CHu'ONG 4
""
"'"
CAC DANH GIA LOP HAM G
Trong chuang nay, chung Wi danh gia cae d'.li lu<;1ngd~c tru'ng cho mien
chu§n cling nhu modun cua cae ham g E G. Vi~c danh gia ban ldnh R(g),
g E G theo cae d'.li lu<;1ngdfi bie't gill mQt vai tro quan tr<;mgtrong vi~c danh gia
cae d'.li lu<;1ngkhac. Do do, ta b~t dffu b~ng danh gia R(g) va cae d'.li lu<;1nglien
quan.
4.1 Danh gia ban kinh R(g) va Ig(w)1
Dfnh Iy 4.1
Vdicdcgiathie'tvakYhifucuam~c2.3,
vdimQi g E G, WEB (w*O), taco:
K
(4.1)
M*(O,g)2(;)2
(~1),
4K
M*(O,g» 2-p(
K
~)
(4.2)
,
K
R(g»
ps
[ ps+S-1!
-K
::;R(g)::::;4P M*(O,g)CK,
K
4-Plw1K
(4.3)
M*(O,gtK ]
-K
4 P dK
2 ne'us>O,
2
(4.4)
K
::;lg(w~::;4PM*(O,g)HK.
Ddng thac t{Ii(4.1) xay ra khi va chi khi B
Chung minh
22
(4.5)
= Bo va g(w}=a»i»iK-lvdi lal= 1.
1 = g-],g
GQi
E
G, theo c6ng thuc (2.3) trong [18, tr.l046], ta co
8'(0,f)~ 81r .
M~t khac, tu dinh nghla cac ky hi~u d ffi1,1C
2.3 ta co
m'(0,f)2 ~8'(0,f).
V~y
(4.1.a)
m'(0,f)2 ~ 8
1r
Ke't h<;1pvdi (3.30), suy fa:
M*(O,gt~
~8 ~
1r
(4.1).
f)~ng thuc d (4.1.a) xay fa khi va chi khi I(z)
= hzlzli-l,
Ihl = 1,
tuc
B = f(A) = Bo, do do d~ng thuc d (4.1) xay fa khi va chi khi B = Bo va
z=g(w)=f-1(w)=a~wIK-],
lal= 1 .
M~t khac, tu c6ng thuc (2.13) trong [18, tr.l046], ta co
d
i
i
-1
~
*
- < 2Pm' (0, f ) = 2PM (0, g )K ~ (4.2 ) .
c
Tu c6ng thuc (2.4) trong [18, tr.l046] va b6 de 3.5 ta co:
2
ps
= [8] -lr 8'(0,f)]iK
-K
K
ps
=> R(g)<=(S,-.-s'(o,f)]
-
<=[s,-.-m'(O,f)'
K
2
~
R(g)2
2
ps
2
ps
2
r 8] -lr M*(O,ftK
]
ke't h<;1p
vdi 81 = 8 + ps ta suy fa (4.3) .
M~t khac, tu c6ng thuc (2.16) trong [18, tr.1O46],
23
]
ta c6
d,,; ~p,Rk,m)";
T(P' Rk.O) = t.
Theo dinh nghla va Hnhdon di~u cua cac ham T(p,r,s) vaR(p,t,s) suy ra
I
_!
RK =R(p,t,O)~R(p,d,O»4 Pd.
Titd6 ta nh~n du'
Mi,Hkhac, tit cong thuc (2.16) trong [18, tr.l046] ta nh~n du'
_!
4
I
~
P
I
m'(O,f)RK ~c
I
RK ~c4Pm'(O,ft1
Tit d6 ta nh~n du'
= R (g), Vg E G trong(4.4).
Tit cong thuc (2.15) trong [18, tr.l046], ta du'
m =4-; m'(O,f~zl~ :5lf(z~:5 T(p,lzl~,m) < 4;lzl~
Ke't h
H~ qua 4.1
Vg E G, fa (4.3) suy ra
K
(1»
R(g) >
[p::sr
lac ntu (tr » ps ;:::canst > 0 va S ~ 0 thi R(g) ~ 1.
