![]()
![]()
![]()
![]()
![]()
M R.
H
i
I
(M) i > dim Supp
R
M (R, m)
M H
d
m
(M) = 0, d = dim M.
M i H
i
m
(M) = 0.
I (R, m) dim R = n
H
n
I
(R) = 0 dim
R/(I
R + P) ≥ 1
P m
R.
M H
i
I
(M)
H
i
I
(M)
i H
i
I
(M)
(R, m)
M R dim M = d.
M
E(R/m)
H
i
m
(M) i ≥ 0.
H
d
I
(M).
H
i
m
(M)
H
d
I
(M)
¨o
R
A Att
R
A
H
i
m
(M)
H
d
I
(M) M
R.
H
i
m
(M) H
d
I
(M)
R A
Ann
R
(0 :
A
p) = p p Ann
R
A.
H
i
m
(M)
R
H
i
m
(M)
R
Att
R
H
i
m
(M)
Att
R
H
i
m
(M)
P
R Att
R
H
i
m
(M)
P ∩ R Att
R
H
i
m
(M).
H
i
m
(M) R.
Att
R
H
i
m
(M)
Att
R
H
i
m
(M)
R
H
i
m
(M) H
i−dim R/p
pR
p
(M
p
).
H
i
m
(M)
R
H
i
m
(M).
H
d
m
(M) R
R
H
d
I
(R)
R.
H
d
I
(M) R
H
d
I
(M) R
R
H
i
m
(M)
H
d
I
(M)
H
d
I
(M)
(R, m)
M R dim M = d A
R
H
i
m
(M) m
Att
R
H
i
m
(M) Att
R
H
i
m
(M)
R
H
i
m
(M). R
M
M
Ass
R
M =
p∈Ass
R
M
Ass
R
(
R/p
R).
A
Att
R
A =
p∈Att
R
A
Ass
R
(
R/p
R) (1)
A = H
i
m
(M)
A
f
a
: Spec(
R) → Spec(R)
R (R
, m
) n
K
i
(M) R Ext
n−i
R
(M, R
) i ≥ 0.
K
i
(M) i M K(M) := K
d
(M)
M.
H
i
m
(M)
∼
=
Hom
R
(K
i
(M), E(R/m)) i
E(R/m) R/m.
K
i
(M)
Att
R
H
i
m
(M) Att
R
H
i
m
(M)
Att
R
H
i
m
(M) =
p∈Att
R
H
i
m
(M)
Ass
R
(
R/p
R). (2)
R
R M i ≥ 0
R
R A
N-dim
R
A A
R R
min Att
R
H
i
m
(M) = min
p∈Att
R
H
i
m
(M)
Ass
R
(
R/p
R) R
M i ≥ 0
dim(R/ Ann
R
H
i
m
(M)) = N-dim
R
H
i
m
(M) R
M i ≥ 0
i ≥ 0
M Psupp
i
R
(M)
Psupp
i
R
(M) = {p ∈ Spec(R) : H
i−dim R/p
pR
p
(M
p
) = 0}.
Psupp
i
R
(M)
H
i
m
(M)
M
Psupp
i
R
(M) H
i
m
(M)
Psupp
i
R
(M)
Psupp
i
R
(
M).
R R
Psupp
i
R
M = {P ∩R | P ∈ Psupp
i
R
(
M)} R
M i ≥ 0
p R p
R R
p
M
p
R
p
M
p
= 0 p ⊇ Ann
R
M.
p ⊇ Ann
R
A p = m A
p
= 0.
p ∈ Spec(R)
F
p
: M
R
→ M
R
p
R
R
p
F
p
R A
F
p
F
p
R
F
p
R R
p
F
p
(A) = 0 p ⊇ Ann
R
A R A
R →
R
p, q ∈ Spec(R), Q ∈ Spec(
R)
q ⊆ p Q ∩ R = q P ∈ Spec(
R) Q ⊆ P
P ∩ R = p.
p ∈ Spec(R)
F
p
: M
R
→ M
R
p
R →
R
R
F
p
p ∈ Spec(R)
R
R
p
H
i−dim(R/p)
pR
p
(M
p
)
H
i
m
(M)
H
i
m
(M).
