CHUONG 3
CONG Ct)
Trong chu'dng nay, chung toi neu mQt s6 b6 d€ va cae h~ qua cffn thie't cho vi~c
danh gia cae d~i Iu'Qngsau nay.
3.1 B6 d~ Carleman va cae h~ qua
B6 d~ 3.1 (Carleman)
Gill sa w = f(z) Zam(Jt PBHBG hlnh vanh khan 0 < r < Izi < R <
mi~n nhi lien D khong chaa dilm
00,
00
Zen m(Jt
wii bien trang C1 va bien ngoai C2 saD cho
Izi = R tUdng ling vdi C2.
GlJi S Za difn tich (trong) cila tq.p mi'J do C2 baa blJc, s Za difn tich (ngoai)
cila tq.pdong do C1 baa blJc.
Khi do, ta co
(3.1)
s~(~Js
Being thac xlly ra <=>j(z)
= az + b
vdi cac hling sa a, b, a::/:O.
Chung minh: Xem chung minh trong [4, tr.2I2], ho~c [11, tr.6] Tli b6 d€ nay ta suy ra ba h~ qua ra'tquail tn;mgd6i voi PBHBGmi€n nhi lien:
H~ qua 3.1 (djnh nghia modun mi@nnbj lien)
Gill sa mi~nnhi lien D qua cac PBHBG j va 1; bien Zenhai hlnh vanh khan
I
I
H:r
I
HI :rI
fJH.J
TH-U \tIEN
I
I
11
001063
Khi d6
R _RJ
---.
r rJ
(3.2)
Ty s5 nay gQiZam6dun cila mi~n nhi lien D va dllf/CkY hi~u Za mod(D).
Chung minh.
X6t hai PBHBG 101;-J mi€n HJ leD H va 1;01-1 mi€n H leD HJ' Tli b6 d€
3.I,tasuYfa
(~r
Tlid"
o. -=
R
r
~(~'
r va
(~r
s(~l
R !...-
rJ
H~ qua 3.2 (Hnb bilt bie'n cua modun mi~n nhi lien)
Ne'u mi~n nhi lien A c6 cac thank phdn bien kh6ng thaai h6a thanh milt diim
dllf/Cbie'n baa giac dan di~p Zenmi~n nhi lien B thz
mod (A) = mod(B).
(3.2.a)
Chung minh
GQi1 la PBHBGddn di~p mi€n A leDmi€n B. X6t hai PBHBG g mi€n A
leD hlnh vanh khan A' : lj < Isl < RJ va h mi€n Bien hlnh vanh khan
B' : rz < ItI < Rz. Tli h~ qua 3.1, ta suy fa
mod (A) = RJ va mod (B) = Rz.
lj
rz
GQi cp= hot thl cp la PBHBG ddn di~p mi€n A' leD mi€n B'. Khi d6 do b6 d€
3.1, ta c6:mod(A) = RI = Rz = mod (B) lj
lj
H~ qua 3.3 (Hnb ddn di~u cua modun mi~n nbi lien)
12
Gia sa cac mMnnhi lien D va DI vfJimodun tlldng ang R va !!J...,co tinh
r
chat D c DJ va D ngdn cach hai thanh pht1n bien cua
DJ'
Khido
R~RJ.
r
rJ
(3.3)
1j
Diing thuc xay ra khi va chi khi D == DI'
Chung minh
Xet f la PBHBG don di~p DI len hinh vanh khan HI : 1j < Iwl < Rl' Khi do
mi€n nhi lien D (c D1) qua phep bien hinh f se trd thanh mi€n nhi lien H voi
bien trong CI (CJ baa quanh ho~c trimg duong troll Iwl= 1j) va bien ngoai Cz
(duong troll Iwl= RJ baa quanh ho~c triing Cz).
GQiS la di~n tich (trong) cua t~p md do Cz baa bQcva s Ia di~n tich (ngoai)
cua t~p dong do CJ baa bQc.
,R
'
A
Ta co - Ia mo d un cua H va th eo b0 de 3 .1
?
'
.:!
);
r
~ ~(~)z.
M~t khac, ta co ba't d£ng thuc hi~n nhien
s ~ trR}, s ~ 7rrJz.
Dodo
(~:r
2 ~ 2(:)'
Tit d6 c6 (3.3) vdi d£ng thlte xay fa <0> ( ~,)'
Theo b6 d€ 3.1, CJ
va Cz phai la duong
13
= ~ = (~
r
troll Iwl= 1j va Iwi = RI' tuc la D ==DJ8
,
?
