Tải bản đầy đủ (.doc) (11 trang)

PHƯƠNG PHÁP TÌM KHOẢNG CÁCH NHỎ NHẤT GIỮA HAI CHUYỂN ĐỘNG THẲNG ĐỀU TRÊN HAI PHƯƠNG KHÔNG SONG SONG

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (285.17 KB, 11 trang )

Đề tài sáng kiến kinh nghiệm năm học 2011 - 2012 đạt bậc 4/4. Môn Vật lý
SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ TĨNH
TRƯỜNG THPT NGUYỄN VĂN TRỖI

SÁNG KIẾN KINH NGHIỆM
Đề tài:
PHƯƠNG PHÁP TÌM KHOẢNG CÁCH NHỎ NHẤT GIỮA HAI CHUYỂN
ĐỘNG THẲNG ĐỀU TRÊN HAI PHƯƠNG KHÔNG SONG SONG
HOẶC HAI CHUYỂN ĐỘNG CÓ CÙNG GIA TỐC

GIÁO VIÊN : LÊ TIẾN VÕ
BỘ MÔN: VẬT LÝ
THÁNG 11- 2011
Giáo viên: Lê Tiến Võ. Trường THPT Nguyễn Văn Trỗi
1
Đề tài sáng kiến kinh nghiệm năm học 2011 - 2012 đạt bậc 4/4. Môn Vật lý
PHẦN I: ĐẶT VẤN ĐỀ
Trong phần động học vật lí 10, khi nghiên cứu về chuyển động của các chất
điểm, một số bài tập thường gặp có đề cập đến khoảng cách nhỏ nhất giữa hai chất
điểm chuyển động đều trên hai quỹ đạo thẳng không song song. Để giải các bài tập
này hầu như giáo viên và học sinh thường vận dụng phương pháp lập phương trình
chuyển động. Nếu dùng phương pháp này thì bài giải dài dòng, phức tạp. Bài giải
sẽ đơn giản hơn nhiều nếu chúng ta sử dụng tính tương đối của chuyển động. Yêu
cầu ở đây không quá phức tạp, ta chỉ cần nắm được nội dung cơ bản nhất về tính
tương đối của chuyển động và một sô tính chất đơn giản của hình học. Vấn đề đặt
ra là giáo viên vận dụng phương pháp nào để học sinh dễ hiểu hơn. Năm học 2010
– 2011, khi dạy bồi dưỡng nâng cao cho học sinh khá, giỏi ở các lớp 10A
1
và 10A
2
tôi sử dụng đồng thời cả hai phương pháp để thử nghiệm. Qua thực tế tôi nhận thấy


khi sử dụng tính tương đối của chuyển động học sinh dễ hiểu và hứng thú học hơn.
Vì thế tôi đã đúc rút kinh nghiệm để xây dựng riêng một phương pháp cho một
dạng bài tập loại trên và trình bày chuyên đề ở tổ chuyên môn, sau đó được các
đồng nghiệp góp ý thêm và đã xây dựng được phương pháp tương đối hoàn chỉnh
và đồng thời có các bài tập ví dụ minh họa phong phú. Năm học này giáo viên dạy
khối lớp 10 đã vận dụng kiến thức đó để giảng dạy ở đối tượng học sinh khá và giỏi
và đã đem lại kết quả tốt về một phần kiến thức cho học sinh. Tôi nhận thấy đây là
một phần kiến thức về phương pháp giảng dạy nhằm nâng cao chất lượng giảng
dạy ở bộ môn mà có tính ứng dụng thực tiễn nên tôi trình bày thành một đề tài
kinh nghiệm trong công tác với tiêu đề:
“ Phương pháp tìm khoảng cách nhỏ nhất giữa hai chuyển động thẳng đều tốc
trên hai phương không song song hoặc hai chuyển động có cùng gia ”
Nội dung đề tài ngoài xây dụng phương pháp giảng dạy tối ưu về một dạng
toán, còn muốn giới thiệu các bài tập vừa làm ví dụ minh họa vừa làm tài liệu cho
các đồng nghiệp. Có thể nội dung còn một số hạn chế mà tôi không phát hiện được,
rất mong nhận được góp ý của hội đồng khoa học ngành cùng các đồng nghiệp.
Giáo viên: Lê Tiến Võ. Trường THPT Nguyễn Văn Trỗi
2
Đề tài sáng kiến kinh nghiệm năm học 2011 - 2012 đạt bậc 4/4. Môn Vật lý
PHẦN II : NỘI DUNG
I. CƠ SỞ LÍ LUẬN
Hai chuyển động có cùng gia tốc nói chung và hai chuyển động thẳng đều nói
riêng thì độ biến thiên vật tốc của hai vật trong cùng một khoảng thời gian là như
nhau hay nói cách khác là không có gia tốc tương đối nên có vận tốc tương đối giữa
chúng không đổi. Như vậy trong hệ quy chiếu chuyển động gắn với vật này thì vật
kia chuyển động thẳng đều. Khi đó ta chọn một trong hai vật làm mốc để khảo sát
chuyển động thẳng đều của của vật kia.
II. PHƯƠNG PHÁP GIẢI
*Giả sử có hai vật được coi là hai chất điểm chuyển động đều trên hai đường thẳng
Ax và By vuông góc với nhau, tốc độ lần lượt là v