Heln mIa, ktt h(lp (4.4) v(ji (3.17) ta co khi d ~ 1
Ktr2
I-R(g)
nghfa ia khi d
< l-RK (p,d,O) ~ K[I-R(p,d,O)]
~
1 thi R(g)
~
1 nhltng rat chqm.
24
~
2pIn-
8
p (1- d)
H~ qua 4.2
Khi K=I, M*(O,g)=lg'(O~ nen ta (4.1) ta co
Ig'(O~~~ (~1)
(4.6)
(g E G)
Ddng thac xiiy ra khi va chi khi B = Bo va g(w)
= aw
WYi la!
= 1.
H~ qua 4.3
4
Dl tlm m(Jtddnh gid co thl siic hCln(4.1), d(it C = 2-; P:
c (~O), Vg E G, ta co
M'(O, g)
(4.7)
,{';, c)f
Ddng thac xiiy ra khi va chi khi B = Bo va g(w) = a~wIK-l wYi lal
= 1.
Chung minh
Theo (2.1) trong [18, tr.l046], Vf = g-', g E G, ta co:
--
2
s, (f) ~ 1rS' (0, f) + psR K ~ 1r m' (0, f)
2
Tu (4.4):
-~
2
2--
+ psR K.
2
R-i( ~ 4 PM* (O,gfK
c-2 k€t h
Suy fa
2
8, ~ 1r M* (O,gfK
-~
2
+4 PM* (O,gfK
c-2ps => (4.7).
H~ qua 4.4
Trang tn{(Jng h(lp K =1, khi do M* (0, g) = Ig' (0)1, (4.7) triJthanh:
Ig' (0)1 :?o~1r+
Ddng thac xiiy ra khi va chi khi B
8,C (:?o')
(g
E
G)
= Bo va g(w) = aw wYilal = 1.
25
(4.8)
Ddnh gid nay cung v{Ji ddnh gid (4.6) sac hl1nddnh gid cd diln Ig' (0)1 ~
1, g E G
v{Ji K = 1 (xem [10, tr.352]).
4.2 Daub gia g6c md P(g)
R5 rang ta 1uonco 0 < fJ(g) < 2" , Vg E G. Tuy nhien, ta mu6n danh gia t6t
p
hdn trong nhung tntong h
Djnh Iy 4.2 (c~ndum cua P(g)
V{Jinhilng gill thief nhu trong m1:tc 2.3, ta co:
K
ntu (0 <)M* (O,g)cK ~ 4 PeP (4.9.a)
p>(d~Crz;
K
13>
7r
K
7r
K
21n!i.
1
ntu4-Pe-P
4 PM* (0, g) cK
( d-c )
4
Chung minh:
- Theo Thao[13], tr.1O9t6n t~i duy nha"tPHBBG u mi€n BIen mi€n E 1ahlnh
tron lul < 1
trir
P nMt
dt
theo
ban kinh
l
j
= {u
0 < Co ,; lul ,; do,a:rgu ~ 2:}
sao cho u (0) = 0, bien C thanh lul = 1 va cae CYj tu'dng ling voi cae f j
(j = O,l,...,p -1) (hlnh 4.1).
- D~t k = gu-1. V~y k 1aPBHKABGmi€n E 1en mi€n A sao cho lul= 1 thanh
Izi= 1, cae nhat dit theo ban kinh f j thanh cae nhat dit theo cling troll d6ng tam
Lj (j = 0,1,...,P - 1) va k (0) = 0 .
f)~
t
A
~
A n { z IIzl >
Eo = g-I(Ao),
R'} , Ao
~
A n {z
-; <
C' = {wllgcw)1 = R2}
26
arg
(hlnh4.1).
;
z < }, ]3= g -, (A),
GQi C" = u(C'), E = u(B), Eo = u(Bo) (hlnh4.1).
R5 rang Ao = k (Eo) (hlnh 4.1).
- GQi Z = h (z) = In z Ia PBHBG mi6n Ao Ien mi6n mi6n nhi lien Al co bien
ngoai Ia hlnh chli' nh~t co kich thu'oc
2In ~ va bien trong la nh:H dt theo
.~,
do£.lnth~ng r n6i ZI = In R - i ~ voi Z2 = In R + i ~ tile r co dQdai j3 (hlnh
4.1).
