Tải bản đầy đủ (.pdf) (22 trang)

Đánh giá các phép biến hình á bảo giác lên miền ngoài đường tròn bị cắt theo các cung tròn đồng tâm 6

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (4.16 MB, 22 trang )

26

CHU'ONG 3
cAc DANH GIA CHO LOP HAM G
Trong chuong nay, chung Wi danh gia cac d(;liluqng d~c trung cho mi~n
chufin da:neu cling nhu modun cua cac ham thw?clOp G .
3.1 Danh gia m*(oo,g),ban kinh R](g) va Ig(w~

D!nh ly 3.1
V6i cac gill thiet va ky hi~u trong m\lc 2.2, v6i m<,>i E G, WEB (w -:f. 0), ta
g
0
co:
K

(0 5) m*(00,g)5(:)2
4K

m*(00,g)<2P

;

(3.1 )

(51)

K

(3.2)

( )



~

K

4P m*(oo,g)dK 5R](g)5R(p,c-],OtK

<4PcK

(3.3)

K

R](g) >

r mn*(oo,g)K -s

(3.4)

2 vo-is] > 0

PSI -2
1

~

K

4P m*(oo,g~wIK

D&ngthucxayraa

(3.5)

(3.1) khi va chi khi B=Bo va g(w)=awIwlK-]
vo-ilal=1.

ChUng minh:
Theo cong thuc (2.18) ta co v6i m<,>i = g-I,g E G, tuc Vf E F,
f
PSI 2 >~ .
Ji

S'(oo,f)~~+

Ji

JiRK
]

M~t khac tir (1.11) ta co:

M'(00,f)2 ~ S'(oo,f), Vf E F,
nen

M'(oo,fY ~~.

Ket hqp v6i (2.28), ta co

Ji


(3.6)


27

-2

S

m* (00,f)K

~-

,

Ji

tuc CO (3.1).

Do gill thi~t v6 bien trong C cua B, dang thuc a (3.6) xay ra khi va chi khi
I

do do dang thuc a (3.1)

v6i Ibl=l, tuc la B=f(A)=Bo,

w=f(Z)=g-I(Z)=bzlzIK-1

xay ra khi va chi khi B = Bo va z = g(w) = f-I (w) = awlwlK-1 lal= 1.

,

Theo cong thuc (2.27) va (2.28) ta co: Vf = g-I,g
4

-

G,

4

-

d

E

- < 2P M'(oo,f)=
c

-I

2P m*(oo,g)K

tu do co (3.2).
Tu (2.26), theo dinh nghla cua hai ham phl;1T(p,r,s)

va R(p,t,s)

va tfnh dan


di~u (1.14), (1.17) cua chung, ta co:
-1

-I

s,T p,RIK,O =tl

c-I

(

R{ =R(p,tpO)~R(p,C-I,O).

~

J

Do do ta co danh gia ch~ tren cho RI(g) trong (3.3).
Tu (2.26) va (2.28) ta co:
-I

I

-1-

d < 4P m*(oo,g)K

R{


-I
-

I

-I-K

=> 4 P m* (00,g)K d < R{ =>

-

4 P m*(oo,g)dK < RI

nen ta co danh gia chiftn
du6icho RI(g) trong (3.3).

Do (1.11) va (2.28) cong thuc (2.18) co th~ bi~u di~n duai d~mgsau:
*

m

-2

(00, g ) K

S

> -Ji +

ps I


-z

/

.

0,

VOl Sl >

JiRIK

tu do suy ra (3.4).
!

I

!

~

I

Tu (2.25) ta co: If(z~< 4P M'(oo,f~zIK nen !wi < 4P m*(oo,g)Klg(w~K
-K
=> Ig(w~ > 4 p

m*(oo,g~wIK,


tuc co danh gia ch~fm
duai cho Ig(w~ trong (3.5).


28

Thea (2.25) ta co: If(zfl $;T(p,lzl~,O) = t2

~

Izl~

= R(P,t2'0)~R~,lf(zfl,o)

nen Ig(w~$;R(p,lwl-I,OtK , tile co danh gia chifmtren cha Ig(w~ trang (3.5).

D~ lam site bon danh gia (3.1) ta se chUngminh:
H~ qua 3.1: D~t
-4

D=psIR(p,c-l,or

~2P

(3.7)

P~J 20
c

Ta co Vg E G

K

m*(00,g)$;(S:D)2

K

(3.8)

$;(:)2($;1)

Dltng thilc xay ra khi va chi khi B = Bo va g(w) = awlwlK-1
v6'i lal= 1.

