Tải bản đầy đủ (.pdf) (23 trang)

Bài tập Home work II

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (592.06 KB, 23 trang )

Student’s name: DO THI KIM HUE
Class: K52 Advanced Chemistry
**********
Home work II

Problem 7.1
a.
SSA states that d[O]/dt = 0 => r
1
= r
2


r =
3
[]dO
dt


3
[]dO
dt

= r = 2r
1
=2k
1
[O
3
][M] or
2


[]dO
dt

= 3k
1
[O
3
][M]
b.
Cannot assume Quasi-Equilibrated Adsorption (No Langmuir isotherm)
r =
 
2
d CO
dt
; at steady state, so r
1
= r
2
, Site Balance: L =
 
SO
+ [S]

         
1
1 2 2 2
2
[]
k N O S k CO S O S O N O

[]
k
S
k CO
    


  
  
   
 
1 2 2
2
1 2 2
Lk k CO N O
r k CO S O
k N O k CO
  


c.

Step 1 is a quasi equilibrated, but step 2 and 3 isn’t, so no Langmuir isotherm, then
we use SSA to determine surface concentration. We also assume single-site adsorption
and C
2
H
2(ad)
is MARI.
We assume: d[CH

2(ad)
]/dt = 0 → d[CH
2
]/dt = 2k
1
[C
2
H
2
][H
2
] - k
2
[CH
2(ad)
][H
2
] = 0
→ [CH
2(ad)
] = 2k
1
[C
2
H
2
] /k
2
→ 2k
1

= k
2
(1)
r = d[CH
4
]/dt = k
2
[CH
2(ad)
][H
2
] (2)
Site balance for C
2
H
2(ad)
is MARI: L = [C
2
H
2(ad)
] + [S] or 1 = θ
C2H2
+ θ
v

→ [S] = L - [C
2
H
2(ad)
] (3)

From eq. QE 1: K =
[CH 2(ad )][H2]2
[C2H6][S]
→ [C
2
H
2(ad)
] =
 C2H6][S]
[H2]2

(4)

Replace (3) into (4), we obtain: [C
2
H
2(ad)
] =
 [C2H6]
[H2]2
( L - [C
2
H
2(ad)
])
→ [C
2
H
2(ad)
] =

 [C2H6]
(1+[26/[2]2])

H2

2
(5)
Replace (5) into (2), we have the rate:
r = d[CH
4
]/dt = k
2
[CH
2(ad)
][H
2
] =
k2 [C2H6]


26

2


+

H2




Problem 7.2

 
3
[ ] [ ]
r k B S
d A d B
dt dt
    

12
[ ] [ ]
K , K
[ ][ ] [ ]
A S B S
A S A S




Site balance:
L=[S] +[A-S] + [B-S]
a) If [B-S] is the MARI, then L= [s] + [B-S] and

          
 
 
2 1 2
12

L S K A S S K K A S S
1 K K A
L
      


r= k
3
K
2
[A-S]= [K
1
K
2
k
3
[A][S] =
 
 
 
3 1 2
12
Lk K K A
1 K K A

b) If [A-S] is the MARI, then L= [s] + [A-S] and
L= [S] + K
1
[A][S] ] =>
 

 
 
1
S
1 K A
L



r= k
3
K
2
[A-S]= [K
1
K
2
k
3
[A][S] =
 
 
 
3 1 2
1
Lk K K A
1 K A

the mathematical forms are identical.


Problem 7.4

r = -
     
2 2 2
d H O d H d CO

dt dt dt


r = k
3
[H
2
O*] = k
4
[O*][CO*] and K
1
=
 
 
co
CO*
P*

L = [*] + [CO*] + [H
2
O] + [O*] (from site balance)

Steady – state approximations:

On H
2
O* : k
2
P
H2O
[*]= k
3
[H
2
O*]
On O* : k
3
[H
2
O] = k
4
[O*][CO+]
       
2
3
2
22
34
H O* ( )P & O* H O* / CO*
k
HO
k
k
k




         
3
2
1 CO H2O 2
34
L K P * P * * H O / CO*
k
k
kk
   

the last term can be negligible, so

 
2
2
1 CO H O
3
L K P P 1 *
k
k

  





   
 
22
2
3 2 2 H O
32
3
1 CO H O
. Lk P
r k H O* *
1 K P k'P
HO
k k P
k
  



Problem 7.5
a. A + S
1
1
k
k



A S reversible RDS (For an ideal gas)
B + S
2

K


B S
A S + B S
3
K


C S + D S
C S
4
K


C + S

5
K
D S D S




A + B


C + D

The rate of reaction r = k

1
P
A
[S] – k
-1
[A S]
From site balance: L = [S] + [A S] + [B S] + [C S] + [D S]
Moreover
 
 
2
4
5
[ ] [ ]
[]
[]
B
C
D
B S K P S
PS
CS
K
PS
DS
K








and
 
  
 
