CHƯƠNG 1
Quang hình học
*) Mục tiêu:
+)
!"#$$%$&'$(%)%&$%$*%+,$-$./0/&1
2$3
45&!678%)%&!6*9$78%)%&! &$:$%$
45&$50/&2$"&"-&;&&"-&$<,=$<*9$78(*>,?&+0/&2$!@&
A5$333
45&&BCA,/&>$!678*9$78!6A'
;&$./%)%&3
+)
&>$!"#$$%$+"#&"D&&=A&!D)&"E$&+E$
)E8F&G&H
4E&!"#$$./0/&"-&(*>333I!G7%$!6!"#$!=$! ,$./
$./0/,J45&$50/&2$3
&!"#$$%$'0/&12$3
+)
>$,K2$>$$E$&$:A/!L*:$$./$"-&3
1.1. Mở đầu
MN)%&4O&$%$8A&AP!=$+Q%A/I$%$)%&/C!"D&
;&
MR$./%)%&7%$!6S*>$"T$$./8,!?$G*>$"T$T-,
>,3
MN)%&!"#$7C,"$%$7&!@A'A&,J,KA"D&!=$+&2C
MUC(,,2$,!<*&*K&&/&V/$%$
MW$$./%)%&A(T4>$(!=$+$./C
!"#$$
XYV&Z,$./*[\R/7]C!^$%$!6L&0%$./A"D&!+I→
$$%& !"#'(
X_>&+,* ,$:&
ME0/,=;&`$E$A&IA"D&$./B/A/4/ab
MEAF&/&V/$%)%&A&$`*K&Tc&)!+!J&E$A&>
&+,WCWCCAdKA/)-eA/)a
MEA'A"D&!+IA&$`*K&T$c&$%)%&$./
fC$fCgaaa
XR+&V/>$(!+IT>$(0/&$./,KA"D&
$
= εµ =
3
_A&!G$<"#$%)%&A&,KA"D&A&$`*K&εc&)
!+,Kµ!JIh,$./,KA"D&3
)%*+,-.%/0&%*+,$$
X_"#&i$./j/$*
MYJ4&%78A"D&!+I*K&5$,&%!8I&"#&Z&
"#&A&APε!"#$7%$!6C$K&:$ε=3νν<)$./:$78
X_"#&i%)%&K
MN)%&*K&V&!"#$%A/,6(5/A'4"T48&V&"#&i
A&AP&2"#&i%)%&
MWT,k%)%&!"-)l$$G<)υ$%$!'&&/$GZ&"#&7%$!6
ε υ
=
Tmn3
ob
p3)&2c&)j/$*3
MN)%&I/$G>$()G&I/$G>$(8
Xq! ,&>$!9&!l,J8+"#&0/&2$)E%78(5+"#&
0/&!+H
!"#$%&'()
1234&5(6/!
XrO&0/&Z&"#&Z&"#&:$78%)%&A'0/,J4+>$(*sA&
,J!-6D&/3t-6!upv)
4u
4j
4
=
3n
Xt !=$A"&$!J8$./,l!T%)%&$G,)l$*%$/&"D/)i45&
,)6*W
λ
*λwb,λxa,y,
W
λ
=Wλ= *λ=λ
,
=,
3o
w*λ≠λ
,
A&,'%)%&1(!"#$
78
z/&K&!8"#&!=$A"&$<4O&0/&Z&&`A/$,&%$)%&
4Φ
λ
=Wλ34j
λ
3b
A&!G4j
λ
4O&0/&Z&:&T"T$)G&λ
t-60/&K&,C,
9*: ;$-< !=5
>d"D&!J)%&$./,J&@! ,C,J"-&!G,J!8"#&$GA6
)c&0/&K&A'!A&,J!-6&G$*c,C"-&!G
4
{
4
Φ
=
Ω
3
_A&!G4Φ0/&K&4Ω&G$*c,C"-&!/&7Q3
t-6$"D&!J)%&d/4C/d4
n
)?;!
tJ$G$./,J,=%)%&C,J"-&$A"T$,J!8"#&$GA6)c&
0/&K&4,J!-64+>$,=1($./&@)%&%A/A&,J!-6&G$*
C"-&!G*>+!J$G|
4 4 {
|
4 343$) 4 34 4
Φ Φ
= = =
Ω Ω
3
t-6!J$G$4v,
n
=
?;@*
t !=$A"&$)E%)%&$./&@AJ&C,2"-&&"D/4F&*%+,!J
A"&
4
}
4
Φ
=
3y
t-6!JA"&,CA,QK&*>+,v,
n
A?;@B!
~244+>$!"#$A2)%&4Φ0/&K&<&i0/4
tJA2$./4+>$4
4
•
4
Φ
=
3a
t-6!JA27*>+7
*+,-'.%$%/01203
?!=5$
M&@)%&*K&$G*>$"T$
M%)%&$G*>$"T$A(?)T*&$%$I&@T! ,0/)%
!$0&C5!$
X_/)%&!"D&A'$./%)%&
XRk$F,)%&$:/K)/)%&
DEFGGHEEF0EG
XY&@)%&! ,j&2j€$./j0/+0/&2$"S&
Mj€%)%&0/0/&+$l/Sj€3
Mj€!"D&*Q4$./$%$/)%&0/0/&+!0/! ,j€3
Xt ,)%&j
Mj$F,/)%&7(%Ij$F,`*13
Mj$F,/)%&T&"-&=$(*>$F,J5$G!"D&*Q4!0/j
1.2. Các định luật và nguyên lý cơ bản của quang hình học
4(5"6.%1203
XYJ4&_A&,KA"D&A&)!@&>%)%&A'C!"D&;&3
X•&45&~>$+"#&E$&+E$H
Xt'*+&+,!9&t6*K&$O!9&%)%&&=$$G*>$"T$?
4(57859.%:-%1203
Md%$% _%$45&$./$%$$F,/)%&*%$/!J$!T/&‚/
%$45&$./$F,)%&*K&5J$)E$G,=$./$F,)%&*%$3
Md%$% nd%$$F,/)%&*%$/*&=/*K&$AS)E/A'$./
/*K&"S&ƒ/3
o
*;<=5("1203
YJ4&Y„d|,J!"D&A'%)%&1A!"D&!G%)%&$G !C
$'&"#$8|d„3
>4(59?
Xt6_/T/78$F&c,A&,=;&TS/%8! ,
T3~G$78c&&G$&T
€=X
Xz"T$~G$>I%7C,4"-&0/%!/)%&C$'
&"#$$'*,!@&@&"#$8`,3
@4(5+A?B, !9?)&9C
?6%E/IJ$$
MYJ4&!6/T/*9$78$F&c,A&
,=;&TS/%3_[)&V/)$./&G$T
&G$*9$78,J!8"#&*K&!LT/,KA"D&
0/&2$$A"T$
M| :$
n
n
n
)
)
= =
3\
n
$)(+!$./,KA"D&$://T/*9$78n39!K" (!