1
và v
2
( hình 1). Ở thời điểm t
0
vật (1) ở A, vật (2) ở B, chúng cách nhau một khoảng L = AB. Sau đó bao lâu
khoảng cách giữa hai vật nhỏ nhất ? Xác định khoảng cách nhỏ nhất giữa hai vật ?

Bước 1: Chọn hệ quy chiếu gắn với một trong hai vật, ở đây ta chọn hệ quy chiếu
gắn với vật (2)
Bước 2: Khảo sát chuyển động của vật kia
Dựng véc tơ vận tốc của vật (1) đối với vật (2):
1,2 1 2 1 2
( )v v v v v= + − = −
r r r r r
=> Trong hệ quy chiếu đó, vật (1) chuyển động theo đường AI ( hướng của véc tơ
vận tốc
1,2
v
r
)
Bước 3: Tìm khoảng cách nhỏ nhất, thời gian
Giáo viên: Lê Tiến Võ. Trường THPT Nguyễn Văn Trỗi
3
2
v

12
v
r

2
v

r
Hình 1
I
Đề tài sáng kiến kinh nghiệm năm học 2011 - 2012 đạt bậc 4/4. Môn Vật lý
- Khi vật (1) ở điểm H thì khoảng cách giữa hai vật là ngắn nhất. Đoạn BH vuông
góc với đường thẳng AI chính là khoảng cách ngắn nhất giữa hai chất điểm:
L
min
= BH ( hình 1 )
- Đường đi của vật (1) đối với vật (2):
2 2
1,2 min
S AH L L= = −

- Thời gian kể từ t
0
đến lúc khoảng cách giữa hai vật nhỏ nhất:
2 2
1,2
min
1,2 1,2
S
L L
t
v v

∆ = =

* Nếu hai quỹ đạo không vuông góc với nhau ta cũng có kết quả tương tự.
* Nếu hai chuyển động là không thẳng đều nhưng có cùng gia tốc : Khi hai vật có
cùng gia tốc với mặt đất thì giữa chúng không có gia tốc tương đối nên vận tốc
tương đối không đổi vì vậy ta vẫn áp dụng cách giải tương tự.
III. BÀI TẬP VẬN DỤNG
Bài 1: Hai xe ô tô chuyển động trên hai đường vuông góc với nhau, xe (1) đi từ A
với tốc độ v
1
= 30
3
km/h, xe (2) đi từ B với tốc độ v
2
= 30km/h. Vào một thời
điểm t
0
nào đó xe (1) và xe (2) còn cách giao điểm của hai đường lần lượt những
khoảng d
1
=20
3
km và d
2
= 40km đồng thời đang tiến về phía giao điểm. Sau đó
bao lâu thì khoảng cách giữa hai xe ngắn nhất? Tìm khoảng cách ngắn nhất giữa
hai xe?
Giải

Chọn hệ quy chiếu gắn với xe (2)
Vận tốc của xe (1) đối với xe (2):
212112

)( vvvvv

−=−+=
Giáo viên: Lê Tiến Võ. Trường THPT Nguyễn Văn Trỗi
4
Hình 2
Đề tài sáng kiến kinh nghiệm năm học 2011 - 2012 đạt bậc 4/4. Môn Vật lý
=> Trong hệ quy chiếu trên, xe (1) chuyển động theo hướng AI. Khi xe (1) ở điểm
H thì khoảng cách nhỏ nhất giữa hai xe là L
min
= BH ( hình 2)
Từ hình vẽ ta có:
2
1
1
tan
3
v
v
α
= =