Tit mi6n Al co hai tru'C1ngh<;1pxay ra ho~c ta co the tIm du'<;1C
mQt mi6n nhi lien
A2, co bien ngoai la du'C1ngtrODHim J (In R, 0) (trung diem cua r), ban klnh
b
~
min
{In
~,
;}
va bien !rang la r (mnh 4.1) ho~c khong thl! urn d1f(1c mi;;n
A2 nhu'tren. Do do, ta xet 2 tru'C1ngh<;1psau:
. Tru
Khi do:
(4.10)
mod(AI) = mod(Ao)
Theo tlnh ddn di~u cua modun (3.3), ta co
(4.11)
mod(A2) ~ mod(AI)
- PBHBG h
=
i
(Z -In R) bien mi6n A2 ten mi6n nhi lien A3 co bien ngoai la
~ ,~
[ 2b 2b]
dliC1ngtroD tam 0 ban klnh 1 va bien trong Ia nhat dt th~ng r' = (hlnh 4.1).
- GQi p la PBHBG mi6n A3 ten hlnh vanh khan A4
sao cho Ihl = I tu'dngilng voi Ipl = I va P
27
~
( 2b )
={ph
= ro thl
ro
< Ipl
do dinh
= R 2,~,0
( 2b' )
nghla ham phl;1R(p,t,s).
Khi d6:
1
mod(A2) = mod(A3) = mod(A4) =
.
p
(4.12)
R ( 2, 2b ' 0)
- GQi EI Ia mi~n nhi lien chua mi~n Eo c6 bien ngoai la du'Ctngtroll lul = 1 va
bien trong la nhat dt £ 0 = [co,dJ. Khi d6 theo tinh ddn di~u cua modun
(4.13)
mod(Eo) < mod(E1).
- D6 dang thtly ding t = u - Co la PBHBG mien EI len mien nhi lien E2 c6 bien
l-uc
0
ngoai la du'Ctng troll It1= 1 va bien trong Ia nhat dt
th~ng n6i di~m 0 vdi
tJ = do - Co (hinh 4.1).
I-d 0 C0
- GQi s la PBHBG mi~n E2 len hinh vanh khan EJ = {s II( < Isl < I} sao cho It1= 1
tu'dngungvdi
Isl=1 va s(tJ)=s
nghla ham phl;1 R(p,t,s)
do-Co
( I-dc 0
=1( thil( =R
0
J
I, do-co ,o dodinh
( I-dc 0 0 J
(hinh 4.1).
Khi d6:
1
mod(EJ)=mod(E2)=mod(EJ)=
R I,
(
Vi phep bie'n hinh k
= gu-1 tu mi~n
.
d 0
(4.14)
-
co,
1- doco
0
)
Eo len mi~n Ao nhu'dff neu la mQt PBHKA
BG nen
mod(Ao) ~ [mod(Eo)T.
Ke't h
28
K
1
1
( 2b ) l ( 'l-dc' J
(
)< L.
R 2,L,0
~ R 1
do - CO
0
~
R l, do -co ,O K ~ R 2,L,0
2b
( 1- doco J
O
0
(do (3.24»
2b
Dodo:
K
fJ > 2bR I, do - CO,O K > 2b 4-I do - CO
J
( I-dc
( I-dc J
0
~
fJ>-
2b
4K
0
0
(do (3.24»
0
K
d - c
( 1-
0
0
=A.
d 0c0 J
M~t kMc, tit (4.4), b = mill {In ~, :}
(4.15)
I
ta sny fa:
b2::min ln ~
1
,Jr =a
{ 4P M* (O,g)cK P }
Tli ba"t d£ng thuc cua Thao[13],
tr.ll0
(4.16)
0 < Co~ C < d ~ do < 1 (ba"t d£ng thuc
d ~ do la tru'dng h
co
d-
P > PI > 2a ( 4
. Truitng h«jp2: Gia sa
K
C
)
= P2.
khong tan t;;Limi€n A2 thoa cae tinh cha"ttren, khi do
Jr
P 1 1 <=>P 2::21n- 1
- > - 2::-InR
( P J 2 2 R2
ke"th
P > 21n
d~
= 2a
1
4P M* (O,g)cK
V~y, tli hai tru'dng h
29
> 2a (
4
K
C
)
Kabg
~~
'
z =gM
;----I
I
I
I
"
"
,/'
!
