Tải bản đầy đủ (.pdf) (40 trang)

phương trình vô tỉ luyện thi đại học

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (727.61 KB, 40 trang )

www.VNMATH.com
Một số phương pháp giải phương trình vô tỷ

Nguyễn Văn Rin – To¸n 3A

LỜI NĨI ĐẦU:
Phương trình là một mảng kiến thức quan trọng trong chương trình
Tốn phổ thơng. Giải phương trình là bài tốn có nhiều dạng và giải rất linh
hoạt, với nhiều học sinh kể cả học sinh khá giỏi nhiều khi còn lúng túng
trước việc giải một phương trình, đặc biệt là phương trình vơ tỷ.
Trong những năm gần đây, phương trình vơ tỷ thường xun xuất hiện
ở câu II trong các đề thi tuyển sinh vào Đại học và Cao đẳng. Vì vậy, việc
trang bị cho học sinh những kiến thức liên quan đến phương trình vô tỷ kèm
với phương pháp giải chúng là rất quan trọng. Như chúng ta đã biết phương
trình vơ tỷ có nhiều dạng và nhiều phương pháp giải khác nhau. Trong bài
tập lớn này, tơi xin trình bày “một số phương pháp giải phương trình vơ
tỷ”, mỗi phương pháp đều có bài tập minh họa được giải rõ ràng, dễ hiểu;
sau mỗi phương pháp đều có bài tập áp dụng giúp học sinh có thể thực hành
giải tốn và nắm vững cái cốt lõi của mỗi phương pháp.
Hy vọng nó sẽ góp phần giúp cho học sinh có thêm những kĩ năng cần
thiết để giải phương trình chứa căn thức nói riêng và các dạng phương trình
nói chung.

Page 1


www.VNMATH.com
Nguyễn Văn Rin Toán 3A

Một số phương pháp giải phương trình vô tỷ


A. BI TON M U:
Gii phng trỡnh: 1 

2
x  x 2  x  1  x (*)
3

(ĐHQG HN, khối A-2000)
Giải:
Điều kiện: 0  x  1

 Cách 1:
2

2
 2

(*)  1 
x  x2   x  1  x
 3

4
4
 1
x  x 2  ( x  x 2 )  1  2 x(1  x )
3
9






 4( x  x 2 )  6 x  x 2  0
 2 x  x 2 (2 x  x 2  3)  0
 x  x2  0

 x  x2  3


2
2
x  x  0
 2
 x  x  9  0( PTVN )

4

x  0
(thỏa điều kiện)

x 1


Vậy nghiệm của phương trình là x  0; x  1 .

 Cách 2:
Nhận xét:

x  x 2 được biểu diễn qua




2

x  1 x



x và 1  x nhờ vào đẳng thức:

=1+2 x  x 2 .

Đặt t  x  1  x (t  0) .
t 2 1
 x x 
.
2
2

Phương trình (*) trở thành:
t  1
t2 1
 t  t 2  3t  2  0  
3
t  2
Với t  1 ta có phương trình:
1

x  0
(thỏa điều kiện).

x  1  x  1  2 x  x 2  0  x  x2  0  
x 1

Với t  2 ta có phương trình:

Page 2


www.VNMATH.com
Một số phương pháp giải phương trình vô tỷ

Nguyễn Văn Rin – To¸n 3A

9
9
 x 2  x   0( PTVN ) .
4
4
Vậy nghiệm của phương trình là x  0; x  1 .
x  1  x  2  2 x  x2  3  x  x2 

 Cách 3:
Nhận xét:

x và 1  x có mối quan hệ đặc biệt, cụ thể

2

 x 


1 x



2

1 x



2

 1.

(*)  2 x . 1  x  3 1  x  3 x  3





 1  x 2 x  3  3 x  3 (1) .
9
khơng thỏa mãn phương trình (1).
4
3 x 3
(2) .
Do đó, (1)  1  x 
2 x 3
3t  3
Đặt t  x (t  0), (2)  1  x 

.
2t  3
x

Ta có:

2

 x 

1 x



2

1

2

 3t  3 
t 
 1
 2t  3 
 t 2 (4t 2  12t  9)  9t 2  18t  9  4t 2  12t  9
 4t 4  12t 3  14t 2  6t  0
 t (2t 3  6t 2  7t  3)  0
2

 t (t  1)(2t 2  4t  3)  0

t  0
.

t  1

Với t  0 ta có x  0  x  0 (thỏa điều kiện).
Với t  1 ta có x  1  x  1 (thỏa điều kiện).
Vậy nghiệm của phương trình là x  0; x  1 .

 Cách 4:
Nhận xét:

x và 1  x có mối quan hệ đặc biệt, cụ thể

2

 x 

Đặt a  x (a  0); b  1  x (b  0) .
Ta có hệ phương trình:
 2
3  2ab  3(a  b)
2ab  3(a  b)  3
1  ab  a  b


 3
2
2
(a  b)  2ab  1

(a  b)  3(a  b)  2  0
a 2  b 2  1


Page 3

 1.


www.VNMATH.com
Nguyễn Văn Rin Toán 3A

Một số phương pháp giải phương trình vô tỷ

a b 1

2ab 3(a  b)  3
 ab  0

 a  b  1
  a  b  2


3
a  b  2

 ab  2


 a  1


b  0
2
.
 a, b là 2 nghiệm của phương trình X  X  0  
 a  0

 b  1

a  b  2
3

2
(Trường hợp 
3 loại vì 2  4.  0 ).
2
ab  2


a  1
 x 1
 x  1 (thỏa điều kiện).
Với 
ta có 
b  0
 1 x  0



 x 0

 x  0 (thỏa điều kiện).

 1 x  1

Vậy nghiệm của phương trình là x  0; x  1 .
a  0
ta có
b  1

Với 

 Cách 5:
Nhận xét: Từ
Đặt

2

 x 

x  sin a, 0  a 

1 x


2



2


 1 , ta nghĩ đến đẳng thức: sin 2 a  cos2 a  1 .