$)($./,KA"D&!T$`*K&3
n
$)([!$./,KA"D&n!T,KA"D&
!"*+LGJ&L'
…Q%)%&A'I,KA"D&$0/&-)/&,KA"D&*Q,$0/&-
x
n
M_Z&
→
n
Z&/
Me=
&
?/,^
n
& n
) n
= ↔ = π
/*9$78AF&T,=`$%$
&
!"#$
&2&G$&T878<3
Me&G$Tx
&
7A/+"#&78<3
t'*+7A/+"#&78<
x
n
x
&
DE!$%B9$%BFGH7:!$%
X#0/&&4ƒ%)%&3
Xd%0/&&@,')#0/&$%0/&4F&! 4ƒ%)%&3
I;<=JK"-%1JK-%3
7@M
Xt6&‚/z/&A1&V//! ,„|A&,J,KA"D&!8!"D&,%
)%&A'!!"#$A&$`*K&$F&*&D&/
„|
*%)%&A'A&,KA"D&
!G3
„|
)
$3 $3 3)
= = =
3
b
MNOLGJ0&
/IJ$$
n
X_A&,KA"D&$G$)(/!L5$
|
„
4)=
∫
3
P%QR@5
XYJ4&
_A&K)$%$!"D&!*4‚I„→|%)%&)PA'C!"D&!,0/&A1
$E$ 3
XW45&)A/!6A';&!678%)%&!6*9$78%
)%&3
1.3. Sự phản xạ ánh sáng qua gương phẳng và gương cầu (tự học)
*L '96
NO&G3*SLT
j&@! ,$%$&"-&,J*&)j€$./j$%$&"-&,J!8)€
98U*SLT
Xz"T$d'M$'A'$.//)%&T&$$./
$%$!8;&!"#$>I&"-&3e!G)x)€w/$G$K&
:$&"-&;&)€=X)
*L 'C
?6V
Xt6&‚/&"-&$<,J<$./,=$<78%
)%&3
Xj`8&"-&$<†,&"-&$<@3
98U*S'
n
) )‡ }
+ =
3n
1OG-5;0E3*S'
…%$!6/A&b/(*1)/!`
M_/T)&)&A5$$>$/78!"D&
*Q4!0/! ,$>3
M_/T!"D&*Q4!0/![&"-&$/
78!7:&T/T0/A5$$>3
M_/T!"D&*Q40/d/78!C$'
&"#$83
M_/T!"D&*Q40/B/78)&)&TA5$$>3
)?;L !
XtJG&!84β[)&V/$'$/$./
‡ )‡
)
β = = −
3o
A6@*:-*SW*&*K&&/A"T$&"-&,/$[1(c,
A&*&*K&&/!G3
1.4. Sự khúc xạ ánh sáng qua mặt phân cách hai môi
trường, bản mặt song song và qua lăng kính
>M-N))
MNOG3
*SLT
MXNOG3
*S'
?6VW|,=)&)&,J,KA"D&!@&(A&)!"#$&T8S/
,=;&)&)&T/13b3
?;)6=!$
~)i,=)&)&$G'44$)(!=A&,KA"D&$G$)(
w3
e/)%&$G&G$T?1!J46$$ /)%&
n n n
7 43 34
3
÷
→ ∆ = − ≈ −
÷
÷
−
3b
MY!=A&*K&*>
=1
7 34
∆ = −
÷
3
?;Y-G
…Q&@)%&! ,j!=A"T$,=)&)&→$j€jj€!J`&$./
jj‡ 4
= −
÷
3
>O+P
t6&‚/Z&5;/(! <KF@( *+![!\!!5]LT^
*+B!%&5]-%4/_M
>t"D&A'/)%&0/Z&*>…QZ&*>$G„!=A&*K&*>$)($(
,Z&*>4+$>„|d/)%&{&G$
+$
n
ˆ
„δ = + −
δ$G&%A6$E$ *
=
n
,
„ „
) )
n n
δ +
→ =
3y
MY„A(?1
„ „
)
n n
≈
( )
,
„→ δ = −
3a
δ
,
Z&*>,)/+$$F,/0/G>(→0/&2$$G$("#&
(3
1.5. Sự khúc xạ ánh sáng qua mặt cầu khúc xạ (lưỡng chất cầu)
@4(Q%
R=$<*9$78,=$<&Z$%$/,KA"D&!@&>A&)$G$)(*%$
/
@4+, 'R-F-NC+A?
>t'*+"-&! ,
Mt'*+"-&! ,!'*+! $./,J! ,,J! ,3
Mt'*+dF,/T&<A5$$F,/!@&0A(&<A5$$>/$%$/A&
$F,,TA5$$>,J&G$A(Q3
>z"T$4(A&0/&12$d2$'M$'A'%)%&IA%)/&
$2&$![‰3
>dK&:$$./,=$<*9$78
MW`G5]
MWZ4/_
‡ ‡ ‡
} ‡
) )‡ ) )‡ }
−
− = − ⇒ − =
÷
3\
MdK&:$!9&$TA"D&#&@3
@*48B<2B<R-
Xt6&‚/!J5!8"#&
‡
$)
}
−
=
!=$A"&$*
Z&*9$78%)%&'/>&2 ;a-5]'/IJ*+Φ!"#$7%$!6
‡
}
−
Φ =
3n
_A&!G€<"#$)(,KA"D&$://T$)(,KA"D&$://
*9$783
XejSK$E$)=X∞c,AA5$$>→$F,78J58BAA5$
$>$%$‰,J*&Šm
‰B
m}vn3e!GB!"#$&2!P !=5_$./&"-&Š
!PO$./&"-&*&$%$I![&"-&!! ,$>3
X_4+,=;&K&&G$TA5$$>$:/! ,$>3
@>49H
…Q$./,J;&?K&&G$A5$$>0/,=$<*9$78$%$0"T$'4(
&&"&"-&$<3tJG&!8!"#$7%$!6
‡ )‡
3
‡ )
β = =
3n
1.6. Thấu kính mỏng
D4(Q%
X_(*>,J*!@&$(A&)!"#$&T8S/,=*9$78A&!G>(
,J,=$G!J$&*%$*K&
X_(*>,?&!=A&,KA"D&!@&($G $‰
≡‰
n
≡‰)/$,2/)%&
0/‰!'!"#$7C,A';&‰3Y5$./(*>,?&3
Xz/&A5$$>!"D&;&!0/`,/,=$<3
X_A5$5!"D&;&!0/0/&`,*K&AF&TA5$$>3
DF+P-S
…Q,J(*>,?&&T8S/,=$<$G$%$![‰
‰
n
%*>$&"-&:&
}
}
n
$)($./$(,(*>,KA"D&>/A"T$>/)/(*>
n
3
dK&:$(*>,?&
n n
n
) ) } }
− −
− = +
′
3nn
_(*>,?&!=A&,KA"D&!@&$(
n
=
=
n