Bo de 3.2 (md rQng b6'd~ 3.1 cho PBHKABG bdi Thao)
Gid sa
w = j(z)
Za
mQt PBHKABG hinh vanh khan 0 < r < Izl< R < 00 Zen
mQt mi~n nhi lien D khong chaa diim
oc>,
vdi bien trong C] va bien ngoai Cz saD
cho Izi = R tudng ling vdi Cz.
Gri S Za di~n rich trong cila ti7p md do Cz baa brc, s Za di~n rich ngoai cila
t(ip dong do C] baa brc.
Khi do, ta co
(3.4)
s~(~)*s.
Ddng thac xdy ra ~ j(z)
= a Izli--lz + b
vdi cac hang so' a ("*0) va b.
Chung minh: (Thao[14], tr.521)
R5 rang tan tl,limQt PBHBG t = g(w) bie'n mi€n D leu mQt hlnh vanh khan
1J< ItI < R] sao cho Cz tu'dng ung vdi du'ong troll ItI = Rl' Ap d1;mg be) d€ 3.1 cho
phep bie'n hlnh ngu'<;lcg-], ta co
(3.5)
s ~(~},
trong do d~ng thuc Kayra
~
w = g-](t) = a/ + bl' vdi cae h~ng s6 a]("*0) va b].
M~t khac phep bie'n hlnh h<;lp t
= gf(z)
Ia mQt PBHKABG hlnh vanh khan
r < Izi< R leu hlnh v~lllhkhan 1J< ItI < R].
~
£) l,lt
-z = -,z -t = -,t
r
1J
- --
1
-
K
ta th ay t = t (z ) = - gf( rz ) Ia mQt PBHKABG b len
1J
1< Iz/ < R leu 1 < It I< R] , nen theo (2.2) va (2.6) ta co:
r
r]
1
~?
r1
R
( r)
14
K,
'
A
' K
1
trong do d~ng thuc xay ra <=>
t(z) =elzlTlz, lei= 1,
hay
1
t = (gofXz) = e-t-lzIK-1 z ,lei = 1.
rK
Ke't hQp ba"td~ng thuc vua neu voi (3.5) ta duQc (3.4) voi ke't lu~n v€ kha
~
:t
'ica1 b b .
nang xay ra dang thlic trong d 0 a =~,
= I
?
~
~
rK
3.2 Cae ham phI}T{p,r,s) va R{p,r,s)
Cac ham s6 tht!c
pEN,
1= T(p,r,s)
(O~s
r = R(P, I, s)
(0 ~ s < t < 1),
duQCdinh nghla sao cho hlnh vanh khan r < Izi < 1 tudng dudng baa giac
voi hlnh vanh khan s < Iwl< 1 bi dt dQc p do;;tn(hlnh 3.1)
F;
~
{w s
,; 11<1 ,; t,argw
~
j
2;}
(j=O,l,...,p-I).
z
G)
~
1
1
Hlnh 3.1: PBHBG r < Izi< lIen s < I~ < 1 bi dt dQc p(= 2) do~n.
Do tinh ddn di~u cua modun mien nhi lien (xem h~ qua 3.3), ta co cac tinh cha"t
sau cua ham T(p, r, s) va R(P, I, s):
r < T(p,r,s) < I
(0 ~ s < r < I),
15
(3.6)
T(p, r, s() > T(p, r, S2)
(0
SI < S2 < r < 1),
(3.7)
T(p,r(,s) < T(p,r2's)
(0
s < lj < r2 < 1),
(3.8)
T(p, r, s) < T(1,r, s)
(0
s < r < 1,P
(3.9)
(0
s < t < 1),
(3.10)
(0
S < tl < t2 < 1),
(3.11)
s < R(p,t,s) < t
R(p,tl,s) < R(p,t2's)
R(p,t,sl) < R(P,t,S2)
(0
R(p,t,s) > R(1,t,s)
2),
(3.12)
SI < S2 < t < 1),
(0
s < t < l,p
Nho cae c6ng thuc cua [10, tr.295], [13, tr.l0l-l04],
2),
(3.13)
ta tlm du
R (p, t, s) nhusau:
-ltK'(tP)
R(p,t,O) = exp { 2pK(tP) }
(0 < t < 1,pEN),
(3.14)
I
voi
K(k) =
J0 ~ (1-
x2)(Idx
k2x2) , K'(k)
~
K(.JI-
k' ),
va voi 0 < s < t < 1,pEN,
-ltK'(U)
R(p,t,s) = exp { 2pK(u) } ,
(3.15)
voi U = 1+ h - .Jh(2 + h) , trong do:
h
= (1-
1 +
4,
j=l [ 1 + S4PJ-2p]
k)(l- ak), k = 4sPIT
k(1 + a)
a = sn ( b + i 2~b In ~, k ). b = K(k) ,
d day sn(z, k) chi sin eliptic voi tham s6 k.
