−
thì tam giác ABC đều.