) ) } }
−
− = −
÷
′
3no
D*48B<2B<R-
MtJ5
n
n
n
} }
− −
Φ = + = Φ + Φ
3nb
y
M
Me)=X∞
n
)‡ Š ‡= =
Φ
Š ‡ ‰B‡=
$E:/B€! ,$>:/$./(*>,?&
Me)€=∞
) Š= = −
Φ
Š ‰B=
$E:(B! ,$>:($./(*>,?&/! ,B
B€S/>/*%$/$./(*>
D>T2.%5$%+P
M_/T)&)&A5$$>$/G!"D&*Q4/G!0/! ,$>:/B€3
M_/T!"D&*Q4/T!0/! ,B→/G)&)&A5$$>3
M_/T!0/0/&`,1A';&3
D@49H
‡ )‡
)
β = =
3n
1.7. Hệ quang học đồng trục
I4(Q%
X"3B <@a,J+&/&@,',KA"D&A&)!@&$($G
$)(*%$/&Z$%$/SV&,=$<=$,=;&$G`,c,A,J!"D&
;&3
I<R-PBR-PB<2
…Q+0/&2$$G/,=*9$78&$F&RR€YY€13y3
Md,J$F,/)%&)&)&T0/&A5$$>$F,/GJ58B€B€
! ,3Y$F,G$F,)&)&1B€S∞"08!P
Mt ,BA&*K&&/,$F,/7(%IG0/+0/&2$!@&A5$$‹&
AS$F,/)&)&1B&2! ,3
MR=;&K&&G$TA5$$>8B
B€4+$>:(:/$./0/&+3
MR=;&f0/jK&&G$TA5$
$>,=;&$>:(
MR=;&f€0/j€K&&G$TA5$
$>,=;&$>:/
Mff€! ,$>:(! ,$>
:/$./0/&+3
Xe&$%$I! ,$>:(fT! ,$>:(B
fB Š=
Š$E
:($./0/&+3tJ4
Š ‡ f‡B‡=
!"#$&2$E:/$./0/&+3
ŠŠ€!'!J4!8)5J$$'A'%)%&
I*F'.%,$%0U"8
7 Š ‡
Š 7‡
−
=
−
‡ Š 7‡
7 Š ‡
− −
β = = =
Š ‡ Š
)‡ )
+ =
‡
Š ‡ Š
−
= = Φ
3n
MeŠ€x→Φx+J5
a
MW"3B <@a
MeŠ€w→Φw+`*1
MeŠ€=∞→Φ=+K
XtJG&!8
‡ Š 7‡ )‡
3
7 Š ‡ ‡ )
− −
β = = = =
3ny
Mβx€$F&4(→$F&$'
Mβw€*%$4(→&"#$$'
I>LV9%,$%0U"8
~)i&Q/+0/&2$!@&A5$?$G$%$$EŠ
Š
€Š
n
Š
n
€3dK&:$7%$!6
$E$./+&Q
n n
n
Š ‡Š ‡ Š ‡Š ‡
Š ‡
4 Š ‡ Š
− −
= =
δ − +
n n
n
Š Š Š Š
Š
4 Š ‡ Š
= =
δ − +
3na
_I$K&:$3na$/>!"#$$%$$E$./+&Q*!G)P7%$!6!"#$$%$
! ,$>$%$! ,$>3_I!G$G 4E&$./0/+&Q3
*) Tài liệu học tập
3t=&_6R/nn7BY7~%45$fYJ3
n3fsf+\\7BY7~%45$fYJ3
o3t=&_6R/Y&Œj9$_<_A2&_"D&n`&!EL0E%Q !*SFEL
Y7~%45$fYJ3
*) Câu hỏi, bài tập, nội dung ôn tập và thảo luận
A. Câu hỏi ôn tập
3~>$$%$+"#&"D&&=A&!D)&"E$&+E$)E8
F&G&•
n3_$K&:$$-$./,=)&)&Z&*>•_I!G$&‚/
>$./I&$K&:$•
o3_$K&:$$-$./,=$<*9$78•_I!G)A/$K&:$$./(*>
,?&•
b3d%$4E&$./,J0/(*>,?&J5`*s•
3t6&‚/$%$! ,$>,=;&$>! ,$>$E$./+0/&2$
!@&A5$
B. Bài tập:
1. Ž&V/,J$ZO&1K&4+>$n,
n
$GAC,J&2!•3d!•"
,J&@! ,3f^7%$!6!J$/$./!•* I))/$!JA28$%$&G$O&
T(3
2. RJ! ,)%&SA&*&&V//&"-&;&)&)&3WP/)%&I)/
*78<"#A/&"-&!0/,J! ,„$A"T$3
3. RJ&"D$/a,?$<,J&"-&!=;&!:&$G!J4 /
! $&"D!G1(J$./,1
4. „„!:&$8&"-&/|!4<T&"-&C!"D&K&&G$T&"-&
8! ,&V/3f?*//„|l!1(/A&&"-&1/|$O$%$
&"-&/
\
5.f1P4"T!` 4ŒA5$$>RY€$./G0/,J(*>
,?&3|c&$%$P1^7%$!66A>$./(*>8(*>J5/`*1
$%$! ,$./G3
6. _A1n/ 4ŒE$„|„€|€$./G„€|€$G E$=$
0/,J(*>,?&3|c&$%$P^7%$!66A>(*>0/&A5$$>$%$
! ,A9A/*'>$($./E$/'8(*>3
7. RJ&"-&$<@$G%*>nn$,3Y!=$%$&"-&b$,1S!`•tJ
G&!84/•
8. |%*>$%$,=$<$./,J(*>,?&/,=@c&$,3*!=&
*K&*>(*>$G!J5n43
/…%$!6$)($./$(,(*>•
_>!J5$./(*>*!=GA&"T$$)(
mbvoA&4<
n
m•
f1/
f1
f1n/
f1n
CHƯƠNG 2
Sự giao thoa ánh sáng
\yn
*) Mục tiêu:
+)
!"#$$(!+I$./%)%&"-&A1)G&%)%&$"D&!J)%&
&$@&$(%)%&
!"#$!'*+&//$./)G&%)%&)E&//$.//)G&%)%&
*#&//T%)%&Al&"S&$./*>$"T$&@)%&+"#&&//3
45&$%$"-&%0/)%+"#&&//T&@! ,"*C
•&"‘&Z&*>BAC)C"‘&&"-&BAC)C"‘&(*>|C&"-&A4! &$%$
'&//%)%&3
+)
P1,K$%$+"#&&//I!G7%$!6!"#$A"D&&//
!"#$$K&:$>6A>`)%&`3
&!"#$$%$'0/&12$3
+)
>$,K2$>$$E$&$:A/!L*:$$./$"-&3
2.1. Bản chất điện từ của ánh sáng. Nguyên lí chồng chất
M,W.%
XN)%&)G&!+IG$G$(!+I",2:$78!+I*%$
M_A"D&!+I*K&!67:A&*K&&/,/A'4"T48&)G&T$