.

2
3
 3  2sin a.cos a  3sin a  3cos a (vì cos a  0)

Phương trình (*) trở thành: 1  sin a. 1  sin 2 a  sin a  1  sin 2 a
 (sin a  cos a )2  3(sin a  cos a)  2  0
sin a  cos a  1


 sin a  cos a  1  2 sin( a  )  1
4
sin a  cos a  2
  
 a  4  4  k 2

1
 sin(a  ) 

( k  )
4
2
 a    3  k 2


4
4

a  k 2
a0




( k  )  

 (vì 0  a  )
 a   k 2
a 
2

2

2
Với a  0 ta có x  0  x  0 (thỏa điều kiện).

Page 4


www.VNMATH.com
Một số phương pháp giải phương trình vô tỷ

Nguyễn Văn Rin – To¸n 3A

Với a  1 ta có x  1  x  1 (thỏa điều kiện).
Vậy nghiệm của phương trình là x  0; x  1 .
Qua bài tốn mở đầu, ta thấy có nhiều cách khác nhau để giải một phương
trình vơ tỷ. Tuy nhiên, các cách đó đều dựa trên cơ sở là phá bỏ căn thức và đưa

về phương trình đơn giản hơn mà ta đã biết cách giải. Sau đây, tôi xin trình bày
một số phương pháp cụ thể để giải phương trình vơ tỷ.
B. MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH VƠ TỶ
I.
PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG
 Hai phương trình được gọi là tương đương nếu chúng có cùng tập
nghiệm.
 Một số phép biến đổi tương đương:
 Cộng, trừ hai vế của phương trình với cùng biểu thức mà khơng
làm thay đổi tập nghiệm của phương trình.
 Nhân, chia hai vế của phương trình với cùng biểu thức khác 0
mà khơng làm thay đổi điều kiện của phương trình.
 Lũy thừa bậc lẻ hai vế, khai căn bậc lẻ hai vế của phương trình.
 Lũy thừa bậc chẵn hai vế, khai căn bậc chẵn hai vế khi hai vế
của phương trình cùng dương.
1. Lũy thừa hai vế của phương trình:
 2 k 1 f ( x)  g ( x )  f ( x )  g 2 k 1 ( x) .




 g ( x)  0
.
f ( x )  g ( x)  
f ( x)  g 2 k ( x)

2 k 1 f ( x )  2 k 1 g ( x )  f ( x )  g ( x ) .

2k


2k

 g ( x)  0
.
f ( x)  2 k g ( x )  
 f ( x )  g ( x)

 Thông thường nếu ta gặp phương trình dạng : A  B  C  D , ta
thường bình phương 2 vế, điều đó nhiều khi cũng sẽ gặp khó khăn.
 Với phương trình dạng: 3 A  3 B  3 C và ta thường lập phương hai vế để
đưa phương trình về dạng: A  B  3 3 A.B 3 A  3 B  C và ta sử dụng





phép thế : 3 A  3 B  3 C ta được phương trình hệ quả:
A  B  3 3 A.B.C  C
Bài 1: Giải phương trình:
Giải:
Điều kiện: x  1 .

x  1  x  10  x  2  x  5 (*)

Page 5


www.VNMATH.com
Nguyễn Văn Rin Toán 3A


Một số phương pháp giải phương trình vô tỷ

(*) 2 x 11 2 x 2  11x  10  2 x  7  2 x 2  7 x  10
 2  x 2  11x  10  x 2  7 x  10
 x 2  11x  14  4 x 2  11x  10  x 2  7 x  10
 x 2  11x  10   x  1
 x  1  0
 x  1
 2

 x  1 (thỏa điều kiện).
2
9 x   9
 x  11x  10  x  2 x  1
Vậy nghiệm của phương trình là: x  1 .

Bài 2: Giải phương trình:
Giải:

3

x  1  3 x  2  3 x  3  0 (*)

(*)  3 x  1  3 x  2   3 x  3
 2 x  3  3 3 ( x  1)( x  2)( 3 x  1  3 x  2)   x  3
 x  2  3 ( x  1)( x  2)( 3 x  1  3 x  2)  0






 x  2  3 ( x  1)( x  2)  3 x  3  0
 3 ( x  1)( x  2)( x  3)  x  2

 x 3  6 x 2  11x  6  x 3  6 x 2  12 x  8
 x  2
Thử lại, x  2 thỏa mãn phương trình (*).
Vậy nghiệm của phương trình là: x  2 .

Bài 3: Giải phương trình: x  3  3x  1  2 x  2 x  2
Giải:
Điều kiện: x  0
Bình phương 2 vế khơng âm của phương trình ta được:
1   x  3 3 x  1  x  2 x  2 x  1 , để giải phương trình này dĩ nhiên là khơng
khó nhưng hơi phức tạp một chút .
Phương trình giải sẽ rất đơn giản nếu ta chuyển vế phương trình :
3x  1  2 x  2  4 x  x  3
Bình phương hai vế ta được phương trình hệ quả :

6 x 2  8 x  2  4 x 2  12 x
 2( x  1)2  0  x  1
Thử lại, x  1 thỏa mãn phương trình.
Vậy nghiệm của phương trình là: x  1 .