3
C S D S
AS
K B S





 K =
CD
AB
PP
PP
= K
1
K
2
K
3
K
4
K

5

[A S] =
 
CD
5 4 3 2 B
P P S
K K K- K P

So we can obtain:
L = [S]
CD
2 3 4 5 B 2 B C D
45
1 P P
11
K K K K P K P P P
KK

  

Thus r =
 
1 C D
1A
2 3 4 5 B
Lk P P
Lk P
K K K K P
S







=
1 C D
1A
2 3 4 5 B
CD
2 3 4 5 B 2 B C D
45
Lk P P
Lk P
K K K K P
1 P P
11
K K K K P K P P P
KK






  


b.

A + S
1
K


A S
B + S
2
K


B S
A S + B S
3
K


C S + D S
C S
4
K


C + S
5
5
k
k
D S D S






Reversible RDS

A + B


C + D
The rate of the reaction:
r = k
5
[D S] – k
-5
P
D
[S]

Using site balance: L = [A S] + [B S] + [C S] + [D S] + [S], we also have
some relations:

 
 
2
1
4
[ ] [ ]
[]
[]

B
A
D
B S K P S
A S K P S
PS
DS
K







and
  
  
3
C S D S
K
A S B S




So [D S] =
  
 
 

3
1 2 3 4 A B
C
K K K K P P
S
P
K A S B S
CS




L =
 
C 1 2 3 4 A B
1 A 2 B
4C
P K K K K P P
1 K P K P
KP
S

   



Thus r =
5 1 2 3 4 A B
5D
C

C 1 2 3 4 A B
1 A 2 B
4C
Lk- K K K K P P
– Lk P
P
P K K K K P P
1 K P K P
KP

   

In this case, K = K
1
K
2
K
3
K
4
K
5
and K
1
= K
A
, K
2
= K
B

,
4
1
K
= K
C
,
5
1
K
= K
D
=
5
5
k
k

, K
1
K
2
K
3
K
4
=
5
55
kK

K
Kk



Substituting on the rate equation, we get:
r =
5 A B
5D
C
AB
1 A 2 B
C
Lk- KP P
– Lk P
P
KK P P
1 K P K P P K
P
D
CC

   


c.
A
2
+ 2S
1

1
k
k



2A S reversible RDS
2[B + S
2
K


B S]
2[A S + B S
3
K


C S + D S]
2[ C S
4
K


C + S]
A
2
+ 2B



2C

The rate equation is: r = k
1
P
A2
[S]
2
– k
-1
[A S]
2
,
Applying site balance: L = [A S] + [B S] + [C S] + [S]

 
2
4
[ ] [ ]
[]
B
C
B S K P S
PS
CS
K





and
  
  
3
C S S
K
A S B S




 [A S] =
 
  
 
3
*
*
*
C S S
AS
K B S

, K = K
1
K
2
2
K
3

2
K
4
2
or K
1/2
= K
1
1/2
K
2
K
3
K
4

Then, [A S] =
 
2 3 4 B
K K K P
C
PS
. And L =
 
2
2 3 4 4
1
CC
B
B

PP
S K P
K K K P K

  



So we can calculate that:
r =
 
2
2
22
11
2 3 4 B
2
2
2 3 4 4
22
K K K P
1
C
A
CC
B
B
PS
ZZ
L k P L k

LL
PP
KP
K K K P K





  



with
2
Z
L
= site-pair probability and Z = coordination number
Moreover, K
2
K
3
K
4
= K
1/2
/K
1
1/2
then:

r =
2
2
'
2
1
2
2
2 3 4 4
1
C
A
B
CC
B
B
P
Lk P
KP
PP
KP
K K K P K





  




d.
A
2
+ 2S
1
K


2A S
2[B + S
2
K


B S]
2[A S + B S
3
K


C S + D S]

4
4
2
k
k
C S C S








reversible RDS
A
2
+ 2B 2C
The rate equation is:
r = k
4
[C S] – k
-4
P
C
[S]
Also we have: [A S]
2
=
 
2
2
1A
K P S
; [B S] = K
2
P
B

[S], and

  
  
3
C S S
K
A S B S



[C S] =
 
 
 
2
11
22
3 1 2 3
[A ]
K
AB
S B S
K K K P P S
S



From site balance: L = [S] + [A S] + [B S] + [C S]
=

 
 