\
00
~
B
,
",
, Bo
I
1
11
K9)
,
,
,
,
, -
'-
,"
I
/~
',,/
'
lZ=ln' i1£
/kmnm
,
,
E
'
I
,
,
' C'
I
I
,
\
I
I
,
"
p
,/
{:
0
AI
~O~UI :E
, 0
,
,
,
------------------------------In R2
-i TC
P
£1
£0
0
b+InR
Co
A,
r
z,
0
t1
1
t-
p
-2];
O
1
p
s
o~
P
2b
1
1
Oro
Hinh
4.1
30
1£
-iP
flIn 4PM
'£ . 1
K' ;
}
(0, g) c
d ~c
/3 > 2a
(
)K
4
vdi a
K
=
mill
Jr
- Ntu (0 <)M* (O,g)cK ~ 4-Pe-P thl a = ff , khido ta co (4.9.a).
p
~ -~
4 PeP
-Ntu
-~
<4 P ~ln
1
K
4 PM* (0, g) cK
thl a = In K
1
ff
lien ta co (4.9.b) .
4 PM* (0, g) cK
Chu
y 4.1: Theo
chung minh ta tha'y ntu la'y c = co' d = do thl ta khong dn thay
/31)do do trong danh gia d dinh ly 4.2 co th~ thay ( d ~ c
/3, bdi /32 «
r
bdi
K
d -c
4-K
0
( 1-d
?
,:?
0
0
c J
".,
~
de du<;lccac danh gla sac bon.
0
,
Bo de 4.1 (Kiihnau)
Trong m(it phdng z cho mQt miin nht lien A gicJi h(ln biJi dui1ng trim Izi = 1 va
nhat cdt L(t)
= {ziO ~ Izi ~ t( < l),argz
= O}. GQi Fl LaleJptat ca cac ham w = fez)
co tinh chat: m6i ham f E Fl bien baa giac deln di~p miin A LenmQt miin Bf
co
bien ngoai C (f) va bien trong c(f) saG cho L(t) thanh c(f) vcJi D (f) = 1,
Vf EFJ trang do D(f) LaduiJngkinh cua c(f). GQi S(f) Ladi~n tich trang cua
miin do bien ngoai C (f) baa bQc.Khi do, mQtham Iv E F1thoa miin:
S(f)~
,
cod(lng
()
fa z
1n(1-tz)
,
= 1n1-t
( 2) va So =
S(fJ=
So' Vf E Fl'
-ff
In (1-t
2
31
)
1
~
C(/)
~
~/
w
OC)l
c(7J
,
10
Hinh 4.2
Chung minh: (xem [12, tr.288]).
Chu
y 4.1: Voi nhG'nggiii thie't cua b6 de 4.1 nhu'ng D(/)
(> 0) bfftky thi nho
phep co dan, ta co
8(/)
D'(J)
80
S(J)
?S. hay D'(J),;
voi 80 = 80 (1) xac dinh nhu' trong b6 de 4.1.
Dfnh Iy 4.3 (c~n tren cua P(g)
Viti cac kY hi~u nhl1 trang m1:lc2.3, diJ,t:
d
fo = ~
1
4P M' (0, g)K
1; ~
[(d.)~-~][l +c~(d.)~]
(di + £1)[1UA'
lVeu
.!..
~
' do = T p, 4PM (0, g)K c,O ,
(
J
~-ln(l-t)
2JPR(P,d,ot
cf (do)fJ ,i' = R(I, ~,O) ,T
0d
< l'
-
va c >
p<2arcsin
?
?
-1
= T(I,i'~,O}
1
u be de 4PM' (O,g)Kc < 1 thi:
)-10(1-/)
-
2JPR(p,d,Ot = PI viti P ~ 2,
32
(4.17.a)
,8 < 4 arcsin
)-In(1-"f)
2-J2pR(p,d,O)~
(4.17.b)
=,82 voi P = I.