0 0
30 , 60
α β
⇒ = =
.
Vậy:
min 2 1
.sin ( ).sin ( tan ).sin 10 3L BH BI BO IO d d km

β β α β
= = = − = − =
Đường đi của xe (1) đối với xe (2) :
2 2 2 2 2
1,2 min 1 2
50
min
S AH AB L d d L km= = − = + − =
Độ lớn vận tốc của xe (1) đối với xe (2) :
2 2
12 1 2
60 /v v v km h= + =
Thời gian từ thời điểm t
0
đến khi khoảng cách giữa hai xe nhỏ nhất là
1,2
1,2
5
6
S
t h
v
∆ = =

Bài 2 (Bài 4.16 sách Giải toán vật lí lớp 10, nhà xuất bản Giáo Dục)
Hai chiếc tàu chuyển động đều với cùng vận tốc v hướng đến O theo các quỹ đạo là
những đường thẳng hợp với nhau một góc
0
60=
α

. Xác định khoảng cách nhỏ nhất
giữa hai tàu. Cho biết ban đầu chúng cách O những khoảng l
1
=20km và l
2
=30km.
Giải

Chọn hệ quy chiếu gắn với tàu (2)
Vận tốc của tàu (1) đối với tàu (2):
1,2 1 2 1 2
( )v v v v v= + − = −
r r r r r
=> Trong hệ quy chiếu đó, tàu (1) chuyển động theo hướng AI. Khi tàu (1) ở điểm
H thì khoảng cách giữa hai tàu là nhỏ nhất: L
min
= BH ( Hình 3 )
Giáo viên: Lê Tiến Võ. Trường THPT Nguyễn Văn Trỗi
5
I
Hình 3
Đề tài sáng kiến kinh nghiệm năm học 2011 - 2012 đạt bậc 4/4. Môn Vật lý
Từ hình vẽ ta có
1 1,2
Av v AOI∆ ∆:
. Vì v
1
= v
2
nên là tam giác đều =>

AOI∆
cũng là
tam giác đều nên
1
OA OI l= =
=>
2 1
BI l l= −
Vậy:
2
min 1
.sin ( )sin 5 3L BH BI l l km
α α
= = = − =
Bài 3( bài 4.17 sách Giải toán vật lí lớp 10, nhà xuất bản Giáo Dục)
Hai vật chuyển động với các vận tốc không đổi trên hai đường đường thẳng vuông
góc với nhau. Cho v
1
= 30m/s; v
2
= 20m/s. Tại thời điểm khoảng cách giữa hai vật
nhỏ nhất thì vật (1) cách giao điểm của hai quỹ đạo một đoạn s
1
=500m. Hỏi lúc đó
vật (2) cách giao điểm trên đoạn s
2
bằng bao nhiêu ?
Giải

Chọn hệ quy chiếu gắn với vật (2)

Vận tốc của vật (1) đối với vật (2):
12 1 2 1 2
( )v v v v v= + − = −
r r r r r
=> Trong hệ quy trên, vật (1) chuyển động theo hướng AI. Khi vật (1) ở tại A cách
O đoạn s
1
= 500m, vật (2) ở tại B lúc này khoảng cách giữa hai vật nhỏ nhất nên
BA vuông góc với AI, hay L
min
= AB ( hình 4 )
Từ hình vẽ ta có:
2 1 2 1
2 1
1 2 1 2
tan 750
v s v vAO
s s m
BO v s v v
α
= = ⇔ = ⇔ = =

Giáo viên: Lê Tiến Võ. Trường THPT Nguyễn Văn Trỗi
6
I
Hình 4
Đề tài sáng kiến kinh nghiệm năm học 2011 - 2012 đạt bậc 4/4. Môn Vật lý
Bài 4 : Hai chất điểm chuyển động thẳng đều trên hai đường thẳng tạo với nhau
một góc
α

=30
0
với tốc độ
3
1
2
v
v =
và đang hướng về phía giao điểm O. Tại thời
điểm khoảng cách giữa hai chất điểm nhỏ nhất thì chất điểm (1) cách giao điểm
một đoạn d
1
=30
3
m, hảy xác định:
a) khoảng cách nhỏ nhất giữa hai chất điểm.
b) khoảng cách từ chất điểm (2) đến O.
Giải

Chọn hệ quy chiếu gắn với chất điểm (2)
Vận tốc của chất điểm (1) đối với chất điểm (2):
212112
)( vvvvv