 Nhận xét : Nếu phương trình : f  x   g  x   h  x   k  x 

Page 6


www.VNMATH.com

Một số phương pháp giải phương trình vô tỷ

Nguyễn Văn Rin – To¸n 3A

Mà có : f  x   h  x   g  x   k  x  , thì ta biến đổi phương trình về dạng :

f  x   h  x   k  x   g  x  sau đó bình phương hai vế, giải phương trình
hệ quả và thử lại nghiệm.
Bài 4: Giải phương trình :

x3  1
 x  1  x2  x  1  x  3
x 3

(1)

Giải:
Điều kiện : x  1
Bình phương 2 vế phương trình ?
Nếu chuyển vế thì chuyển như thế nào?
Ta có nhận xét :

x3  1
. x  3  x 2  x  1. x  1 , từ nhận xét này ta có lời giải
x 3

như sau :

x3  1
 x  3  x2  x  1  x  1

x 3
Bình phương 2 vế ta được phương trình hệ quả:
x  1 3
x3  1
 x2  x  1  x 2  2 x  2  0  
x3
x  1 3

(1) 

Thử lại : x  1  3, x  1  3 là nghiệm của phương trình.

 Nhận xét : Nếu phương trình : f  x   g  x   h  x   k  x 
Mà có : f  x  .h  x   k  x  .g  x  thì ta biến đổi phương trình về dạng:

f  x   h  x   k  x   g  x  sau đó bình phương hai vế, giải phương trình
hệ quả và thử lại nghiệm.
Bài tập áp dụng:
Giải các phương trình sau:
1. x 2  2 x  2 x  1  3x 2  4 x  1 .
2. 3x  1  x  4  1 .
3. 1  x  6  x  5  2 x .

4. x  x  11  x  x  11  4 .
5. 3 12  x  3 14  x  2 .
6. 3 x  1  3 x  2  3 2 x  1 .

2. Trục căn thức:
2.1 Trục căn thức để xuất hiện nhân tử chung:
Một số phương trình vơ tỉ ta có thể nhẩm được nghiệm x0 . Như vậy, phương trình

ln đưa về được dạng tích  x  x0  A  x   0 ta có thể giải phương trình

Page 7


www.VNMATH.com
Nguyễn Văn Rin Toán 3A

Một số phương pháp giải phương trình vô tỷ

A x 0 hoc chứng minh A  x   0 vô nghiệm , chú ý điều kiện của nghiệm

của phương trình để ta có thể đánh giá A  x   0 vơ nghiệm.

Bài 1: Giải phương trình:

3x 2  5 x  1  x 2  2  3  x 2  x  1  x 2  3x  4
Giải:
x   2
Điều kiện:  1  5 .

x  2


Ta nhận thấy :  3x 2  5 x  1   3 x 2  3 x  3  2  x  2  và

x

2


 2   x 2  3x  4   3  x  2 .

pt  3 x 2  5 x  1  3  x 2  x  1  x 2  2  x 2  3x  4



2( x  2)
3x  5 x  1  3  x  x  1
2

2

3( x  2)



x 2  2  x 2  3x  4

.



3
2

  0.
 ( x  2)

2
2

 x 2  2  x 2  3x  4


3 x  5 x  1  3  x  x  1 


 x  2 (thỏa).

Dễ dàng chứng minh được phương trình
3
x 2  2  x 2  3x  4



2
3x 2  5 x  1  3  x 2  x  1

 0 vô nghiệm vì

1  5

VT  0, x  ;  2   
;   .


 2

Vậy x  2 là nghiệm của phương trình.




Bài 2: Giải phương trình:
Giải:

x 2  12  5  3x  x 2  5

5
3
Ta nhận thấy : x=2 là nghiệm của phương trình , như vậy phương trình có thể
phân tích về dạng
 x  2  A  x   0 , để thực hiện được điều đó ta phải nhóm , tách như sau :
Để phương trình có nghiệm thì :

x 2  12  x 2  5  3 x  5  0  x 

pt  x 2  12  4  3x  6  x 2  5  3

Page 8


www.VNMATH.com
Một số phương pháp giải phương trình vô tỷ

x2 4

Nguyễn Văn Rin Toán 3A

x2 4

3 x  2  

x 2  12  4
x2  5  3


x2
x2
  x  2 

 3  0
2
x2  5  3 
 x  12  4
x2
x2
x2
5
Dễ dàng chứng minh được :

 3  0, x  .
3
x 2  12  4
x2  5  3
Vậy x  2 là nghiệm của phương trình.


Bài 3: Giải phương trình : 3 x 2  1  x  x3  2
Giải:
Điều kiện: x  3 2
Nhận thấy x  3 là nghiệm của phương trình , nên ta biến đổi phương trình:


pt  3 x 2  1  2  x  3  x3  2  5


2
x 3

  x  3  x  3 x  9 
  x  3 1 

2
2
3 2
3
x3  2  5
 x  1  2 x  1  4 





x 3
x2  3x  9 

 ( x  3) 1 

0
2
2
3 2
3

x3  2  5 
 x  1  2 x  1  4



x  3

x 2  3x  9
x3
(*)
 1 
 3
2
x 2 5
 3 x2  1  2 3 x2 1  4
 


Phương trình (*) vơ nghiệm vì:
x 2  3x  9
x3
x 3
1
 1
2
2
2
3 2
3 x2 1
x3  2  5

 2 3 x2  1  4
x 1  1  3
 





Vậy phương trình có nghiệm duy nhất x  3 .
2.2. Đưa về “hệ tạm”:
Nếu phương trình vơ tỉ có dạng A  B  C , mà : A  B   C
ở đây C có thể là hằng số, có thể là biểu thức của x .
Ta có thể giải như sau :

Page 9


www.VNMATH.com
Nguyễn Văn Rin Toán 3A

A B
C
A B

Một số phương pháp giải phương trình vô tỷ

A B C

2 A  C 
A  B   , khi đó ta có hệ: 

A B 



Bài 1: Giải phương trình sau : 2 x 2  x  9  2 x 2  x  1  x  4
Giải:
Ta thấy:  2 x 2  x  9    2 x 2  x  1  2  x  4 
Phương trình đã cho có nghiệm  x  4  0  x  4
x  4 không phải là nghiệm của phương trình.
Xét x  4 trục căn thức ta có :
2x  8
 x  4  2 x2  x  9  2 x2  x  1  2
2
2
2x  x  9  2 x  x  1
Ta có hệ phương trình:
x  0
 2x2  x  9  2 x2  x  1  2

2
 2 2x  x  9  x  6  

2
2
x  8
 2x  x  9  2 x  x  1  x  4

7

8

Thử lại thỏa; vậy phương trình có 2 nghiệm : x=0; x= .
7
Bài tập áp dụng:
Giải các phương trình sau :
6.