Vi~c tinh toaD K(tP) va K'(tP) ([13, tr.1l7], [19, tr.177]), cho
1
R(p, t,o)
~
4
16
P
t
khit~O
(3.16)
va
tr
l-R(p,t,O)
2
khi t
8
~
~
1.
(3.17)
2p In p(l- t)
Nho [13, tr.l02-105], ta cling chi fa bi€u thuc cua T(p, r, s) nhu'sau:
4
1
p
T(p,r,O)= 4PrfI
1+ r4pj
(3.18)
(O
[ 1 + r4pj-2p ]
j=l
a
T
rs
=sex
dx
(3.19)
P { 2pK(k) 1 ~(l-x')(l-k'x')
(p, , )
0 < s < r < 1,pEN
-tri
},
, v~i K(k) nhu' tfen,
4
a
1- m
=-
m
=
k+m'
k(1- h)2
h
= 4rP
2h(1- k) ,
00
1 + r4pj
D [ 1 + r4pj-2p ]
.
Tli bi€u thuc cua T(p, r,O)ta d~ dang tha"yding
1
T(p, r,O) < 4P r
(0 < r < I, pEN) .
(3.20)
Vi v~y, nho (3.6) va (3.7) c6
1
r
(3.21)
< T(p,r,s) < 4P r.
Tli d6 sur fa
=r
limT(p,r,s)
p-+oo
(0
s < r < 1).
(3.22)
Mt khac tU (3.20) c6
--1
R(p, t,O)> 4
p
t
(0 < t < I, pEN).
(3.23)
Vi v~y nho (3.10) va (3.12) c6
4
Pt
< R(p,t,s) < t.
Tli d6 sur fa
17
(3.24)
lim
R(p, I,s) = I
p-+oo
(0 ::; s < I < 1).
(3.25)
Han nua, ta nh~n duQc tit (3.16) va (3.17)
T(p, r,O) ~
4P
r
(3.26)
khi r ~ 0 , va
8
-1f
2
1- T(p, r, 0) ~ p exp { 2p(1- r) }
(3.27)
khi r ~ 1.
3.3 Cae b6 d@khae
B6 d~ 3.3 (md rQng mQt ba't diing that Grotzsch bdi Thao)
Gid sa D la hlnh vanh khan R < Izi < 1 Irit pn (p E N, n E N u
{o})nhal
cdl
nlim Iren cae duiJng Iron dong lam 0 saD cho D Irung vdi chfnh no blJi phep quay
,27r
1-
Z = e
P
z,
f
la PBHKABG miin D len miin E nlim trong m(it phdng phac
0 < Iwl < 1 saD cho duiJng tron Izi = R tUdng ang bien trong C] gidi h(;mblJi mQt
t(ip dong chaa gdc tQa dQ, duilng tron Izi = 1 tUdng ang bien ngoai C2. Hdn nila,
,27r
1-
gid sa E trung vdi chfnh no blJi phep quay W = e
P
w.
Khi do
(3.28)
M, ,; T(p,R~,m,)
vdi
m1 = min{lwllw
M1
= max
E C1}
(~ 0),
{Iwl Iw E C1}
va T(p,r, s) la ham ph{/-du(lc dinh nghia Irong phdn 3.2.
18
I
Ddng thuG xdy ra
fez)
~
=fo(z)
= ah(t), lal = 1, t = blzlK-1z, Ibl= 1, h za
I
I
PBHBG hinh vimh khan RK < ItI < 1 Zenmi~n nhj lien P saD cho ItI = RK tUdng
ring vlii
c,
{wiIWI=
~
m,}
u{w m, ,; 1»1';
M"argw
~
j
2;
},
j = O,I,...,p -1 va ItI = 1 tUdng ring vlii Cz = {wJlwI= I}.