H
i
m
(M)?
p ∈ Spec(R)
F
p
: M
R
→ M
R
p
R F
p
(H
i
m
(M))
F
p
(H
i
m
(M)) = 0 p ⊇ Ann
R
H
i
m
(M) i
R M R
R
R
R A
Ann
R
(0 :
A
p) = p p ⊇ Ann
R
A.
H
d
m
(M)
R/ Ann
R
(H
d
m
(M)) R
H
dim R
m
(R) i
H
i
m
(M).
H
i
m
(M)
Psupp
i
R
(M) = Var
Ann
R
H
i
m
(M)
H
d
I
(M)
R
H
d
I
(M)
M.
0 =
p∈Ass
R
M
N(p) 0
M
Ass
R
(I, M) =
p ∈ Ass
R
M | dim(R/p) = d,
I + p = m
.
N =
p∈Ass
R
(I,M)
N(p). Ass
R
(I, M)
M N
0
H
d
I
(M)
R/ Ann
R
H
d
I
(M)
√
I + p = m
p H
d
I
(M);
R/ Ann
R
H
d
I
(M) H
d
I
(M)
∼
=
H
d
m
(M/N).
H
dim R
I
(R)
R
Att
R
H
dim R
I
(R) = {P ∈ Ass(
R) | dim(
R/P) = dim R,
I
R + P = m
R}.
H
d
I
(M)
H
d
I
(M)
Att
R
H
d
I
(M) =
p ∈ Ass
R
M | dim(R/p) = d,
I + p = m
.
H
d
I
(M).
F
p
(−) = Hom
R
Hom
R
(−, E(R/m)), E(R/p)
R R
p
E(−)
R F
p
(H
d
I
(M))
∼
=
H
d−dim R/p
pR
p
(M/N)
p
.
H
d
I
(M) Cos
R
(H
d
I
(M)),
Cos
R
(H
d
I
(M)) =
p ∈ Spec(R) | H
d−dim(R/p)
pR
p
(M/N)
p
= 0
,
N
H
d
I
(M)
H
d
I
(M)
Cos
R
(H
d
I
(M)) = Var(Ann
R
H
d
I
(M)).
Cos
R
(H
d
I
(M))
Spec(R)
H
d
I
(M) Cos
R
(H
d
I
(M))
I = m
R
Cos
R
(H
d
I
(M)) H
d
I
(M)
q R (0 :
A
q)
R
(0 :
A
q
n+1
) N-dim
R
A n
Θ
q
A
(n) N-dim
R
A = s.
Θ
q
A
(n) =
R
(0 :
A
q
n+1
) =
e
(q, A)
s!
n
s
+ s
n 0 e
(q, A) e
(q, A)
A q
Psupp
i
R
(M)
H
i
m
(M).
Cos
R
(H
d
I
(M))
H
d
I
(M) N
Ass
R
(I, M)
q m H
d
I
(M)
e
(q, H
d
I
(M)) =
p∈Cos
R
(H
d
I
(M))
dim(R/p)=d
R
p
H
0
pR
p
(M/N)
p
e(q, R/p).
e
(q, H
d
I
(M)) = e(q, M/N) =
p∈Ass
R
(I,M)
R
p
(M
p
)e(q, R/p).
(R, m)
R m R M R
d A R L R
I R Var(I)
R I.
R L L = 0
x ∈ R x L
x ∈ R x L
p L p
L R L = L
1
+ . . . + L
n
L
i
p
i
L,
L = 0 L L
p
i
L
i
i = 1, . . . , n.