$= εµ
3tT)G&1)A'C$'4"-&$./A5$7/$G
7
• • )
= ω −
÷
7
f f )
= ω −
÷
n3
MG&!+I)G&&/&
• f ⊥ ⊥
r r
r r
3_A&)G&!+I;&
• f ⊥ ⊥
r r
r
→/,
4+3f<$%$+"#&0/&2$7A/78*9$784%$45&$./C$-
$"D&!J!+A"D&3r/!J&$./C$-
•
r
!"#$&2) ;$
X '"/H
~)i8&@)%&"-&A14/!J&)%&
( )
• • $) = ω + α
n3n
M_8! ,R$%$,J*&R=A,KA"D&$)($G4/!J&
R
n
• • $) 3
π
= ω − + α
÷
λ
n3o
WT=A30/&A1$./!8!"D&R=A,%)%&/A'A&,KA"D&3
λ=_3$"T$)G&%)%&A&$`*K&
* Y-R-")+F%
Xz/! ,)G&d"D&!J)%&8,J! ,A&*K&&/[+T1"-&!J
4/!J&)%&8! ,!G{∼
n
•
Xd"D&!J)%&8,J! ,&%A6A&1CD&/$./4O&0/&Z&!0/
,J!-64+>$$./,J,=!=K&&G$T"-&A'%)%&3
>;<=U
Xe//')G&%)%&&=/1)G&*K&,Œ8)G&*/)/
*&=/$%$)G&%)%&ƒA'!"$‹3
n
• • • 333 • •
=
= + + + =
∑
r r r r r
n3b
2.2. Sự giao thoa của hai sóng ánh sáng
E2%))%
Xf+"#&//')G&%)%&&=/8A&*K&&/V&4)%&
7C*PO!$$
X_A"D&&//,'*K&&/$G)E&//%)%&
Xt'*+&//$.//)G&%)%&d[$GV&)G&%A/IV&&@)%&*
#,T&`A/+"#&&//3
T%)+!9&+F+!9
…Q/4/!J&$F&"-&$F&<)&=/8R$G"-&A14/!J&
( )
( )
n n n
• • $)
• • $)
= ω + α
= ω + α
n3
→r/!J&LR
( )
n
• • • •$) = + = ω + α
n3
WT
( )
n n n
n n n
• • • n• • $)= + + α − α
n3y
n n
n n
• ) • )
/
• $) • $)
α + α
α =
α + α
n3a
X~%A6A&1$./$"D&!J)%&L&#
( )
n n n
{ { { n { { 3 $) 4
τ
= + + α − α
τ
∫
n3
X…Q/A"D&#
M_A"D&#α
Xα
n
∉
( ) ( )
n n n n
{ { { n { { $) { {= + + α − α ≠ +
8V&! ,R*%$/&%A6$"D&!J
)%&L&#$G T-=$?-{
M{
n
5J$α
Xα
n
→7A/+"#&&/
/3
→e%+,4/!J&*#4/!J&$F&<)+)/*K&!LCD&/3
Y&@*#&@8A/4/!J&*#
M_A"D&#nα
Xα
n
∈
( )
[ ]
n
$) α − α ∈ −
→
( )
n
$) α − α =
{={
M{
n
8,2! ,$"D&!J)%&!'c&/→*K&7A/+"#&&//3
*E2%))%.%%H+!9
…Q/)G&*#%A/I/&@)%&*#
n
$F&<)&=/8RA&
*K&&/R$%$
n
<"#A
A
n
Xj"-&A1)G&8
n
• • $) = ω
n n
• • $) = ω
Xj"-&A1)G&8R
n
R
n
n
n
nR n
n
• • $)
n n
n
• • $)
π
= ω −
÷
λ
π π
α = α =
λ λ
π
= ω −
÷
λ
n3
Xd"D&!J)%&LR
( )
n n n
{ { { n { { $)= + + α − α
n3n
( )
n n
n n
π π
α − α = − = ∆
λ λ
n3o
∆=
n
X
+0/&A1$.///
R
n
R
’YV&! ,)%&($E$!8&//
( )
n
$) *α − α = ↔ ∆ = λ
3e!G$"D&!J)%&$E$!8
( )
n
,/7 n
{ { { {= = +
’YV&! ,($E$ &//
( ) ( )
n
$) n*
n
λ
α − α = − ↔ ∆ = +
3e!G$"D&!J)%&$E$
( )
n
,/7 n
{ { { {= = −
>Z/7B("P[%))%
M)0Y!
Xz“>$V&! ,)%&((,J2C$AO7/$G/! ,
n
A5$!"D&
n
3R=)G&$E$!8T*=,=;&A&AE$$./
n
3
Xz/)%1&//!=,$l•)&)&
n
0/)%!"#$+$%$`)%&
7C*P$G48&C→0Y!3Y
n
A(?)T*&$%$T,•→!8
C$G 7C,!8;&→0Y!%&$ T$ b
H6@_0Y!@P5&
e&$%$I&@T,0/)%{‰=r
n
=/3e”Rf⊥
n
M_8R`)%&
n )*
/ r
A A * *
r /
λ
− = λ = → =
T*=±±nHn3b
MW6A>$%$`
( )
*
r
n*
n/
λ
= +
T*=±±nHn3
Me&`*&$%$&V/n`)%&=$n`'AJ&`&//
* *
r
/
−
λ
= − =
n3
@L%))%\"#
Mi45&/&@
n
%A/%)%&Al&&@,$%$%)%&$G"T$)G&Ibµ,X
yµ,
M_8‰$@&$$./($$%$%)%&!-)l$0Y@^@Y5
o
Mf/`Al&A&`,$%$`,$./$%$%)%&!-)l$)l7C:E`
,>,S&<(`,!?S7/(3
Md&7/`A&`,1$%$`,$@&$(/8$%$`)%&,&
8$A/&T*K&A†A+3
2.3. Các phương pháp quan sát hiện tượng giao thoa với nguồn điểm
*;<#R)"%H+!9WUF Y
Mt 8A/%)%&*#%$%)%&I$F&,J&@! ,78*9$78H
/)G&A'!C/$!"D&*%$/&=/3
Mt'*+$<!.! $G+"#&&//$%$)G&)G&*#$G$F&<)
+0/&A1?-!J4*#
3$
∆ < τ
"-&4/!J&$.//)G&*%$\
3
τD&/*#τX*&D&/*Q4<%78$./&iG7%$!6!J
!-)l$$./:$78τ$&T1!J!-)l$$&$/3
*K])
MrF&&@)%&! ,$nk?
n
A,J,*K&A&)$%$!'