−=−+=
=> Trong hệ quy chiếu gắn với chất điểm (2), chất điểm (1) chuyển động theo
hướng AI. Khi chất điểm (1) ở A cách O một đoạn d
1
= 30
3

m, chất điểm (2) ở
B,khoảng cách giữa chúng nhỏ nhất thì
BA AI⊥
( Hình 5)
Từ hình vẽ ta có:
2 2 2 2 0
12 1 2 1 2 2 2 2 2 2
2 os 3 2 3 os30v v v v v c v v v v c v
α
= + − = + − =
0 0 0
30 120 30OAI OAB
α β α
⇒ ∠ = = ⇒ ∠ = ⇒ = =
=>
ABO

là tam giác cân tại A.
Vậy: - Khoảng cách nhỏ nhất giữa hai chất điểm là L
min
= BA = d
1
= 30
3
m.
- Khoảng cách từ chất điểm (2) đến O là d
2
= BO = 2d
1
cos

α
= 90m
Bài 5 ( bài 4.18 sách Giải toán vật lí lớp 10, nhà xuất bản giáo dục)
Có hai vật M
1
và M
2
thoạt đầu cách nhau một khoảng
l
(hình 6.1). Cùng lúc hai vật
chuyển động thẳng đều, M
1
chạy về B với tốc độ v
1
, M
2
chạy về C với tốc độ v
2
.
Giáo viên: Lê Tiến Võ. Trường THPT Nguyễn Văn Trỗi
7
I
Hình 5
Đề tài sáng kiến kinh nghiệm năm học 2011 - 2012 đạt bậc 4/4. Môn Vật lý
Tính khoảng cách nhỏ nhất giữa hai vật và thời gian để đạt được khoảng cách này
kể từ lúc bắt đầu chuyển động. Biết góc tạo bởi hai đường là
α

Giải


Chọn hệ quy chiếu gắn với vật M
1
Vận tốc của M
2
đối với M
1
:
2,1 2 1 2 1
( )v v v v v= + − = −
r r r r r

=> Trong hệ quy chiếu trên, M
2
chuyển động theo hướng BI
Khoảng cách nhỏ nhất giữa hai vật là
min
sin sinL AH AB l
β β
= = =

Theo hình vẽ (6.2) ta có:
2 2 0
2,1 1 2 1 2
2 cos(180 )v v v v v
α
= + − − =
α
cos2
21
2

2
2
1
vvvv ++

2,1 2,1
2
0
sin sin(180 ) sin
v v
v
β α α
= =




2 2
2 2
2,1
1 2 1 2
sin sin
sin
2 os
v v
v
v v v v c
α α
β
α

= =
+ +

2
min
2 2
1 2 1 2
sin
2 cos
v
L l
v v v v
α
α
⇒ =
+ +
Đường đi của M
2
đối với M
1
:
2 2
2,1 min
S l L= −
Giáo viên: Lê Tiến Võ. Trường THPT Nguyễn Văn Trỗi
8
Hình 6.1
Hình 6.2
I
Đề tài sáng kiến kinh nghiệm năm học 2011 - 2012 đạt bậc 4/4. Môn Vật lý

Thời gian để đạt được khoảng cách này kể từ khi bắt đầu chuyển động:

2 2
2,1
min
1 2
2 2
2,1 2,1 1 2 1 2
os
2 os
S
l L
v v c
t l
v v v v v v c
α
α

+
= = =
+ +
Bài 6 : Hai quả cầu nhỏ ban đầu ở A và B cùng độ cao, khoảng cách AB = 1m. Vào
thời điểm t
0
= 0, quả cầu (1) ở A được ném xiên lên về phía B với vận tốc
1
v
ur
, lệch
với phương ngang một góc

0
60
α
=
, có độ lớn v
1
= 2m/s. Cũng vào thời điểm này
quả cầu (2) ở B được ném ngang về phía A với vận tốc
2
v
uur
có độ lớn v
2
= 2m/s.
Các vận tốc
1
v
ur