1/2 1/2 1/2 1/2
1 A2 2 B 1 2 3 A2 B
1 K P K P K K K P PS   

Moreover, we also have: K = K
1
K
2
2
K
3
2
K
4
2
K
1
1/2
2
1 2 3
4
K
K K K
K


So
2 1/2 1/2 2

4 2 3 A B 4 C
1/2 1/2 1/2 1/2
1 A2 2 B 1 2 3 A2 B
L k K K K P P L k P
22
1 K P K P K K K P P
ZZ
LL
r



  

With K
1
= K
A2
, K
2
= K
B
,
4
1
K
= K
C
 K = K
A

K
B
2
K
3
2
K
4
2

So
 
1/2 1/2
4 A2 B C
1/2 1/2 1/2
A2 A2 B B C A2 B
L k K P P – P
2
1 K P K P KK P P
Z
r


  

Problem 7.6
a. The rate equation is: r =
2 4 2
26
3

[]
C H H
d C H
Lk P
dt




2 4 2
25
C H H
2
C H H
P
P
k




Applying steady-state approximation on total surface carbon atoms, we obtain
another equation for
25
CH

, dθ
C(total)
/dt


= 0. Additionally, because steps 2 and 4 are very
rapid:

2 6 2 5 2 4 2
C(total)
1 C H 1 C H 3 C H H

d
k P – Lk – Lk P 0
dt






2 6 2 4 2 5
1 C H 3 C H H2 1 C H H
k P – Lk P Lk
  


 
2 5 2 4
25
1 C H 3 C H H2
C H
1
k P – Lk P


Lk
H







 
2 6 2 4 2
24
2
1 C H 3 C H
2
CH
1

H
H
H
H
k P Lk P
K
P
Lk











=
2 6 2 2 4
2 1 C H 1 H 2 3 C H 1
K k P / Lk P – LK k / Lk




26
24
2
1 2 C H
23
CH
1 1 H
k K P
Kk
1
k Lk P



  





 
 
2 6 2
24
12
C H H
1
CH
2 3 1
kK
P / P
Lk

1 K k k









and

2 2 6
2

26
3 H 1 2 C H
1H
1 2 3 C H
C2H6
2 3 2 3
11
Lk P k K P

Lk P
k K k P
r k’P
K k K k
1 1
kk





  
   

   
   

but θ
C2H4
can be rewritten to give:


 
 
2 6 2
25
1
C H H
3
C H
1 2 3
k
P / P
k

L 1 k / K k







so that
26
1 C H
1
23
k P
r
k
1

Kk







b.
C
2
H
6
+ 2S
1
1
k
k



C
2
H
5
S + H S
C
2
H
5

S + H S
2
K


C
2
H
4
S + S + H
2

C
2
H
4
S + H
2
+ S
3
k

2CH
3
S
4
3 2 4
2 2 2
K
CH S H CH S






C
2
H
6
+ H
2


2CH
4
The rate of reaction can be defined as:
r =
 
26
d C H
dt

= k
3
[C
2
H
4
S][S]
2

H
P

K
2
= [C
2
H
4
S][S]
2
H
P
/ [C
2
H
5
S][H S]
Steady-state approximation on all surface C atoms gives:

k
1
26
CH
P
[S]
2
– k
-1
[C

2
H
5
S][H S] – k
3
[C
2
H
4
S][S]
2
H
P
= 0
k
1
P
C2H6
[S]
2
– k
3
[C
2
H
4
S][S]
2
H
P


= k
-1
[C
2
H
5
S][H S] and
[C
2
H
5
S] =
 
  
 
26
2
2
1 C H
3 2 4
11
k P S
k [H ]
H
k C H S S P
S k H S






[C
2
H
4
S] =
 
 
   
 
26
2
2
1 3 2 4
2
1
CH
H
k P S k C H S
K H S
S P k H S
 



26
2
1 2 C H
23

24
1
1H
k K P
Kk
[C H ] 1
k
kP
S



  





2 6 2
12
C H H
1
24
23
1
kK
( )P / P
k
[C H ]
Kk

1
k
S






Now, site balance to get [S] is:
L = [S] + [H S] +[C
2
H
5
S] + [C
2
H
4
S] + [CH
3
S]
(a) is obtained only if [S]~ L, it means the surface is essentially free of all adsorbed
species or θ
H
, θ
C2H5
, θ
C2H4
, θ
CH3

<< 1. This is a questionable assumption.