Chung minh:
- GQi WI = If/(W) yoi If/{0) = ° la PBHBG mien BIen mien B giOi h~n bdi
duilng trim Iwd = I va p nMt dt
l j = {w, 0 < Co,; Iw,l,; do' arg w, ~
2;j}sao
cho bien C thanh Iwll = 1 ya cae (J"jtu'dng ung yoi cae f!/j = 0,1,...,p - 1 ). D~
thffy ding:
- Ham s = In WI
th\ic hien
PBHBG
Drien nhi li~n
n
Ii, = Ii
{-; <
arg
w, <
;
}
len mien B2 (hinh 4.3) yoi So = In do' S) = In Co'
- Ham v = -i ~ S thgc hi~n PBHBG mien B21en mien B3 (hinh 4.3) yoi:
v
= -1.p-
0
S
20
= -1.P-
In d
v
20')
= -1.p-
S
= -1,P-
21
In c
.
20
- Ham u = sin v thgc hi~n PBHBG mien B3 len mien B4 (hinh 4.3) yoi:
Uo= sin Vo= sin( -i ~ Indo), UI= sin VI= sin( -i ~ In Co).
- Ham r = k(u) = u -uo thgc hi~n PBHBG mien B41en mien B5 (hinh 4.3) yoi
u+uo
k (uo) = 0 co bien ngoai la du'ong trOll It I = 1 ya bien trong la nhat dit
y={tl°::S;lrl::s;tl<1,argr=O}
,.
VOl t1--
Ul
-u
0
ul +uo
- sin ( -i
fm c} sin(-i fIn d. ) - ish( fIn t) - ish( fIn ;j-J
- sin(-; ~ Inc}
sin(-; ~ Ind. ) - irh( ~ In :}
33
irh( ~ In ~J
- Sh(
flnt)-Sh(fln*) - (t)f -(trf _[(*)f -(*fJ
- s{ ~
E
--C
2
E
1
E
--+d
2
E
0
= Co2
P
0
=>tl=
pIp
- GQi
p
thanh
E.
E.
d2+C21-C2d2
0
0
)(
0
E.
0
P
= I} va nhat
+
p
p
P
P
(
P
do2 -Co2
P
P
( do2
- u. r~
)
P
+Co2 )
,
(4.18)
tucO
)
= r;;(t)la mQt PBHBG
{r;;IIr;;1
t uj
+co2do2
do2
E.
r;;
(:.
do2 +Co2 -co2do2
(dof - Cof)( 1+ Cofdof)
(
-
=
E -Co2 +E-do2
Co2
P
do2 -Co2
do2
1
(:j
-
) +Sh(~ In:J
c~
ill
1
mi€n Bs ten mi€n B6 (hlnh 4.3) sao cho{tlltl = I}
dt r trd thanh {r;;IIr;;1
= r < I}.
I
- Ham'; = h(r;;)= r;; K la mQtPBHKABGmi€n B61enmi€n B7(hlnh 4.3).
- GQi J1= ~(,;)
la mQt PBHBG mi€n
tMob tullpl=I} vii
{4' 14'1
= r~}
thiinb
B71en mi€n Bs (hlnh 4.3) sao cho kll,;1
y'
~ tulo
=I}
,; Ipl ,; t, argp = O}. Then dinb
ngliia cua hai ham pho T(p,r,s) va R(p,t,s) thl t = r(l,p,O) = r( 1.rk, 0) vdi
r = R(I,tl'O).
- GQi cPla PBHBG mi€n Bslen mi€n AI(c A) vdi Al
= g-l
[1fI-1
(HI)]va gQis*
la di~n tfch cua mi€n Al do tfnh dol xung quay p Ign nen S* ::;7r.
P
GQi D Ia du'ong klnh cua nhat dt L j (j = 0,1,...,p -I). Be Hmqua h~ gifi'aD va
34
I
I
I
I
WI
:I
~
WI
= ljI'(w)
I
I
JI!
f!j
:
0'-
: Co
do
,I
:
\.
W
'
:13 B
I
,
BU/~O ./
I
I
I
I
I
I
,"
I
,,
:I, B(
I
,
----------
}=
"
"
"
z = g(w)
,
.1r In"
I
,,
A
Bz
z
-..I
I
So
S(
s}:
-1p
f {O
I
p .