2
v
uur
nằm trong cùng mặt phẳng thẳng đứng, bỏ qua sức cản không
khí. Tính tốc độ của mỗi quả cầu khi khoảng cách giữa chúng nhỏ nhất. Biết rằng
hiện tượng này xảy ra trước khi các vật rơi xuống đất. Lấy
2
10 /g m s=
.
Giải
- Chọn hệ quy chiếu gắn với quả cầu (1). Trong hệ quy chiếu này quả cầu (2)

chuyển động thẳng đều (do hai quả cầu có cùng gia tốc đối với hệ quy chiếu mặt
đất). Vận tốc của quả cầu (2) so với quả cầu (1) là
2,1 2 1
v v v= −
uur uur ur
=>
2,1 1
2 os
2
v v c
α
=
Quả cầu (2) chuyển động theo hướng BC. Dễ thấy rằng khi quả cầu (2) ở tại C thì
khoảng cách giữa hai quả cầu là nhỏ nhất và khoảng cách nhỏ nhất đó là AC
( vuông góc với BC). Thời gian chuyển động:
2,1 1
1
. os
AB
2
0,25
2
2 os
2
AB c
BC
t s
v v
v c
α

α
= = = =
Giáo viên: Lê Tiến Võ. Trường THPT Nguyễn Văn Trỗi
9


A B

C

Đề tài sáng kiến kinh nghiệm năm học 2011 - 2012 đạt bậc 4/4. Môn Vật lý
- Xét các vật trong hệ quy chiếu gắn với mặt đất: Chọn hệ trục Oxy như hình 7.2.
+ Quả cầu (1): v
1x
= v
1
cos
α
= 1m/s;
1 1
sin 3 2,5( / )
y
v v gt m s
α
= + = − +
=>
2 2
1 1 1
' 1,26 /
x y

v v v m s= + ≈
+ Quả cầu (2): v
2x
= -2 m/s; v
2y
= gt = 2,5 m/s
= >
2 2
1 2 2
' 3,2 /
x y
v v v m s= + ≈
PHẦN III : KẾT LUẬN VÀ KIẾN NGHỊ
1. Kết luận
- Xuất phát từ thực tiễn giảng dạy của bản thân và đồng nghiệp, tôi đúc rút thành
kinh nghiệm mong đem lại cho các đồng nghiệp cùng các em học sinh một phương
pháp giải hay về một dạng bài tập cụ thể trong hệ thống bài tập động học chương
trình vật lí lớp 10 nhằm nâng cao chất lượng giải bài tập.
- Đề tài đã hoàn thành được nhiệm vụ nghiên cứu phương pháp giải và đồng thời
lựa chọn được một hệ thống bài tập vận dụng phù hợp. Việc đề ra phương pháp giải
dựa trên lý luận dạy học bài tập vật lý, lựa chọn hệ thống bài tập áp dụng phù hợp
với quá trình phát triển tư duy của học sinh. Với phương pháp giải này giúp học
sinh hiểu rõ quy luật vật lí, tránh được tồn tại đó là các phép toán che mờ bản chất
bài toán vật lí. Hệ thống bài tập có thể bổ sung thêm trong quá trình giảng dạy.
2. Kiến nghị
Giáo viên: Lê Tiến Võ. Trường THPT Nguyễn Văn Trỗi
10

1
v

ur
A
α

2
v
uur
B
O x
y
Đề tài sáng kiến kinh nghiệm năm học 2011 - 2012 đạt bậc 4/4. Môn Vật lý
- Với người viết đề tài cần có kế hoạch cho việc chuẩn bị viết một đề tài, phải đặt
ra được vấn đề nghiên cứu và thời gian cần thiết để nghiên cứu, sau đó phác thảo
nội dung và trình bày trước tổ chuyên môn để có sự góp ý cần thiết của các đồng
nghiệp. Khi đã có tính khả thi nội dung đề tài cần phải có áp dụng thử nghiệm trong
thực tế đối với bản thân và đồng nghiệp, nếu thực sự có tác dụng thì mới nên triển
khai viết thành nội dung hoàn chỉnh.
- Về phía nhà trường cần có kế hoạch lâu dài trong việc khuyến khích các giáo
viên tham gia viết đề tài sáng kiến kinh nghiệm chuyên sâu cho từng phần, từng
chương của môn học, từ đó có thể nâng cao được chất lượng dạy học cho các bộ
môn.
- Về phía sở Giáo Dục và Đào Tạo, hàng năm nên có chuyên đề báo cáo các đề tài
mà hội đồng khoa học đánh giá là có chất lượng sau đó cho áp dụng vào thực tiễn ở
các trường trong quá trình dạy học.

Hết

Giáo viên: Lê Tiến Võ. Trường THPT Nguyễn Văn Trỗi
11

×