L
1
, L
2
p L L
1
+L
2
p L. L
{p
1
, . . . , p
n
}
L
L Att
R
L. L
i
,
i = 1, . . . , n L. p
i
Att
R
L p
i
L
L
i
L.
L R
Att
R
L = ∅ L = 0.
min Att
R
L = min Var(Ann
R
L)
dim(R/ Ann
R
L) = max{dim(R/p) | p ∈ Att
R
L}.
0 → L
→ L → L
→ 0 R
Att
R
L
⊆ Att
R
L ⊆ Att
R
L
∪ Att
R
L
.
A R r ∈
R u ∈ A. (r
n
)
n∈N
R r. Ru k
m
k
u = 0. n
0
r
n
− r
m
∈ m
k
m, n ≥ n
0
. r
n
u = r
n
0
u n ≥ n
0
.
ru = r
n
0
u. A
R
A R
A
R A
R
R A
R R →
R
R A. A
R
R
Att
R
A = {P ∩ R |P ∈ Att
R
A}.
A A.
A = 0
R
(A) < ∞
Att
R
A = {m}.
I R
R L Γ
I
(L) =
n≥0
(0 :
L
I
n
) f : L → L
R f(Γ
I
(L)) ⊆ Γ
I
(L
))
Γ
I
(f) : Γ
I
(L) → Γ
I
(L
) Γ
I
(f)(x) = f(x)
x ∈ Γ
I
(L) Γ
I
(−)
R I
i ≥ 0
i Γ
I
(−)
i I H
i
I
(−).
H
i
I
(−) R L H
i
I
(L)
i L I
H
i
I
(−) H
0
I
(L)
∼
=
Γ
I
(L).
I, J R
√
I =
√
J H
i
I
(L) = H
i
J
(L)
f : R → R
L
R
L
R f
r ∈ R m
∈ L
f(r)m
.
R H
i
IR
(L
) H
i
I
(L
), IR
R
f(I).
i L
R R
f : R → R
L
R
I R. i ≥ 0
H
i
IR
(L
)
∼
=
H
i
I
(L
) R
f : R → R
f : R → R
R
H
i
I
(L) ⊗
R
R
∼
=
H
i
IR
(L ⊗
R
R
)
i ≥ 0
H
i
I
(L) = 0 i > dim Supp
R
L
M = 0 d = max{i|H
i
m
(M) = 0}
M = 0 depth(I, M) = min{i|H
i
I
(M) = 0}.
I
dim R = n I R
H
n
I
(R) = 0
P
R dim
R/P = n
dim
R/(I
R + P) > 0.
H
i
m
(M) R i ≥ 0
H
d
I
(M) R I R
M = 0 dim M = d.
H
d
m
(M) = 0
Att
R
(H
d
m
(M)) = {p ∈ Ass
R
M | dim(R/p) = d}.
p ∈ Supp
R
(M) dim R/p = t
i ≥ 0 q q ⊆ p
qR
p
∈ Att
R
p
(H
i
pR
p
(M
p
)) q ∈ Att
R
(H
i+t
m
(M))
p ∈ Ass
R
M dim R/p = t.
H
t
m
(M) = 0 p ∈ Att
R
H
t
m
(M).
H
dim R
I
(R)
R.
I R
Att
R
(H
d
I
(M)) = {P ∈ Ass
R
M | dim
R/P = d,
I
R + P = m
R}.
R
p ⊂ q R
p = p
0
⊂ p
1
⊂ . . . ⊂ p
n
= q p q
i = 0, . . . , n −1 p
i
p
i+1
.
n
R
p ⊂ q R p q
K K
K
R R
p
p ∈ Spec(R).
R R
R dim R/q = dim R/p + ht p/q
p, q q ⊆ p
R
R
R n
R[x
1
, . . . , x
n
]
R
R
R
dim
R/P = dim
R P ∈ min Ass
R R
depth R = dim R.
R
R
R