→
n
7C,/&@*#1n33
Mf/)G&I
n
&=/8,'A&*K&&/&//T/3R'&//
!G&2@*:!3
Mt=,•)//*C
n
0/)%/)P!"#$+&`&//3
**L 'J"KK
Mf/&"-&;&~
~
n
&&T/&G$αA(?&@)%&!=A"T$&"-&→
n
&@*#1n3n3N)%&I/&@&=/A"T$&"-&&//3t=
,•vv
n
0/)%A&A"D&&//! 0/)%`&//
Mf1&//%)%&!-)l$+`&//V&!"D&;&)&)&)%&
7C*P/`A&`,‰3t=,z&Z%)%&AE$I&@T,3
e&`
( )
4 r
nA
λ +
=
α
r={‰
b
M
MtJAJ&A"D&&//RY=nr/α≈nrα,4Œ0/)%`&//α?
*@L 'O)7
M_(,.~K!C,=)/! (5$%$/*9$78!.3Y&@!=
A"T$(,.*%7/~! /)%&T4"TV&&G$≈\
3t=,0/)%K&&G$T
&"-&3
Mf1&//*0$@&$($./$F,/TAE$I&@$F,/
78A,=(,.3
M_E$&+,$:&?8V&! ,!%! ,)%&8! ,&"#$8
→/4/!J&$.//78!^/!L
’"c!!$LGJ@P58!@*:!K%[S!K58!@*:U
![!ML) ; d!5;%*+
π
3@M-!LGJ)&!P55;
λ
e
Meh!J&//5J$6A>$./`&//A,$&&<`,,! ,
d*h!J$&&,3
*D^ _.%+P \U<, !%))%1203
…QA"D&#*C•&&)i,SAJ&4<*C)%&*!G,k4K$F&•$./*C
$,J+`A&3_L&#($$%$+`)P$,J$"D&!J)%&$&A,•3
Y!JAJ&T-,J&T8!G1*K&0/)%!"#$`&//V/3
2.4. Giao thoa bởi bản mỏng
>M-SH7&+F`a[:<
NO 6JU-0Y
X…Q,J,?&)&)&$G!J44*K&!L$
)(!=A&*K&*>3d)%&c&&@)%&AJ&
$G'$F,/)%&)&)&T$F&&G$T{1n3o3
M_/„T,=vv8„→%$///*9$78
„|/78„}
M_/*9$78„|T,=4"T8|→%$///
A'0/|_
/78|d3
M_/|d&=,=A8d→%$///78
dr/*9$78A/*K&*>d}
n
Mf//„}
d}
n
!"#$%$A/I,J&@→//*#$G &//
M„}
vvd}
n
`&//!67:SK$F&
!"3@MW
}
}
n
_
_
n
„
|
d
4
f
M
MX
n n
n4 ) n∆ = − − λ
n3y
MY7Q∆∈,*K&5J$6A>„6A>! ,T
M)0Y!
MrF&(*>J5! J5$%$$F,/)%&,0/)%•!=8! ,$./
_e3
M_e,•!=vvT,=→$%$$F,/)%&TT$F&,J&G$T)P$$%$
$=/&//c,7&0/A5$(*>J58$%$! ,c,A!"D&AO`,B€$G
$F&$"D&!J)%&→02@2!`&//$F&!J&&
MY&G$?/,^
*∆ = λ
`AO)%&
( )
n* n∆ = + λ
`AO
Mf1&//+`&//$F&!J&&&@,V&O&AO!@&`,)%&
7C*P/$G`,! ,B€$./_e$&7/`,`$&7>83
>M-SH7&%`a[:7&
NO 6JU-0Y
X…Q,?&$G!J4/!Ln,=,T/
,J&G$αQ$)(!=A&*K&*>1n3b3
MY&@)%&AJ&!-)l$! ,)%&A&@&i
T,?&//{
{
n
•_/{
T8{
6*9$78!,=4"T6
78A@8*9$78S,=A$/G{
n
}
n
3
•_/{
n
T8|6788,=A$/
78{
n
}
n
3
M{
n
}
{
n
}
n
&=/S{
n
//*#→&//T/
MrF&(*>! $1&//,•
!"3@MW
n n
n4 ) n∆ = − − λ
n3a
MY7Q∆∈43W1*h!J$.//$&"-$./,l?&@S*%7/
→$[/!LA&,J&T8?$"*K&!L→∆$[∈4
M)0Y!
X∆$[∈4→V&! ,A$G$F&!J44→$G$F&&%A6$./∆→$G$F&$"D&
!J)%&→8,J`&//0YC ;)&
M4?/,^
*∆ = λ
`)%&
M4?/,^
( )
n* n∆ = + λ
`
Xf1&//!I`)%&T`)%&C+0/&A1/!L,J
"#&λ!J4/!L,J"#&λvn→"0Y%&f *:$(!J/g
>*bc" Y!9+.%-NH7&%`
HYP5/8/_
Y,*K&*>,JT*K&*>1,&T8&V//.&&T
/&G$α?3
}
}
n
{
{
n
M
W6A>$%$`&//
MW`
( )
n4 n n* n 4 * n∆ = + λ = + λ → = λ
MW`)%&
( )
n4 n * n* b∆ = + λ = λ → − λ
f1&//V&!8;&)%&)&)&/7C*P)&)&T
$8$./,3
e&`
* *
4 4
/ n/ n
+
− λ λ
= = ≈
α α α
n3\
HY@2
t=,J(*>@%*>$>*9$T,J(,.;&3T*K&*>
&V/(*>(,.,J,?&$G!J4/!L3d(*>$F,)%&vv
⊥,=.3_8,=$&$./(*>$G)E&=/$./$%$/78$%$/*#→
&//`$F&!J48,=$&$./(*>3
XW6A>$%$`&//
MYV&! ,:&TT*K&*>
4 * n= λ
`3T*m/$G`A&`,`
$
MYV&! ,:&TT*K&*>
( )
4 n* b= − λ
`)%&
’|%*>$%$`&//
MW`:*
*
A }3*3= λ
*∈–
’
MW`)%&:*
( )
)*
A } n* 3
n
λ
= −
’f1&//$%$`&//$F&!J4V&O&AO!@&`,)%&7C
*P/$G`,! ,79$d0Y@2$&7/`,$%$`$&7>/3
>>b&78.%, !%))%1203
c,$$LGJ@P5])aa3B
c!=5@$5]/_LT]%<!
h)aO!$$@LiL&/_
2.5. Sự giao thoa của nhiều chùm tia (tự học)
@Z, !%))%.%:-%
d%$/GA/*?)/'<78$G$"D&!J
*%$/*K&'→$G*Z&&//T/→!