4  3 10  3 x  x  2

2.
3.

3

2

x  4  x 1  2x  3

2 x 2  16 x  18  x 2  1  2 x  4

7.

1. x 2  3 x  1   x  3  x 2  1

x 2  15  3 x  2  x 2  8

8. 2

3

4.

x 2  1  3x 3  2  3 x  2
5. 2 x 2  11x  21  3 3 4 x  4  0

 2  x  5  x   x   2  x 10  x 

2.3. Phương trình biến đổi về tích:
2.3.1 Sử dụng đẳng thức:
u  v  1  uv   u  1 v  1  0
au  bv  ab  vu   u  b  v  a   0

A2  B 2
Bài 1: Giải phương trình : 3 x  1  3 x  2  1  3 x 2  3 x  2
Giải:
PT  3 x  1  3 x  2  1  3 x  1. 3 x  2
x  0
 3 x 1 1 3 x  2 1  0  
 x  1







Page 10


www.VNMATH.com
Một số phương pháp giải phương trình vô tỷ


Nguyễn Văn Rin – To¸n 3A

Vậy nghiệm của phương trình là: x  0; x  1 .
Bài 2: Giải phương trình : 3 x  1  3 x 2  3 x  3 x 2  x
Giải:
 x  0 , không phải là nghiệm.
 x  0 , ta chia hai vế cho 3 x :
x 1 3
PT  3
 x  1 3 x 1
x
3 x 1
 x 1  3

3
 1 x  1  0   x  1
 x 1
x
3
1


 x

Vậy nghiệm của phương trình là: x  1 .






Bài 3: Giải phương trình: x  3  2 x x  1  2 x  x 2  4 x  3
Giải:
Điều kiện: x  1
PT  x  3  2 x x  1  2 x  ( x  3)( x  1)




x  3  2x



 x  3  2x
x 1 1  0  
 x 1  1




 x  0
x 1
 2
 4 x  x  3  0  
(thỏa).
x0

x 1  1

Vậy nghiệm của phương trình là: x  0; x  1 .
4x

Bài 4: Giải phương trình : x  3 
4 x
x3
Giải:
Điều kiện: x  0
2

Chia cả hai vế cho


4x
4x
4x 
x  3 ta được: 1 
2
 1 
 0
x3
x 3
x3 


4x
 1  4 x  x  3  x  1 (thỏa).
x3
Vậy nghiệm của phương trình là: x  1 .


2.3.2 Dùng hằng đẳng thức:
Biến đổi phương trình về dạng : Ak  B k


Page 11


www.VNMATH.com
Nguyễn Văn Rin Toán 3A

Một số phương pháp giải phương trình vô tỷ

3x x
Bi 1: Gii phng trỡnh :
Giải:
Điều kiện: 0  x  3
Khi đó pt đã cho tương đương:

3x

3

3
1 
10
10  1

x  3x  x  3  0   x 
x
(thỏa).
 
3 3 3
3


3
10  1
Vậy nghiệm của phương trình là: x 
.
3
Bài 2: Giải phương trình sau : 2 x  3  9 x 2  x  4
Giải:
Điều kiện: x  3
 x  3  1  3x
2
Phương trình đã cho tương đương : 1  3  x  9 x 2  
 x  3  1  3 x

1

x 

3
 2
x  1
 9 x  7 x  2  0

(thỏa)


 x  5  97
1

 x 


18


3
 2
 9 x  5 x  2  0
5  97
.
Vậy nghiệm của phương trình là: x  1; x 
18
3

2





Bài 3: Giải phương trình sau : 2  3 3 9 x 2  x  2   2 x  3 3 3 x  x  2 

2

Giải:

PT 



3


x  2  3 3x



3

 0  3 x  2  3 3 x  x  2  3x  x  1 .

Vậy nghiệm của phương trình là: x  1 .
II. PHƯƠNG PHÁP ĐẶT ẨN PHỤ:
1. Phương pháp đặt ẩn phụ thơng thường:
Đối với nhiều phương trình vơ tỉ, để giải chúng ta có thể đặt t  f  x  và chú ý
điều kiện của t . Nếu phương trình ban đầu trở thành phương trình chứa một biến
t và quan trọng hơn ta có thể giải được phương trình đó theo t thì việc đặt ẩn phụ
xem như “hồn tồn ”.
Bài 1: Giải phương trình:
Giải:

x  x2 1  x  x2 1  2

Page 12


www.VNMATH.com
Một số phương pháp giải phương trình vô tỷ

Nguyễn Văn Rin – To¸n 3A

Điều kiện: x  1

Nhận xét: x  x 2  1. x  x 2  1  1
Đặt t  x  x 2  1(t  0) thì phương trình trở thành:
1
t   2  t 2  2t  1  0  (t  1)2  0  t  1
t
Với t  1 ta có phương trình:
x  x 2  1  1  x 2  1  x  1  2 x  2  x  1 (thỏa).
Vậy nghiệm của phương trình là: x  1 .
Bài 2: Giải phương trình: 2 x 2  6 x  1  4 x  5
Giải:
5
Điều kiện: x  
4
t2  5
Đặt t  4 x  5(t  0) thì x 
. Thay vào ta có phương trình sau:
4
t 4  10t 2  25 6 2
2.
 (t  5)  1  t  t 4  22t 2  8t  27  0
16
4
2
2
 (t  2t  7)(t  2t  11)  0

 t  1  2 2
t  1  2 2



(vì t  0 ).
t  1  2 3
t  1  2 3


Với t  1  2 2 ta có: 4 x  5  1  2 2  4 x  4(1  2)  x  1  2
Với t  1  2 3 ta có:

4 x  5  1  2 3  4 x  4(2  3)  x  2  3

Vậy nghiệm của phương trình là: x  1  2; x  2  3 .
Cách khác: Ta có thể bình phương hai vế của phương trình với điều kiện
2x2  6x 1  0
Ta được: x 2 ( x  3) 2  ( x  1) 2  0 , từ đó ta tìm được nghiệm tương ứng.
Đơn giản nhất là ta đặt : 2 y  3  4 x  5 và đưa về hệ đối xứng(Xem phần dặt
ẩn phụ đưa về hệ).
Bài 3: Giải phương trình: x  5  x  1  6
Điều kiện: 1  x  6
Đặt y  x  1(0  y  5) thì phương trình đã cho trở thành:

y 2  y  5  5  y 4  10 y 2  y  20  0
 ( y 2  y  4)( y 2  y  5)  0

Page 13


www.VNMATH.com
Nguyễn Văn Rin Toán 3A

Một số phương pháp giải phương trình vô tỷ



1 21
y
1 17
2

y
( vỡ 0  y  5 )
2

1  17
y 

2
11  17
1  17
1  17
Với y 
 x
ta có phương trình x  1 
(thỏa)
2
2
2
11  17
.
Vậy nghiệm của phương trình là: x 
2






Bài 4: Giải phương trình: x  2004  x 1  1  x



2

Giải:
Điều kiện: 0  x  1
Đặt y  1  x ( 0  y  1 ) phương trình trở thành:
(1  y 2 ) 2  (2005  y 2 )(1  y )2  (1  y ) 2 (1  y ) 2  (2005  y 2 )(1  y ) 2
y 1
2
2
 y  1 ( vì 0  y  1 )
 2(1  y ) ( y  y  1002)  0  
 y  1  4009

2


Với y  1 ta có phương trình 1  x  1  x  0
Vậy nghiệm của phương trình là: x  0 .
1
Bài 5: Giải phương trình: x 2  2 x x   3 x  1
x
Giải:

Điều kiện: 1  x  0
Chia cả hai vế cho x ta được phương trình:
1
1
1
1
x  2 x   3   x   2 x   3  0 (*)
x
x
x
x
1
Đặt t  x  (t  0) phương trình (*) trở thành:
x
t  1
t 2  2t  3  0  
 t 1
t  3

Với t  1 ta có phương trình

1 5
x 
1
2  x  1 5 .
x   1  x2  x  1  0  
2
x

1 5

x 

2

Page 14


www.VNMATH.com
Một số phương pháp giải phương trình vô tỷ

Vy nghim ca phng trỡnh l: x

Nguyễn Văn Rin Toán 3A

1 5
.
2

Bài 6: Giải phương trình : x 2  3 x 4  x 2  2 x  1
Giải:
x  0 khơng phải là nghiệm của phương trình.
1
1

Chia cả hai vế cho x ta được:  x    3 x   2 (*)
x
x


1

phương trình (*) trở thành : t 3  t  2  0  t  1 .
x
1
1 5
Với t  1 ta có phương trình 3 x   1  x 2  x  1  0  x 
.
2
x
Đặt t= 3 x 

Vậy nghiệm của phương trình là x 

1 5
.
2

Bài tập áp dụng:
Giải các phương trình sau:
1. 15 x  2 x 2  5  2 x 2  15 x  11

7. 2 n (1  x) 2  3 n 1  x 2  n (1  x) 2  0

2. ( x  5)(2  x)  3 x 2  3 x

8. x  (2004  x )(1  1  x )2

3.

(1  x)(2  x)  1  2 x  2 x 2


9. ( x  3 x  2)( x  9 x  18)  168 x

4. x  17  x 2  x 17  x 2  9
5.

10. 3x  2  x  1  4 x  9  2 3 x 2  5 x  2

1  x2  2 3 1  x2  3

6. x 2  x 2  11  31
Nhận xét: Đối với cách đặt ẩn phụ như trên chúng ta chỉ giải quyết được một lớp
bài đơn giản, đơi khi phương trình đối với t lại quá khó giải.
2. Đặt ẩn phụ đưa về phương trình thuần nhất bậc 2 đối với 2 biến :
Chúng ta đã biết cách giải phương trình: u 2   uv   v 2  0 (1) bằng cách
2

u
u
 Xét v  0 phương trình trở thành :          0
v
v
 v  0 thử trực tiếp.
Các trường hợp sau cũng đưa về được (1):
 a. A  x   bB  x   c A  x  .B  x 
  u   v  mu 2  nv 2

Page 15


www.VNMATH.com

Nguyễn Văn Rin Toán 3A

Một số phương pháp giải phương trình vô tỷ

Nu thay cỏc biu thc A(x) , B(x) bởi các biểu thức vơ tỉ thì sẽ nhận được
phương trình vơ tỉ theo dạng này .
2.1. Phương trình dạng : a. A  x   bB  x   c A  x  .B  x 
Như vậy phương trình Q  x    P  x  có thể giải bằng phương pháp trên nếu

 P  x   A  x  .B  x 


Q  x   aA  x   bB  x 

Chú ý một số phân tích trước khi đặt ẩn phụ:
x 3  1   x  1  x 2  x  1

x 4  x 2  1   x 4  2 x 2  1  x 2   x 2  x  1 x 2  x  1







x4  1  x2  2x  1 x2  2x  1

4 x 4  1   2 x 2  2 x  1 2 x 2  2 x  1
Bài 1: Giải phương trình : 2  x 2  2   5 x3  1
Giải:

Điều kiện: x  1
Đặt u  x  1, v  x 2  x  1

u  2v
Phương trình trở thành: 2  u  v   5uv  
1
u  v
2

2

2

* Với u  2v ta có phương trình x  1  2 x 2  x  1  4 x 2  5 x  3  0( PTVN ) .
1
* Với u  v ta có phương trình
2

5  37
x 
1 2
2
x 1 
x  x  1  x2  5x  3  0  
(thỏa).
2

5  37
x 
2


5  37
Vậy nghiệm của phương trình là x 
.
2
Bài 2: Giải phương trình sau : 2 x 2  5 x  1  7 x 3  1
Giải:
Điều kiện: x  1
Nhận xét: Ta viết   x  1   x 2  x  1  7





 x  1  x 2  x  1

Đồng nhất ta được 3  x  1  2  x  x  1  7

 x  1  x 2  x  1

Page 16


www.VNMATH.com
Một số phương pháp giải phương trình vô tỷ

Nguyễn Văn Rin – To¸n 3A

Đặt u  x  1  0 , v  x 2  x  1  0 , ta được phương trình:


v  9u
3u  2v  7 uv  
v  1 u
4

Với v  9u ta có phương trình x 2  x  1  9( x  1)  x 2  8 x  10  0  x  4  6 .
1
4

1
4
Vậy nghiệm của phương trình là x  4  6 .

Với v  u ta có phương trình x 2  x  1  ( x  1)  4 x 2  3 x  5  0( PTVN ) .

Bài 3: Giải phương trình : x 3  3 x 2  2

 x  2

3

 6x  0

Giải:
Nhận xét: Đặt y  x  2 phương trình trở thành thuần nhất bậc 3 đối với x và y
x  y
x 3  3 x 2  2 y 3  6 x  0  x 3  3 xy 2  2 y 3  0  
 x  2 y
x  0
 x  2.

x2  x   2
x  x20

x  0
x
Với x  2 y ta có phương trình x  2     2
 x  22 3 .
2
 x  4x  8  0

Với x  y ta có phương trình

Vậy nghiệm của phương trình là x  2; x  2  2 3 .
2.2 Phương trình dạng :  u   v  mu 2  nv 2
Phương trình cho ở dạng này thường khó “phát hiện” hơn dạng trên , nhưng nếu
ta bình phương hai vế thì đưa về được dạng trên.
Bài 1: Giải phương trình : x 2  3 x 2  1  x 4  x 2  1
Giải:
u  x 2
(u  0)

Ta đặt : 
khi đó phương trình trở thành :
v  x 2  1 (v  0)


v  0
2
2
2

2
2
u  3v  u  v  (u  3v)  u  v  2v(5v  3u )  0  
.
 v   3 u (loaïi)

5
2
Với v  0 ta có phương trình x  1  0  x  1 .
Vậy nghiệm của phương trình là x  1
Bài 2: Giải phương trình :
Giải:

x 2  2 x  2 x  1  3x 2  4 x  1

Page 17


www.VNMATH.com
Nguyễn Văn Rin Toán 3A

Một số phương pháp giải phương trình vô tỷ

1
.
2
Bỡnh phng 2 v ta cú :

iu kiện: x 


x

2

 2 x   2 x  1  x 2  1 

x

2

 2 x   2 x  1   x 2  2 x    2 x  1 (*)

u  x 2  2 x
khi đó (*) trở thành :
Ta có thể đặt : 
v  2 x  1

1 5
v (loaïi)
u 
2
2
2
uv  u  v  

1 5
v
u 
2


1 5
v ta có phương trình
2
1 5
x2  2x 
 2 x  1  2 x2  (2  2 5) x  1  5  0 (PTVN).
2

Với u 

Vậy phương trình đã cho vơ nghiệm.
Bài 3: Giải phương trình :
Giải:
Điều kiện: x  5 .

5 x 2  14 x  9  x 2  x  20  5 x  1

Chuyển vế bình phương ta được: 2 x 2  5 x  2  5

x

2

 x  20   x  1

Nhận xét : Không tồn tại số  ,  để : 2 x 2  5 x  2    x 2  x  20     x  1

u  x 2  x  20
vậy ta không thể đặt 
.

v  x  1
Nhưng may mắn ta có :
 x2  x  20   x  1   x  4  x  5 x  1   x  4   x 2  4 x  5
Ta viết lại phương trình: 2  x 2  4 x  5   3  x  4   5 ( x 2  4 x  5)( x  4) (*).
Đến đây bài toán được giải quyết .
u  v
u  x 2  4 x  5
Đặt 
, khi đó phương trình (*) trở thành: 2u  3v  5 uv   9 .
u  v
v  x4


4

Page 18


www.VNMATH.com
Một số phương pháp giải phương trình vô tỷ

Nguyễn Văn Rin – To¸n 3A

- Với u  v ta có phương trình

5  61
x 
2
x 2  4 x  5  x  4  x 2  5x  9  0  
.


5  61
(loaïi)
x 

2
9
- Với u  v ta có phương trình
4
x  8
9
2
2
.
x  4 x  5  ( x  4)  4 x  25 x  56  0  

 x  7 (loaïi)
4

4
5  61
.
Vậy nghiệm của phương trình là x  8; x 
2

3. Phương pháp đặt ẩn phụ khơng hồn tồn:
Phương pháp giải: Đưa phương trình đã cho về phương trình bậc hai dạng:
f ( x).Q( x )  f ( x )  P ( x ). x với ẩn là ẩn phụ hay là ẩn của phương trình đã cho.
Đặt f ( x)  t , t  0 .
Phương trình đã cho trở thành t 2  t.Q( x)  P( x)  0 .

Sau đó, giải t theo x rồi thay vào giải phương trình f ( x )  t và đưa ra kết luận.