Problem 7.7

Plotting ln rate vs. lnP
i
using a power rate law gives the following reaction orders:

T(K)
Reaction Order

N
2
O
O
2

N
2
623
0.08
-0.31
0
653
0.24
-0.12
0
673
0.31
-0.07

0

The simplest L-H model would be for unimolecular decomposition:
(1) 2[N
2
O + *
2
NO
K


N
2
O *]
(2) 2[N
2
O*
k

N
2
+ O*]
(3) 2O*
2
1/
O
K


O

2
+2*
2N
2
O ==> 2N
2
+ O
2

r
m
=
1
m

dN
N
2
dt
=
1
m



2


= k[N
2

O*]
From(1) : K
N2O
=
[N
2
O

]


2

[]
, so [N
2
O*] = K
N2O
P
N2O
[*]
From(3) : K
O2
=
[]
2


2
[]

2
, so [O*] = K
O2
1/2
P
O2
1/2
[*]
Site balance gives: L=[*] +[N
2
O*] +[O*] thus
L =[*] +

2



2

[*] + 

2
1/2


2
1/2
[*] , and [*] =

(1 + 


2



2

+ 

2
1/2


2
1/2
)
,
consequently,
r = k K
N2O
P
N2O
[*] =


2



2


1+ 

2



2

+ 

2
1/2


2
1/2

Arrhenius plots of the fitting parameters listed in Table 2 provide the following
values :
For K
N2O
:∆H
ad
o
= -17 kcal mole
-1
and ∆S
ad
o

- 21 cal mole
-1
K
-1
(e.u.)
For K
O2
:∆H
ad
o
= -25 kcal
1
and ∆S
ad
o
- 35 e.u.
For k : E
RDS
= 57 kcal mole
-1

The enthalpy and entropy values for adsorption fulfill all the guidelines in Table 6.9,
thus they are consistent.
From either a linear extrapolation of the high-P portions of the two isotherms in
Figure 1 or using the difference between the two at 100 Torr CO pressure, the irreversible
uptake is 580 µmole CO g
cat
-1
. The dispersion of Cu is : D
Cu

= Cu
s
/ Cu
tot
, and with CO
ad

/Cu
s
= 1,
D
Cu
=
580 µmole Cu
s
g
cat
1

0.0456 g Cu g
cat
1


mole Cu
63.55 g Cu

(10
6


µmole
mole
= 0.81
Under differential reaction conditions, P
O2
O and can be ignored; therefore, an
easy way is to choose a known differential rate and correct for temperature , for example
:


823 

673 
=

823

673
=

36200 cal /mole /(1.987cal /mole .K )(823K )

36200 cal /mole /(1.987cal /mole .K)(673K )
= 139
thus
TOF
823K
=

823 



=
(12.6 µmole /s.g) (13 atm 1)(0.0666 atm )(139)
[1+ (13 atm 1)(0.0666 atm )](580 µmole Cu s/g)
= 1.4 s
-



Problem 7.8
Step 2 defines the rate:
r
m
=
1
m
d
N
2
dt
=
1
m
(-
d
N
2
dt
) = k[N

2
O*]
Step 1 gives : K
N2O
=
[N2O]
PN2O []
, so [N
2
O*] = K
N2O
P
N2O
[*]
Assuming all surface species are included, a site balance gives
L =[*] +[N
2
O*] + [O*]
To remove the unknown [O*], the SSA must be used:

d
[O ]
dt
= k[N
2
O*] + k
-1
P
O2
[*]

2
– k
1
[O*]
2
= 0
And [O*] =(
k[N2O] + k
1
PO2 []
2

k1
)
1
2


Then L = [*] + K
N2O
P
N2O
[*] +
k[N2O] + k
1
PO2 []
2

k1
)

1
2
= z[*] + (x[*] + y[*])
1/2

Where z = 1 + K
N2O
P
N2O

x = k K
N2O
P
N2O
/ k
1

y = k
-1
P
O2
/ k
1

Rearranging and squaring each side gives :
x[*] + y[*]
2
= (L-z[*])
2
= L

2
– 2Lz[*] + z
2
[*]
2

and (y-z
2
) [*]
2
+ (x +2Lz) [*] – L
2
= 0
The solution for this quadratic expression is
[*] =
(x + 2Lz ) ± (x2 + 4Lxz + 4yL2)
1
2
2(yz
2
)

Substituting back and using the positive root gives :
[*] =
kK
N 2O
P
N 2O
/ k
1

+ 2L(1 + K
N 2O
P
N 2O
)
2[k
1
P
O
2
/k
1
(1 + K
N 2O
P
N 2O
)
2
+
+
(

2

2

1
)
2
+

4
2

2
(1+
2

2
)

1
+
4
2

1

2

1
)
1
2

2[k
1
P
O
2
/k

1
(1 + K
N 2O
P
N 2O
)
2

Because the rate is: r
m
= k[N
2
O*] = K
N2O
P
N2O
[*] , the final rate expression is :
r
m
=