-!bC5!$
@E29[c Y"<[%))%
M|,=)&)&'44$)(!=A&,K
A"D&$)(
3d$F,/)%&!-)l$)&)&T
4"T&G$T{$%$/G*?€n€o€—n—o—1n3
~2{
$"D&!J$./$F,)%&T{
$"D&!J$./
)G&%)%&A'0/}+)78_+)A'0/3e!G}M_=
|!J$./)G&A'0//—•
—
=_•
/n—•
n—
=}_•
/o—•
o—
=}
n
_•
d"D&!J$./$%$/A'0/
( )
n
n n n
˜
{ _ • _ { } {= = = −
n3n/
y
€n€o€
—n€€o—
|
d
4
M
n n n n n
n˜
{ _ } • _ } {= =
n3n
b n
o˜
{ } _ {=
n3n$
f+0/&A1$.///*'/
[ ] [ ]
„|dr•n˜ „|d˜ n43$)A∆ = − =
n3n
f+)/"-&:&
n b
3 3433$)A
π π
∆ϕ = ∆ =
λ λ
n3nn
d"D&!J$./)G&A'0/
( )
( )
n
n
n
} 3{
{
} b} )
n
−
=
∆ϕ
− +
n3no
d"D&!J$./)G&78
( )
n
n
n
b} ) 3{
n
{
} b} )
n
∆ϕ
=
∆ϕ
− +
n3nb
Kết luận1`$"D&!J)%&A&%)%&A'0/%)%&78
A5/8$k$G`)%&$./%)%&A'0/1$G`$./%)%&78
&"#$83
@*4NR-.%[%))%:-%
Mt 0/)%1&//4F&&@)%&AJ&4F&(*>J5
Mf1&//`&//`$F&!J&&!67:SK$E$
*) Tài liệu học tập
™št=&_6R/nn7BY7~%45$fYJ
™nšfsf+\\7BY7~%45$fYJ
™ošt=&_6R/Y&Œj9$_<_A2&_"D&n`&!EL0E%Q !*SFEL
Y7~%45$fYJ
*) Câu hỏi, bài tập, nội dung ôn tập và thảo luận
A. Câu hỏi ôn tập
3|$(!+I$./%)%&•YJ4&&$@&$(!+A"D&•
n3t'*+&//$./)G&%)%&•E&//$.//)G&%)%&*#•
o3)%+"#&&//T%)%&Al&+"#&&//T%)%&
!-)l$•
b3d"S&$./*>$"T$&@)%&+"#&&//•
3d%$"-&%0/)%+"#&&//T&@! ,*C•&"‘&
&"-&BAC)C&"-&4)G&!:&%)%&•
3e)%&//S,?&,?&$G!J4*K&!L,?&$G!J4
/!L`,`AOYC]3
B. Bài tập
3RJ&@)%&!-)l$%A/%)%&$G"T$)G&µ,3d%)%&A/
*C•)&)&$%$/m,,$%$!'&@)%&3_A,J,!=)&)&
$%$,=;&$://*C,J!8rm,&"D/!"#$,J+&`&//3
a
/_>*&$%$&V//`)%&J+&!=A&*K&*>•
…%$!66A>$.//`!<•
$t=A"T$,JA&/*CS,J,?&;&A&)$G/,=)&)&4
nµ,$G$)(m3e!G+&`&//$G&1/!L•
4Y*K&!=,?&,8!L*&&V/,,=;&$://*C
,J$(?&1'AJ&$./,k`&//`&D€mb,,3_>$)($./$(?&•
n3d,J$F,%)%&!-)l$)&)&"T$)G&λ=µ,,J,&,?&
,=)&)&c,-i&A&*K&*>$G$)(=o4"T,J&G$T=o
3
f?'4?($./,&,?&c&/! $F,/78$G$"D&!J)%&
$E$!8•
o3N)%&Al&$G"T$)G&!'A&$F&**boµ,!\µ,!!
K&&G$,J,?&$G$)(=oo$G!J4*K&!L4=onµ,-i&
A&*K&*>3f?T"T$)G&λ1%)%&78I,?&)%&(!T
&"D0/)%•
b3d,J$F,%)%&!-)l$)&)&$G"T$)G&λ=µ,!"#$A2K&
&G$T,J,=,.$)(=3…%$!6&G$&&$./,3|Ac&
*&$%$&V//`)%&c&,,&G$&&$./,A(Q)α≈α3
3e&$%$&V//*CA&,%&//•&/=,,3e&$%$I,
0/)%T,=;&$://*Cr=o,3t=A"T$,JA&/*C)%&,J,?&$G
/,=)&)&$)(='4C=µ,3N)%&$+&$G"T$
)G&λ=µ,3f^7%$!66A>$./`)%&:/3
3d,J$F,%)%&!-)l$)&)&"T$)G&λ=µ,,J,&,?&
,=)&)&c,-i&A&*K&*>$G$)(=o4"T,J&G$=
3f?
'4?($./,&,?&c&/! $F,/78$G$"D&!J)%&$E$
•
y3_A,J(,.;&$)(=&"D/.,J,&,?&A&
)$G'4*K&!L$)(€=b3RJ$F,)%&!-)l$)&)&$G"T$)G&λ=
yµ,$K&&G$T,&,?&3f^7%$!6'4 $./,&,?&Ac&
4&//$F,/78$G$"D&!J)%&$E$!83
a3t !'4$./,J,?&A&)&"D/!=A"T$,JA&/*C$./
,%&//•&,J,?&$G'4*K&!L$)(=3N)%&$
+&$G"T$)G&λ=µ,3Y&"D/0/)%(`)%&$>&V/646$$ '
6A>$./`)%&::&T9$$"/!=,?&3f^7%$!6'4$./,?&3
\
CHƯƠNG 3
Sự nhiễu xạ ánh sáng
\yn
*) Mục tiêu:
+)
!"#$!6&‚/+"#&Œ78%)%&!'*+! 7A/+
"#&Œ78%)%&3
45&&f&C)BAC)C! &>$+"#&Œ78%
)%&3
45&"-&%!T$<BAC)C! >!J4/!J&)%&8,J
! ,A&,KA"D&3_I!G*)%+"#&Œ78$./)G&$<Œ78$./)G&
;&3
!"#$:&45&$./+"#&Œ78$%$i;&,%0/&L
$%$iŒ78/…3
!"#$Z&)(`&$./$%$45&$50/&2$3
+)
WP!"#$$%$!T$<$%$1P,K>&+,Œ783
~!"#$$%$'Œ78%)%&3
+)
>$,K2$>$$E$&$:A/!L*:$$./$"-&3
3.1. Hiện tượng nhiễu xạ ánh sáng, nguyên lí Huysghen - Fresnel
*Z, !d?