Bài 1: Giải phương trình : x 2  3  x 2  2 x  1  2 x 2  2 (*)
Giải:
Đặt t  x 2  2 phương trình (*) trở thành :
t  3
t 2   2  x  t  3  3x  0  
.
t  x  1
x2  2  3  x2  7  x   7 .
x  1
Với t  x  1 ta có phương trình x 2  2  x  1  
 x.
 2 x  1

Với t  3 ta có phương trình

Vậy nghiệm của phương trình là x   7 .
Bài 2: Giải phương trình :  x  1 x 2  2 x  3  x 2  1
Giải:
Đặt t  x 2  2 x  3, t  2
Khi đó phương trình trở thành :  x  1 t  x 2  1  x 2  1   x  1 t  0

Page 19



www.VNMATH.com
Nguyễn Văn Rin Toán 3A

Một số phương pháp giải phương trình vô tỷ

Bõy gi ta thờm bt, c phương trình bậc 2 theo t có  là một số chính
phương:
t  2
x 2  2 x  3   x  1 t  2  x  1  0  t 2   x  1 t  2  x  1  0  
t  x  1
x2  2 x  3  2  x 2  2 x  1  0  x  1  2 .
x  1
Với t  x  1 ta có phương trình x 2  2 x  3  x  1  
 x .
0 x  2

Với t  2 ta có phương trình

Vậy nghiệm của phương trình là x  1  2 .



Từ một phương trình đơn giản :

1 x  2 1 x






1  x  2  1  x  0 , khai

triển ra ta sẽ được pt sau:
Bài 3: Giải phương trình: 4 x  1  1  3 x  2 1  x  1  x 2
Giải:
Điều kiện: 1  x  1 .
Nhận xét: Đặt t  1  x , phương trình trở thành:
4 1  x  1  3 x  2t  t 1  x (1)
Từ đó x  1  t 2 thay vào (1) ta được phương trình:
3t 2  2  1  x t  4 1  x  1  0









Nhưng khơng có sự may mắn để giải được phương trình theo t



  2  1 x



2

 48






x  1  1 khơng có dạng bình phương .

Muốn đạt được mục đích trên thì ta phải tách 3x theo



2

 

1 x ,

1 x



2

Cụ thể như sau : 3 x  1   1  x   2 1  x  thay vào pt (1) ta được:
4 x  1  t 2  2(1  x)  2t  t 1  x  t 2  (2  1  x )t  4 1  x  2(1  x)  0 (*)
  (3 1  x  2) 2

t  2 1  x
(*)  
.

t  2  1  x

1  x  1
3
.
 x
5 x  3
5


Với t  2 1  x ta có phương trình 1  x  2 1  x  
Với t  2  1  x ta có phương trình

1  x  1  x  2  2  2 (1  x)(1  x )  4  1  x 2  1  x  0 .
3
Vậy nghiệm của phương trình là x  ; x  0 .
5

Page 20


www.VNMATH.com
Một số phương pháp giải phương trình vô tỷ

Nguyễn Văn Rin – To¸n 3A

Bài 4: Giải phương trình: 2 2 x  4  4 2  x  9 x 2  16 (1)
Giải:
Điều kiện: x  2
(1)  4(2 x  4)  16 2(4  x 2 )  16(2  x )  9 x 2  16

 8(4  x 2 )  16 2(4  x 2 )  x 2  8 x

Đặt t  2(4  x 2 ); t  0
x

t1  2
Phương trình trở thành 4t 2  16t  x 2  8 x  0  
.
t   x  4
2
2

Vì x  2 nên t2  0 không thỏa điều kiện t  0 .
x  0
4 2
x
(thỏa đk x  2 ).

x
2
2
2
3
8(4  x )  x
4 2
Vậy nghiệm của phương trình là x 
.
3

Với t 


x
thì
2

2(4  x 2 ) 

4. Đặt ẩn phụ đưa về hệ phương trình:
4.1 Đặt ẩn phụ đưa về hệ thông thường:
 Đặt u    x  , v    x  và tìm mối quan hệ giữa   x  và   x  .
Từ đó tìm được hệ theo u,v.





Bài 1: Giải phương trình: x 3 25  x3 x  3 25  x 3  30
Giải:
Đặt y  3 35  x 3  x 3  y 3  35
 xy ( x  y )  30

Khi đó ta có hệ phương trình:  3
3
 x  y  35

Giải hệ này ta được nghiệm ( x; y )  (2;3);( x; y )  (3;2) .
Vậy nghiệm của phương trình là x  2; x  3 .
Bài 2: Giải phương trình sau: x  5  x  1  6
Giải:
Điều kiện: x  1

Đặt a  x  1, b  5  x  1( a  0, b  0) ta được hệ phương trình:

a 2  b  5 (1)

.
 2
b  a  5 (2)


Page 21


www.VNMATH.com
Nguyễn Văn Rin Toán 3A

Một số phương pháp giải phương trình vô tỷ

Ly (1)-(2) v theo v ta c phương trình:
a  b  1
(a  b)(a  b  1)  0  
 a  b (loaïi)
Với a  b  1 ta có

x  5
11  17

x 1 1  5  x 1  x 1  5  x   2
x
.
2

 x  11x  26  0

Vậy nghiệm của phương trình là x 

11  17
.
2

4.2 Đặt ẩn phụ đưa về hệ đối xứng loại I:
Bài 1: Giải phương trình: 2  x  3  x  1  (2  x )(3  x )
Giải:
Điều kiện: 2  x  3 .
Đặt a  2  x (a  0); b  3  x (b  0) .
Ta có hệ phương trình:
a  b  1  ab
a  b  1  ab
a  b  1  ab


 2
2
2
2
a  b  5
(a  b)  2ab  5
(1  ab)  2ab  5
 a  b  1  ab
a  b  1  ab
a  b  3




2
ab  2
ab  2
(ab)  4

 a  1

b  2
.
 a, b laø 2 nghiệm của phương trình X 2  3 X  2  0  
a  2

 b  1

a  1
ta có
b  2

Với 

 2 x 1

 x  1 .