2
(1+(+)
2
+[
2
+ (
2
+)
2

+
2
]
1
2

)
(1+
2
)
2

2


Where a = kK
N2O
/ k
1

b = k
1
/k
-1

c = K
N2O

d = LkK
N2O


These four parameters can be combined in various ways to give the values in Table
1.
An Arrhenius plot of the adsorption equilibrium constant, K
N2O
, gives :∆H
ad
o
= -
25.2 kcal mole
-1
and ∆S
ad
o
- 33 e.u. , which satisfy the guidelines in Table 6.9.
The rate constant Lk represents a unimolecular decomposition reaction on the
surface, so guideline 2 in Table 6.10 can be applied :
r
a
= r
m
/A
cu,g

1.1
. .

1  
2


354 



10
15



2
= 2x10
12

molecule/s.cm
2

or with correction for activation energy:
LA
d
e
-34400/1.987-843
= 2x10
12
= 1.2 x 10
-9
LA
d
and LA
d
= 2x 10

21
molecule/s.cm
s

Both values are below 10
28


.
2
.

Problem 7.10

a, The rate of the reaction as:


2
2
2
[]
1 [ ]
[ *]
2
dN
d NO
r k N
dt dt
   


Moreover, there are 3 quasi-equilibrated steps, so we have:

22
1
11
22
[ *] [*]
[ *][ *] [ *][*]
[ *] [*]
NO NO
OO
NO K P
N O K NO
O K P




So:

22
22
11
1
11
22
[*] [*]
[ *][*]
[ *]
[ *] [ *]

[*]
NO NO NO NO
OO
K K P K K P
K NO
N
OO
KP
  

Using the balance gives: L = [N*] + [O*] + [NO*] + [*] then:

22
22
22
22
11
1
22
11
22
11
1
22
11
22
[*] [*] [*] [*]
[*]
1
NO NO

NO NO O O
OO
NO NO
NO NO O O
OO
K K P
L K P K P
KP
L
K K P
K P K P
KP
   

  

But, for site pairs:
2
Z
L
is probability factor, thus:



22
2 2 2 2
22
2 2 2 2 2
2 2 2 2
' 2 2 2

21
21
11
22
1
11
22
2
2
1 1 1 1
2 2 2 2
21
[*]
2
(1 )
NO NO
NO NO
NO NO
OO
O O NO NO O O
OO
NO
O O O NO O NO O O NO NO
ZL
k K K P
Lk K K P
r
K K P
KP
K P K P K P

KP
kP
r
K P K K P P K P K K P

  

  

b, If [NO*] is assumed to be very lowed compared to the other surface
species, it means [NO*] ~ 0.




2 2 2
2
2
11
22
21
NO
O O O O NO NO
kP
r
K P K P K K P



c, If [NO*] is assumed to be the MARI




2 2 2 2
2
2
1 1 1 1
2 2 2 2
NO
O O O NO O NO
kP
r
K P K K P P



d, If [O*] is assumed to be very low compared to the other surface species or
[O*] ~ 0.



2 2 2 2
2
2
1 1 1 1
2 2 2 2
1
NO
O O O NO O NO NO NO
kP

r
K P K K P P K K P



e, If [O*] is assumed to be the MARI



2 2 2
2
2
11
22
2
NO
O O O O
kP
r
K P K P



f, If [N*] is assumed to be the MARI:



22
2
2

11
22
1
NO
O O NO NO
kP
r
K P K K P



g, If [N*] is not only the MARI, but the surface is also nearly saturated with
N atoms:
 [N*] >> [*] and [N*] ~ L
So

2
22
2
Z
r k L ZLk
L


In this case, over a La
2
O
3
catalyst at 923K, this reaction exhibited a reaction order
on NO of about 1.2 with no O

2
in the feed and approximately 1.5 with O
2
, and the rate
decrease significantly with the present of O
2
. the calculation of e, and g, will be rejected
because:
- (e) Order of P
NO


2

- (g) The observed reaction order is not zero.