j;(0_)a0b!"*+!kJ$$W
W>45rF&*,*`!`,.&,Jk‰A,J(,1/A2!G,J$F,
%)%&%A/I,J&@0/(*>3t=,lS&*%7/F&)%&12$
ƒ!"#$%)%&3
W>45nt=,J!84`*,8,)&)&T,J*C)%&3/!84`/
!=,J,0/)%•)&)&T!84`3e0*0/)%A&F&G&/
($GV&`)%&7C*P3
Y7Qd/>45A!'>&+,Œ78%)%&/(%)%&*K&
`C!6A';&3R$l$Gk‰!84`,$%$$!G&/AO
`8$"D&!J)%&A,0/)%3
!"*+!kJ$$Wf+"#&Œ78%)%&+"#&%)%&
+$*?"-&A';&A&,KA"D&!@&>*&=$3
*;<=ZK
Rk! ,$./,KA"D&,,=!<)G&!8T$G 7C,
",J&@)G&&3R=!<)G&,T/1$./
($$%$)G&%$<&3
**;<=ZKeJ"KK
;!)P%QW|!J/$./&@:$(
!J/4&@E$‰&`A/86A>$./&@:$(3
_) ;$!.MXW
~)i :$$./4/!J&)%&S&@
n
MX
( )
• „$) n _= π
o3
M…Q,J,=*>σ!G/0/&25]LaL$$,=$G148&
!"#$$2FJ$%$5 →,k,J! ,A,=5!'AS&@
%)%&:$(3r/!J&)%&8R
R
„ A
• $)n
A _
= π −
÷
λ
AmRo3n
„
R
=„vA1,!J4O&Z&"#&%)%&8,J! ,!GA&*K&&/[+
&6$T4+>$$./,=)G&0/! ,!G3
Md/,=5σ'<K$F&?4σ4σ$",J&@53|
:$4/!J&)%&4&@5c,8R)P&`A/Sj
( )
„ A A‡
4• 4 3 $)n 4
A A‡ _
+
σ = χ π − σ
÷
λ
A€=Rjo3o
χ+)5J$$%$&G$θθ‡θ&G$,S%$./,=σSRT
"-&$./)G&TRθ‡&G$,S%$./,=σ8RT"-&)G&Œ
78Rj3
χ$E$!8*θ=θ‡=χ=*θ‡≥πvn→4σ%)%&,8(C"-&%
*K&%)%&C$%$"-&,T%,J&G$T-πvn3
Mr/!J&4&@&`A/8j
( )
j
„ A A‡
• 4• 4 $)n 4
A A‡ _
σ σ
+
= σ = χ × π − σ
÷
λ
∫ ∫
o3b
Xq! ,&
Md:&?!"#$%)%&*&=$)P6Œ783
M_1,!"#$ :$4/!J&)%&→>!"#$$"D&!J)%&8($:! ,A&
*K&&/3
3.2. Phương pháp đới cầu Fresnel, phương pháp giản đồ véc tơ
*X '99\CJ"KK
9$! [!
X…Q%$45&$./)G&%)%&%A/I&`A/8,J! ,j!G
Md2,=σAF&,=!<)G&,=$<`,3
M~)ij$l,=$<σ8! ,R
3(
j,`,PV&1$<$G%*>jR
=
A
jR A
n
λ
= +
n
jR A n
n
λ
= +
H
*
jR A *
n
λ
= +
YV&1$<$l,=$< σ
V&!T$<&2 [!'R@%3
_K- [!'MX
Mt=
* *
R f =
!J$/$./$?,$<R
R
*
R
*
‡
M|%*>!T$<ρ
*
=R
*
f
*
n
MX
*
}A
*
} A
λ
ρ =
+
T*=noHo3
M_>$(%*>$./$%$!T$<›+T$Z$/$%$)&3
r+>$$./,J!T$<
}A
} A
π
∆ = λ
+
o3
M_>$(nr+>$$./$%$!T$<&<c&/3
_!P ;d+L
XY7Q
M_%$45&$./)G&%A/I$%$!TA&”&i!j$&Q&G$&V/%
$./,=!TT"-&A'!j$&T/
x/
n
x/
o
Hx/
*
Hx/
3
|!J4/!J&Lj
j
/ /
/
n n
= ±
o3y
R{∼
n
j
/
”18j! ,)%&$œ8j! ,3
)_( [!R@%
X…Q,=)G&$<6$lS,J,*K&A&)$GkAO‰%*>ρ
3!T
BAC)C$:/!"#$Ak
n
3
} A
ρ
= +
÷
λ
o3a
A&!G}A
*&$%$I&@)%&TkIkT! ,jλ"T$)G&
%)%&)!T$:/Ak$G%*>ρ
3
*X '99`!97%)GUK)"
Rk,J4/!J&
( )
7 / $) = ω + α
$G 4Œc&C$A
/
r
3
eL&#'4/!J&7
4/!J&L&#
/ /=
∑
r r
&G$,C$A
/
r
,T
A5$‰7)P//!<$./4/!J&L
3.3. Sự nhiễu xạ của sóng cầu (nhiễu xạ Fresnel)
**;d?7)-f"g
9*: ;$!.
MY%l@2U5;(%m [!R@%=oH/$G!J)%&Lj
j
/ / /
/
n n n
= + >
o3\
r!G$"D&!J)%&8j)PT-$"D&!J)%&{
**K&$G,$l&V/&@
! ,j3
MY%l@2U5;(n [!R@%=nbH1!J4/!J&)%&L&
#8j
j
/ / /
/
n n n
= − <
j
{
{ {
b
→ < =
o3
W$"D&!J)%&8j)P?-$"D&!J)%&{
8j**K&$G,$l3
nn
Kết luận! ,j$G )%&-/-)T**K&$G,$lFJ$
*>$"T$$./kAO3
MG!kJ
Xt=8j,J,0/)%•K&&G$TA5$73
Xf1Œ78@5!b $%g *+@B!$ b%!3$ *+!.%&
!=5$%m%& !=5(!n0&3%&f02@2!kJ
(!0&$J/g
*;d?7)--&"g+F")c
t=&V/! ,0/)%j,J,AO*K&A&)!‚/AO$l)%&%
*>A
)/$jA5$$./,AO3cG$OLY(*: ;$!.1o3o3
9*: ;$!.