V =--S.I
2
v
B3
( )
0:
'-,AI
,
,
I
rp
VI
f.l
Vo
1r
2
r'
010
1r
2
0
t
1
}"'ill'
u
B4
fjJ bg
Uo
/ /
~I/ / )if
/
)(
1
/ /
BOp
\T-~
J
U+ Uo
t
h K abg
r
0
to
tl
,
B6
1
Or
~
bg
Hinh 4.3
35
1
f3 ta c§n xet hai tntong h
a) Vdi p ;:::2 thl f3 < 2tr < tr do d6 D chfnh la khoang each hai fiut cua L.. Khi
p
d6 D
2
J
= Rsin f3
va nho chu y 4.1, suy ra :
2
f3
D
#
.
...r;
s
= 2arcsin-2R ~ 2 arCSIn2R .JS:
So ~ 2 arCSIn2R" cc.
plJo
tr
vdi So = -In (1-{
do d6
2
(4.19)
)
~-In(lf3 ~ 2 arcsin
vdi I
~
(2)
2R .JP
P
Tl ~ ,0). r = R(I,I, ,0) trong do
1,r
.
~-In(l- (2)
K
< 2 arCSIn2vpRp,
C ( d ,O)
I, dtt
(4.18).
M~t khac, theo cong thuc (2.16) trong [18, tr.1O46] va (3.7), ta c6
m'~1f)
:>co:>c:>d:>d. :>T(P,Rk,oJ
ket h
do ., T(P,4J; M" (O,g)~ c,O) = do <4~ M" (O,g)L,
m' (0, f) R
m'(0,f) d ( p" d 0) >
-I
-2
Co;:::
4P
4P
d
-
-2
1
-fo
4P M* (O,g)K
do d6
,I =(d,~p -cJ)(P I+c,k~)
P
( dol
+Col
)( 1-coldol
<
P
[(d,)f
-£!][I
+ 1'c~(d,)~]
= T1
- 1'1'!'.
( d2
)
suy ra:
36
+f~
)[ I-C2
(do)2
]
r
= R (1,1,,0)< R (q-, 0) = i'
= T(1,r~,O)< T( V~,o) = T-
1
=>
V~y ta co (4.17.a).
b) Vdi P
= 1 co th~ xay ra
1r <
P < 21r Den du'ong kfnh D
cua nhat cfit Lj co th~
kh6ng phai la khoang cach hai mut cua Lj' £)~ khfic ph1;1C
di~u do ta dung ham
.Jf= 1) tht!c hi~n PBHBG mi~n A leD mi~n A
ph1;1 Z = If/ (Z) = ..rz
(chQn nhanh
(hlnh 4.4). Khi do:
R = If/(R) =.JR.,L = If/(Lj)'
tht!c hi~n PBHKABG mi~n B leD mi~n
I
I
I
J
I
,,
",~~~
---'-,
C
,,
j
I
I
,
.
'.,
,,
,
~
~
'
'
'
'
,
\
~~~====
'
I
0
:1
,,
'I
"--
A.
= g(w)
z
~~~
~~~-
jJ = ~ va ham Z = If/og(w)
I
''
I
"""
~
- = =:::1
0
Z = If/ (z)
1
R
II
Z = If/og(w)
Hlnh 4.4
GQi jj Ia du'ong kfnh cua nhat dt
p=2
,~/
o
"""
"
""" Z""
arcsin
L, tu'dng tt! nhu' tren
~
,;
2 arcsin
2R
-1s.
2R pSo
Den
Fr
P
:::;;
ta co:
4 arcsin 2-J2pRSo
37
vdi So duqc xac dinh bdi (4.19).
Do do:
.
p::;; 4 arCSIn
~-ln (l-t2)
2.J2pR
.
< 4 arCSIn
~-ln(l-t2)
!5.-
2.J2pR(p,d,0)2
Chung minh tu'dngtv nhu trong ph~n a) ta co (4.17.b) .
ChtiY 4.2:Trong(4.17.a)va (4.17.b),ne'umi€nB co d~ng B (hlnh 4.3), c6 dinh
C = Cova cho d = do d~n de'n co' khi do l1. ~ 0, 712
p < l1.
nhien.
< 21r va
p
p < 712
~
0 vdi mQiK nen ta co
< 21r tuc danh gia (4.17.a) va (4.17.b) khong phiii hi€n
p