Chung minh: Bfftd~ng thuc (3.28) vdi K = 1 va C2 la duong troll Iwl= 1 la mQt
d.;mg khac cua bfft d~ng thuc Grotzsch [6], tr. 372 khong trinh bay chung minh.
Ngo Thu Luong [11], tr.I8 da chung minh d mi bfft d~ng thuc (3.28) cho tru'ong
hQp da lieU cua Grotzsch va trlnh bay h;li [11, tr.33] stf ma rQng cua Thao[14],
tr.63 thanh b6 d€ 3.3 .
B6 d~ 3.4
Gid sa D Za hinh vanh khan Q < Izl < R trit pn (p E N, n E N u
{v}) nhat
cdt ndm tren cac duong trim dang tam 0 saD cho D trung vlii chinh no bai phep
.2"
quay Z
= e'f; z,
f
ZaPBHKABG mi~n D Zenmi~n E ndm trong mijt phdng phac
0 < Iwl < 00 saD cho duilng trim Izl = Q tUClngring bien trong C] gilii h~n mQt ttJ-p
dong chaa goc tQa dQ, duilng trim Izl = R tUdng ring bien ngoai C2. Hdn naa, gid
,z"
1-
sit'E trung wJi chinh no bai phep quay W
>
mz -
= e P w. Khido
(3.29)
mIl
Q K ml
T[P.(R) 'M, ]
vlii
mj = min{lwllwE Cj},
19
, ,
j = 12
M2
= max {IWIIw E C2}
va T(p, r, s) Zaham ph,! dl1(Jcdinh nghfa trong phdn 3.2.
1
Dllng
thac xdy
ra
<;:::)fez) = fo(z) = aH(t), lal = 1, t = blz/K-l z, Ibl= 1, H Za
1
1
1
PBHBG hlnh vanh khan QK < It1< RK Zenmiin nhi lien P' saD cho It1= RK tl1dng
ilng v{ti
c, ~ {wll1<1~ M,} u {w In, "11<1" M"argw ~ j 2; }.
I
j=O,l,...,p-l
Chung minh:
va
Itl=QK
tl1angilngv{ti
C] ={wllw1=m1}.
Xem chUng minh trong [20, tr.16], ho~c [11, tr.35]
B6 d~ 3.5 ("D~o ham" cuahamngu'fjc cho
-
PBHKABG)
V{ti cac kY hi~u dl1a vao 11m,!c 2.3, gid sa w = fez) ZaPBHKABG cua miin
chaa z = 0 v{ti f(O) = 0 va m'(O,f) > O. Dt;it g = 1-1, ta co:
1
m'(O,f)
= M* (O,g)-K,
(3.30)
1
M' (0,f) = m* (0,g fK .
Chung minh:
Lffy R > 0 dii be, d~t CR= {z: Izi= R} va c~ =/(CR), r6 rang
t6n t~i WI E C~ va Zl E CR sao cho
m(R,f)
= Iwl! = !f(ZI)!= r (r>O).
D~t Lr = {w: Iwl= r} va L; =g(Lr)
Vi L; n~m trong Izl:::;R, ta co
M(r,g)=lg(WIX=lzJ/=R.
Do do, tu m'(O,/»O, ta co
20
(3.31)
,
'
_
I
m, (0 f) -1m
R~O
'
m(R,f)
,
-
_ I'
-1m
r~O
RK
r
M(r,g)
_ I'
,-1m
r~O
rK
]
[
M( r,g ) K
-~
-K - M *
(0,gK,
)
-
Tu'dng tv,
U(y R > 0 dii be, d~t CR = {z: Izl = R} va c~ =f(CR), ra rang
t6n tC;liWz E C~ va Zz E CR sao cho
M(R,f)=lwzl=lf(zz~=r
(r>O),
B~t Lr = {w: Iwl= r} va L; = g (Lr)'
Vi Izi~ R niimtrong L;, ta co
m(r,g) = Ig(wz)1= Izzi= R,
Do do, ta co
I
' M(R,f)
M ' (O, f) _
- I1m
,
R~O
RK
-_ 1'1m
r~O
r
,
-
m ( r,g ) K
m(r,g)
_I
- r~O
1m
rK
-K
'
[
]
-
- m (0,g )-~.
K
*
H~ qua 3.4
Cho K=l, ta co m'(O,f)=If'(O~ va M*(o,g)=lg'(o~, phl1ang trinh (3.30) triJ
thanh 1f'(0~=Ig'(ofl,