X~)i,AO$C,(,!TBAC)C!<
, o
, ,
j , n
/
/ /
/ / 333
n n n
+
+ +
+
= + − + +
÷
o3
MWT)!TBAC)C*K&6$CT
,
j
/
/
n
+
≈
_($$%$! ,AA5$7$./,AOS)/
,AO!'$%$! ,)%&,=$4FA5$c,
A&,'G&12$3
MG!
ŽA/&T&V/G&12$,'!"#$A2
)%&C0/&12$$G7(+V&O&AO
Œ 784>!7:&0/7$./$%$ A>>
&+,!@&`,7C*P/$G`,KK! ,
)%&c,AA5$!7:&7$./,AO3
3.4. Nhiễu xạ của sóng phẳng (nhiễu xạ Fraunhofer)
|A>>&+,1o3b/(148&$./
Œ785J$148&*>$"T$$./k
A,r"T$)G&%)%&T3
*>;d?$%-+Kh9
~)i$G,J$F,/)%&!-)l$)&)&TA2
K&&G$,=*C•1$V$G!J4K8
!JAJ&/!G3N)%&T)P6Œ780/*CC
V&&G$ϕ*%$/3_C&f&C)XBAC)C ,k
! ,$./,=)G&!8T*C,J&@%)G&:$(
A'!,2"-&3
NOLY(*: ;$
Md/*CV&4K$F&•)&)&T *C
$8„|$G!JAJ&471o3
MR=)G&AF&T,=*C)G&:$(4$%$4
%A/8$%$! ,A,=*C$G$F&/3
⇒
|!J4/!J&)%&4J*C&`A/SB
ϕ
no
MXX
MX
MX
/ )
)
/ )
• e )
/ )
π ϕ
π ϕ
λ
= ω −
÷
π ϕ
λ
λ
o3n
→$"D&!J)%&C"-&Œ78ϕ)P
n
n
)
{ {
ϕ
α
=
α
T
/ )π ϕ
α =
λ
o3o
_A&!G
n
n
) α
α
I/)Œ78
W$"D&!J)%&A,0/)%5J$&G$ϕ:$5J$6A>$./
! ,B
ϕ
$GV&&%A6$E$!8$E$ {
$"D&!J)%&C"-&$./$F,/T
ϕ=3
?!b/!"O !0&O!=!kJW
Xt'*+$E$ Œ78
) *
/
λ
ϕ =
T*=±±n±oH o3b
W$L*S
ϕ
o5p !b/!"XO!=0b*: ;$F!
*: ;$qr
Xt'*+$E$!8Œ78
)
π ϕ
=
λ
o3
e!G
• •
ϕ
=
{ {
ϕ
=
3
W! !=5R
r
U0[!
ϕ
=
rO !-*: ;$!$@6%[KFU
%&0Y$@Y59O !&2B!%&O !_
Xd%$$E$!8C$G&%A6+!?-')T$E$!8$>&,
/3d%$$E$!8&2O !Laf=$$G 7%$!6&<!9&C$K&:$
( )
) n*
n/
λ
ϕ = +
o3
Xd"D&!J"-&!$./$%$$E$!85
( )
*
n
n
{ b
{
n*
=
+ π
o3y
X|'AJ&$./$E$!8$>
n
4 Š3
/
λ
=
Š$E$./(*>o3a
M)0Y!kJ
M! ,)%&→Œ78,J4^! ,)%&7C*P/c,A,J
!"D&;&K&&G$T,Q*C3
M,J*C)%&•)&)&T*CŒ78→Œ78&@,V&8$)%&
$G$"D&!J&,4<)&)&T/)&)&T$%$*C)%&$%$/c&
V&*&3
W`)%&A&`,AJ&&(!KV&`)%&*%$3tJAJ&$./`)%&A&`,
!"#$7%$!6So3a ;@;-G!kJ35;/sL
*>;d?$%-f"g
X_>&+,d$F,/!-)l$)&)&K&&G$,J,$l$G*Q
,JkAO3
nb
Xf1Œ78
M$G48&,J+)%&AOc,8! ,B$./(*>
n
/0/G,J
O&AO)%&7C*P/3
Md"D&!J)%&$./V&O&AOA(Q)T$"D&!J$./)%&A&`,
&,*%/*$&7/`,3
Mt"D&*>kxxλ18`,B$./,0/)%•/0/)%!"#$,JA†Q
$./&@)%&→$G 7C,Ac&Œ78AF&T0/&12$3
*>*;d?$%+Kh9
|A>>&+,"1Po3
E`$"D&!J)%&A,0/)%
Md%$*C$G $$%$&@*#$
&+"#&Œ78&`S,J*C$O$G
+"#&&//&`S$%$*C3
MW11Œ780/,J*C*K&5
J$6A>$./*C$%$*C!'$$E$
Œ788! ,A,•,ϕ?/,^!'*+3
) *
/
λ
ϕ =
T*=±±n±oHo3\
d%$$E$ `&D!"#$&2O!=_
Mϕ=O !_!f
X…Q//*#7(%I/*C**!! ,R//!G$G+0/&
A11o3
4)∆ = ϕ
o3n
MY
4) *∆ = ϕ = λ
14/!J&)%&4//!G&`A/$4/!J&4$%$/
*#I$%$*C*%$&`A/8R!@&//! ,R)P)%&O !_3W6A>$./
$%$$E$!8$>
) *
4
λ
ϕ =
T*=±±nHo3n
M~V//$E$ $>$G $G'$E$!8$>&V//$E$!8$>$G$E$
$E$ 53
MRJ$E$!8$>&V/ϕ=
Md%$$E$ $>S/$E$!8$>&V/
) *
/
λ
ϕ =
*=±±nH
M~V//$E$ $>*'/$G'$E$!8$>
) *
4
λ
ϕ =
*=±±nH)
$E$!8$>$G!"#$5J$[)4v/3RJ$E$!8:*!G*K&$O0/)%
!"#$$E$!8!GAF&T$E$ :(
) *
4 /
λ λ
ϕ = =
/
4
*
/
=
3|$$/($./
$E$!8$O0/)%!"#$c&
*
,/7
=*−
M$E$!80/)%!"#$)P =n*
,/7
M=n*−o3nn
A&!G*(&%A6&?-=$c&4v/3
M~V//$E$!8$>*'/$GY−$E$ 5Y−n$E$!853
n
MX