Problem 7.11

The rate of the reaction can be defined as:

24
11
N CH
m
dN dN
r
m dt m dt

  




The general reaction can be written as:
CH
4
+ 2O
2
 CO
2
+ 2 H
2
O
With dissociative oxygen adsorption, we can obtain the steps of the reaction as
below:
(1)
2
2
2* 2 *
O
K
OO



(2)
4
44
**
CH
K

CH CH



(3)
1
43
* * *
k
CH O CH OH  

(4)
2
32
* * * *
K
CH O CH O H



(5)
3
2
* * * *
K
CH O O HCO H



(6)

4
* * * *
K
HCO O CO OH



(7)
5
2
* * * *
K
H OH H O



(8)
6
2
* * * *
K
CO O CO



(9)
2
1
22
**

CO
K
CO CO 



(10)
7
2
2 * * *
K
OH H O O



(11)
2
1
22
2 * *
HO
K
H O H O








(12)
1
**
CO
K
CO CO





4 2 2 2
22CH O CO H O  

The last step (12) shows the desorption of CO* to get the product of CO. It is easy
to see that the RDS of this sequence is step (3), thus:
  
14
**
m
r k CH O

However, using the steps (1) and (2), we have
From step (1):
   
22
11
22
**
OO

O K P

From step (2):
   
44
4
**
CH CH
CH K P

 
4 2 4 2
11
2
22
1
*
m CH O CH O
r k K K P P

Moreover, the site balance gives that:
           
4 2 2
* * * * * *L CH O CO H O CO     

Continuously, using the information of steps (9), (11) and (12) we obtain:

 
 
 

22
22
2
2
* [*]
* [*]
* [*]
CO CO
H O H O
CO CO
CO K P
H O K P
CO K P




Then
4 4 2 2 2 2 2 2
11
22
[*]
1
CH CH CO CO O O CO CO H O H O
L
K P K P K P K P K P

    





4 2 4 2
4 4 2 2 2 2 2 2
11
22
1
11
22
'
1
CH O CH O
m
CH CH O O CO CO H O H O CO CO
Lk K K P P
r
K P K P K P K P K P

    

Using the data of table 1 and table 2 adding to Arrhenius relation, we can calculate
that:
For CH
4
:
1
20 . ; 13 .
oo
ad ad
H kcal mol S eu


     

For O
2
:
1
30 . ; 25 .
oo
ad ad
H kcal mol S eu

     


Problem 7.12

a, NO disappearance:
The rate of the reaction can be defined as:

11
2
NO
i NO
m
i
dN dN
r
m v dt m dt


  



And
* 0 * 1
NO
m s NO s NO HNO
r L L k L L k
   

in which L
*
and L
s
is the density of * and S
sites, respectively.
Applying SSA on HNO* gives:
 
* 0 * 1
*
0
s NO s NO HNO
d HNO
L L k L L k
dt
   
  
and r
3

= r
4
, then

 
*0
*
2
NO
m s NO H
d HNO
r L L k
dt

  

Site balance for [*] sites is: L
*
= [*] + [NO*] and
 
 
*
*
NO
NO
NO
K
P



 We have:
 
 
 
 
 
*
*
*
[*]
1
*
1
*
1
NO NO
NO NO
NO NO
NO NO
NO
NO NO
L
KP
L K P
NO
KP
NO
KP
L K P









Site balance on S sites: L
s
= [S] + [H – S] and
 
 
2
2
2
2
H
H
HS
K
PS




 


 



22
22
22
22
11
22
11
22
11
22
11
22
1
1
S
HH
HH
H H H
S
HH
L
S
KP
KP
HS
KP
L
KP





  


when θ
H
<< 1
Thus:
22
11
22
*0
2
1
NO
S NO H H NO
m
NO NO
L L k K K P P
r
KP



b, N
2
formation:
The rate:

2
2
*2
1
NO
N
m N O
dN
r L k
m dt



Using SSA on N
2
O* site:

 
2 2 2
2
* 1 * 2 * 2 * 3 *
0
S HNO NO N O N O N O
d N O
L L k L k L k L k P
dt
    

    


Then
 
     
  


22
2 2 2 2
2
2 2 2
2
* 2 * 3 * 1 * 3 *
11
22
0 3 * 0 3
2 3 2 3 2 3
11
*2
22
03
23
11
1
N
N O S HNO NO N O
S NO H N O S NO H NO H N O
NO
NO NO NO NO
m S NO H NO H N O
NO NO

L k L k L L k L k P
L k k P L k K K P P k P
k k k k K P k k K P
Lk
r L k K K P P k P
k k K P
   
  




  

   
    
  


c, N
2
O formation:
Similarly a, b we have:

 
2
22
2
2 2 2 2
2 2 2 2

2
* 3 * 3 *
11
22
0 3 * 3
*3
23
11
22
0 3 3 3 3 3 2 3
*
23
1
03
*
23
1
11
1
NO
NO
m N O N O
S NO H NO H N O N O
NO NO NO NO
S NO H NO H N O N O
NO NO
S NO H
dN
r L k L k P
m dt

L k K K P P k P L k P
Lk
k k K P K P
L k k K K P P k k P k k k k P
L
k k K P
L k k K K
L
kk




  





  


  