 3 x  2


 2 x  2


 x  2.

 3 x 1

Vậy nghiệm của phương trình là x  1; x  2 .
a  2
ta có
b  1

Với 

Bài 2: Giải phương trình: 4 x  4 17  x  3
Giải:
Điều kiện: 0  x  17 .
Đặt a  4 x (a  0); b  4 17  x (b  0) .

Page 22


www.VNMATH.com
Một số phương pháp giải phương trình vô tỷ

Nguyễn Văn Rin – To¸n 3A

Ta có hệ phương trình
  (a  b)2  2ab  2  2(ab) 2  17
a 4  b 4  17
(a 2  b 2 ) 2  2a 2b 2  17




 

ab 3
a b 3


a  b  3

(9  2ab) 2  2(ab) 2  17
2(ab)2  36ab  64  0


a  b  3
a  b  3
 a  b  3

 ab  2

 a  b  3

(loại vì 32  4.16  0)
 ab  16


 a  1

b  2
 a, b laø 2 nghiệm của phương trình X 2  3 X  2  0  

a  2

 b  1

a  1
Với 
ta có hệ phương trình
b  2

4 x 1

 x  1.
4
 17  x  2


4 x  2

 x  16 .
4
 17  x  1

Vậy nghiệm của phương trình là x  1; x  16 .
a  2
ta có hệ phương trình
b  1

Với 

Bài 3: Giải phương trình: 3 5  x  3 2  x  3 (5  x)(2  x)  1

Giải:
Đặt a  3 5  x ; b  3 2  x ta có hệ phương trình:
3

a  b  ab  1 ab  1  (a  b)
(a  b)  3 1  (a  b) (a  b)  7  0


 3 3
3
ab  1  (a  b)
a  b  7
(a  b)  3ab(a  b)  7  0

(a  b  1) (a  b)2  4(a  b)  7   0
(a  b)3  3(a  b) 2  3(a  b)  7  0





 ab  1  (a  b)
 ab  1  (a  b)

2
a  b  1 (vì (a  b)  4(a  b)  7  0)

ab  1  (a  b)

 a  1


b  2
2
 a, b là 2 nghiệm của phương trình X  X  2  0  
 a  2

 b  1


Page 23


www.VNMATH.com
Nguyễn Văn Rin Toán 3A

a 1
ta cú h phng trỡnh
b2


Vi

Một số phương pháp giải phương trình v« tû
 3 5  x  1

 x  6 .
3
2 x  2




3 5  x  2

 x  3.
3
 2  x  1

Vậy nghiệm của phương trình là x  6; x  3 .
a  2
ta có hệ phương trình
b  1

Với 

Bài 4: Giải phương trình 2  x 2  (2  x ) 2
Giải:
Điều kiện: 0  x  2
Đặt a  x (a  0); b  2  x (2  2  b  2) .
b 2  2  a 4
a 4  b 4  2

(*)

a  b  2
a  b  2

2
( a  b)
(a 2  b 2 ) 2
 2 vaø a 4  b 4 

 2.
Ta có a 2  b 2 
2
2
a  1
.
Do đó, (*)  
b  1

Ta có hệ phương trình: 

 x 1

 x 1.

2  x  1

Vậy nghiệm của phương trình là x  1 .
a  1
ta có hệ phương trình
b  1

Với 

4.3 Đặt ẩn phụ đưa về hệ đối xứng loại II:
4.3.1 Dạng 1: Giải phương trình x n  b  a n ax  b

 x n  b  at

Cách giải: Đặt t  ax  b ta có hệ phương trình đối xứng loại II: 

n
t  b  ax

Bài 1: Giải phương trình x3  1  2 3 2 x  1
Giải:
Đặt t  3 2 x  1 ta có hệ phương trình
 x3  1  2t
 x3  1  2t
 x 3  1  2t





3
3
3
2
2
t  1  2 x
 x  t  2(t  x)
( x  t )( x  t  tx  2)  0



n

 x  t
 x  t



x  t
 3

2

 x  2 x  1  0
 ( x  1)( x  x  1)  0


 x  1
 3
 3
.
 
 x  1  2t
 x  1  2t
1  5



(VN )
 x 
 2 2

2
2
2
2




  x  t  tx  2  0
 ( x  t )  x  t  4  0

Page 24


www.VNMATH.com
Một số phương pháp giải phương trình vô tỷ

Vy nghim ca phng trỡnh l x

Nguyễn Văn Rin Toán 3A

1  5
; x 1.
2

4.3.2 Dạng 2: Giải phương trình x  a  a  x

x  a  t

Cách giải: Đặt t  a  x ta có hệ phương trình đối xứng loại II: 
.
t  a  x

Bài 1: Giải phương trình x  2007  2007  x
Giải:
Điều kiện: x  0

Đặt t  2007  x ta được hệ
 x  2007  t
 x  2007  t
 x  2007  t






t  2007  x
x  t  t  x
( t  x )( t  x  1)  0




8030  2 8029
 x 
4

 x  2007  t
 x  x  2007  0





 
8030  2 8029

(loaïi)
t  x
 t x

 x 

4


t  x

8030  2 8029
 xt 
4
8030  2 8029
Vậy nghiệm của phương trình là x 
.
4
4.3.3 Dạng 3: Chọn ẩn phụ từ việc làm ngược
Bài 1: Giải phương trình: x 2  2 x  2 2 x  1
Giải:
1
Điều kiện x 
2
Đặt 2 x  1  ay  b

 x 2  2 x  2(ay  b)
( x  1) 2  2ay  (2b  1)



Chọn a, b để hệ 
là hệ đối xứng

2
2
(ay  b)  2 x  1
(ay  b)  2 x  1


đối xứng loại II.

Page 25


×