22
1
22
3 2 3
1
NO H N O
NO NO
P P k k k P
KP








Problem 7.14

The specific rate is:


=
1


2

=
1



2

= 
1
Ѳ
2

The steps 1and 2:

2
=
Ѳ
2

2
Ѳ


And 

=
Ѳ



Ѳ



SSA on O*:
Ѳ


= 
1
Ѳ
2
 
2
Ѳ

Ѳ


 Ѳ

=

1
Ѳ
2

2
Ѳ

=

1


2

2
Ѳ


2




Ѳ


Site balance:
1 = Ѳ

+ 
2

2
Ѳ

+ 



Ѳ

+


1

2

2

2







1 

1

2

2

2





= Ѳ



1 + 
2

2
+ 







= 
1

2

2
Ѳ

=

1

2

2


1 

1

2

2

2






1 + 
2

2
+ 






Or 

=


µ
1

1

=

2


2
2



1+ 
2

2
+ 






where = 
1

2

and =

1
2

2
2

2




An Arrhenius plot of LK
1
gives E
1
= 26kcalmole
-1
while similar plots for K
N2O
and
K
CO
give:
- For N
2
O: 



= 13 kcalmole
-1
and 


= 29 calmole
-1
K
-1
(e.u.)
- For CO: 


= 10 kcalmole
-1
and 


= 23e.u.
All these thermodynamic values satisfy the criteria in Table 6.9. The TOF at 573K =
2100µ2
1

1

769µ
1

0.91


= 3.0
1
. Thus the pre-exponential factor per site is 3.0
1
=

0


26000
1.987
(573)
 
0
= 2.4 x 10
10
s
-1
which is less than 10
13
s
-1
and satisfies criterion 2
in table 6.10 for a unimolecular reaction. Also, the heat of adsorption of 10kcalmole
-1
for
CO on Cu is consistent with value of 7-10 kcalmole
-1
reported in the literature.


Problem 7.15

= 



4


= 
1

4




1

2 


2
= 
7
[2]

From step (6): [
2
O*] = 

6


2




/[]
From step (4): [OH*] = 
4


2




/[]
From step (2): [
2
*] = 
2

2
[]
From step (8): [CO*] = 
8



[]
 Therefore:
= 
7

6

2 



/[] = 
7

6

4
[
2
][
2
]/[]

= 
7

6

4


2

2
[
2
][
2
]/
8
[]

SSA from surface CH
2
* (and CH
2
O*) species:
[
2
···]

= 
1

4




1


2 


2

7

2

= 0




2


=


1

4




1

2



2


7


From step (6):


2


=


2


[]

6
[]
=


2



[]

6

4
[
2
]
=

8


2




[]

2

4

6

2
[]
=



8



2

4

6

2

[
2
]

From SSA:

1

4
[] = (
7
+

1

8




2

2

4

6

2
)


2



Hence,


2


=


1

7



4
[]
1 +

1

8



2

7

6

4

2





Site balance with [CH
2
O*] as MARI: =




+[CH
2
O*]=




1 +

1

4

7
1 +

1

8



2

7

6


4

2

2
=




1 +

1

8



2

7

6

4

2

2
+


1

4

7
1 +

1

8



2

7

6

4

2

2







=
1+

1

8



2

7

6

4

2

2

1+

1

8




2

7

6

4

2

2
+

1

4

7


= 
7


2


=

7



1

7
 
4



1 +

1

8



2

7

6

4

2




=

1

4
1 +

1

8



2

7

6

4

2

2
+

1

4


7



 =

1

4

2


2
+

1

8



2

7

6

4


2
+

1

4

2

7



The TOF for step 7 is
5.35 µ
1

1

2.4µ 
2

1

2µ

µ
2
= 1.1
1



Rate per site: TOF=1.1
s-1
=Ae
-E/RT
=Ae
-38000/1.987 (723)
=A( 3.25x10
-12
). Therefore,
A= 1.1/3.25x10
-12
= 3.4x10
11
s
-1
, which is less than 10
13
(Criterion 2 in Table 6.10)
Problem 7.16
2 2
1 1 1 1 1
22
N
i NO NO
m
i
dN
dN dN dN

dN
d
r
m dt m dt m dt m dt dt dt



     

2
1
2 [ *]
NO
dN
k NO
dt

,
[ *]
[ *] [*]
[*]
NO NO NO
NO
NO
K NO K P
P
  

L= [*] + 2[*(NO
2

)*] + [N
2
O*] + [O*] + [NO*] = [NO*]+ [O*]
2 2 2
2
2
1/2 1/2
[ *]
[ *] [*]
[*]
O O O
O
O
K O K P
P
  

22
1/2 1/2
[*](1 )
NO NO O O
L K P K P  
and
22
1/2 1/2
[*] / (1
NO NO O O
L K P K P  

So

22
22
2 2 2 2
1
1
21
1/2 1/2 2
2
[ *] [*]
2 (1 )
NO NO
N NO NO
NO NO O O
Lk K P
k
r NO k K P
K P K P

  


Or
2
32
[ *]
N
r k N O
and SSA on N
2
O* gives k

2
[*(NO
2
)
2
*]=k
3
[N
2
O*]
So
2
22
[* *]
N
r k N O
and SSA on[* N
2
O*] gives k
1
(NO
*
)
2
=k
2
[*(NO)
2
*]
So

2 2 2
2 2 2 1/2 1/2 2
11
[ *] / (1 )
N NO NO NO NO O O
r k NO Lk K P K P K P   

b) From the site balance
k
3
[N
2
O*]=k
1
[NO
*]
2
and [N
2
O*]=(k
1
/k
3
)K
NO
P
NO
[*]
2


and k
2
[*(NO)
2
*]=k
1
[NO*]
2
and [*(NO)
2
*] = (k
1
/k
2
)K
NO
P
NO
[*]
2
then
4
3 2 4
2 2 2
K
CH S H CH S





Consequently, a quadractic expression for [*] is obtained and the solution for such
an equation is so complicated.

Problem 7.17

The series of elementary steps is:
(1) MCH + * MCH*
(2) MCH* MCX* +H
2
(3) MCX* MCD* +H
2

(4) MCD* TOL* + H
2

(5) TOL* TOL + * (RDS)

MCH TOL
Or
MCH + * TOL* + 3H2 where K’=K
1
K
2
K
3
K
4
TOL* TOL + *
Step 5 is RDS, so r = k
5

[TOL*]


L = [*] + [MCH*] + [MCX*] + [MCD*] + [TOL*]
If [TOL*] is MARI, then L = [*] + [TOL*] = [*](1+




2
3
) and [*] =

1+




2
3

Then, r = k
5
[TOL*]=k
5




2

3
=

5


(1+




2
3
)

2
3

or, r =

5


(

2
3
+

)

This is not consistent with the behavior because it contains
a 

2
3
term.

Problem 7.18

      
22
22
2( )
1 3 2
2
g
OO
dO
r k P S k HCO S O S kP S
dt


      


     
2
L S HCO S O S    



(1)
 
 
 
2
2
2
2
H CO
K P O S
HCO S
OH S





(2)
     
22
1/2 1/2
1/2 1/2
H O H O
OH S K P O S S  


(3)
 
 
   

   
22
22
22
2 1/2 1/2
22
2
1/2 1/2
1/2 1/2
1/2 1/2
H CO H CO
H O H O
H O H O
K P O S K P O S S
HCO S
KP
K P O S S


  



(4) At steady-state:
 
 
 
2
2
1

32
O
k P S
OS
k HCO S


(Balance on O-S species)

(5) Substitute (4) in (3):

 
 
22
22
3/2 3/2 5/2
21
2
3/2
3/2 1/2 1/2
32
O
H CO O
H O H
K P k P S
HCO S
k HCO S K P





, then

(6)
 
 
22
22
2/5 2/5 3/5 3/5
21
2
3/5 1/5 1/5
3
H CO O
H O H O
K P k P S
HCO S
k K P



(7)
 
 
2 2 2
2
2/5 1/5 1/5
1
2/5 2/5 3/5 2/5
3 2 1

O H O H O
H CO
k P S K P
OS
k K k P



(8)
 
   
2 2 2 2 2
2 2 2
2/5 3/5 2/5 3/5 2/5 2/5 1/5 1/5
2 1 1
3/5 1/5 1/5 2/5 2/5 2/5
3 3 2
H CO O O H O H O
H O H O H CO
K k P P S k P K P S
LS
k K P k K P
  


(9)
 
 
2 2 2 2 2 2
2/5 3/5 1/5 2/5 2/5 1/5

1 ' ''
H CO O H O O H CO H O
L
S
K P P P K P P P




Assume P
H2O
is approximately constant and power of 0.2 is low. Then,

 
2
2 2 2 2
1
2
0.4 0.6 0.4 0.4
1 "' ''''
O
H CO O O H CO
Lk P
r
K P P K P P






If θ
HCO2
<<1 and θ
O
<<1, then r = kP
O2
If θ
O
is MASI, i.e., θ
O
>> θ
HCO2
then

   
2 2 2
2 2 2 2
0.8
1
22
0.4 0.4 0.4 0.4
'
1 '''' / ''''
O O H CO
O H CO H CO O
Lk P k P P
r
K P P P K P







Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×