Chicngminh:
Thea (1.11) va (2.18), Vf = g-I,g
M'(oo,fY

~S'(oo,f)~~+

G, tile Vf

E

E

F, ta co

PSI
2


1i

1iRK
I

Tu do thea (2.28) va (3.3) ta co:
m'(oo,g)~ ~~+

ps~ ~~+

1i

-

1iRK
I

1i

PSI -2 =~+PSIR(p,~~,or
1i
1i
, , )

1iR (p C-] 0

s + psIR(p,C-1 ,or

=> m* (oo,g)f $;


1i

(

s+D

-1 =

(

]

1i

)

-I

= ~,

s+D

tu do ta co (3.8).
H~ qua 3.2:
Trang truang hQ'p K

= 1, v6'i

m *(00,g) = lim m(r, g) = lim Ig(zl ~ = g'
r-4oo


thl (3.8) tra thanh:

r

I

Z,-400

Ig' (00~ $; ~ s+D
1i

IzII

(00

~
~

(3.9)


29

v6i D cho bai (3.7), Vg E G,
ding thuc xay ra khi va chi khi B = Bo va g(w) = aw v6i lal= 1.
Vi s ~ TC, ~ 0, bat ding thuc nay site ban bat ding thuc c6 di~n Ig' (00 ~ ~ 1v6i g
D

E


G

va K = 1 (xem [91tr.217).

3.2 Daub gia goc ma 2fJ(g)
D~ ti~n cho vi~c trlnh bay dinh ly ta se Ian luqt dua vao cae ky hi~u mai va
chUngminh dinh ly truac, sau d6 phBuac 1:

Theo [6] t6n

t<;ti ham WI = ~(w)v6i ~(oo) 00 bien baa giac clan di~p mien B
=

len mien E, = {w,hl;, I}, chffit p nM! ci\! /, = {WI0 < Co,;;IwII,;;do,argw, = 2:}
sao cho bien C thanh Iwll= 1 va cae 6~tuang Ungvai cae tAi = O..p-l).

G

.'

- Tc

<;n BI

= BI n

{


p

G9i B'

< arg WI < P }

=g(B')

Ta thvc hi~n phep bien hinh

1;1 <

.

= ~-1 (B;).

G9i A'

TC

; = If/(z) =1Z

bien mien A thanh Al nam trong

1. Lj cua A tra thanh 1'j cua AI, Do arg; = -argz,z E A nen g6c ma cua cling

L~ bang g6c macuacung

Lj (bang 213).


G9i A; = If/(A').
G9i

s

= s(;}a m<)tPBHBG mien A;I

len mien A2 v6i s(O) = 0 c6 bien ngoai

la duang troll Isl= 1 va bien trong Ia nh~


30

G9i u = u(s) la mQt PBHBG mi~n A2 len mi~n AJ sao cho {sllsl I} thanh
=

{ullul = I} va

;

nMI oit r Ifd thiinh {uliul < I} (hinh ve),
~

Ham

rJ= In WI thvc

B, = {I/ R(I/ ) > 0,


-;

<

<1(1/)

hi~n

;

} \ HI/o

PBHBG

mi~n

nh!

,; R(I/ ),; 1/" 1(1/ ) ~ 0)

lien

(hlnh

vo)

B;

len


v6i

mi~n

1/0;= In Co'

rJI =Indo.

s = iprJ
2

Ham

B,

= {.91-2'"

thuc

hi~n

PBHBG

< R(.9) < ~ ,1(.9 > O)}\ {.9IR(.9)= 0,.90 I(.9)';.9,}
,;

mi~n

(hJnh


B2

len

mi~n

ve) vm :

S0 - iprJo - iP Inco, S1 - iPrJI - iP In d O'
2

2

2

Ham (; = sinS = -ishiS

2

thvc hi~n PBHBG mi~n BJ len mi~n B4la ll11am~t

phltng tren co chua nhat cilt thltng [(;0'(;] (hlnh ve)vai:

(;0 = sin So = sinC~ Inco) = iSh( ~ In Co (;1= sinSI = sinC~ Indo) = iSh( ~ Indo).
}

Ham t = K((;) =

~: ~:


thvc hi~n PBHBG mi~n B4 len mi~n Bs v6'i

K(0) = 0 co bien ngoai la duOngtroll ItI = 1 va bien trongla nhMc:1t

r = ~os

It I

s tpargr = o} vai
Sh(flndot

~-1
(;1- (;0 - (;0
t =
1

(;1+(;0

~+1
(;0

- Sh(f Inc, )
- Sh(~lndo) + 1
Sh( ~ In Co)

(O

31


'

x-I

' K'

D0 h am thvc bten thvc

-,'

( ) = -x+l co

tl X

tl

=

2

-"

2

(x+l )

-

-'


> 0 Vffi x > 1 tuc tl (x ) tang trong

khoang (1,+00)va ham thvc bien thvc shx tang trong khoang xac dinh.
t 1 - (do)f p- (do
-

f:

[(co)f

-

-p

(dO)2 -(do)T

p

-

(cof:] -p
-

+ (CO)2-(co)T

(do)f- (co)f+ (cof: p

p


(do

-p

(dO)2 + (CO)2-(co)T

f:

-(do)T

G9i Ji = Ji(t) Ia m(>t BHBGmi~n Bslen mi~n B6 sao cho ~lltl
P
JiIIJiI

(3.10)

-p

= I} thanh

= 1 va nhDo do phep bien hlnh mi~n B6 len mi~n A3co th~ xem la hqp cua m(>ts6

-

1

PBHBG vOi PBHKABG z = g(w) nen la m(>tPBHKABG. Theo (1.2) thl r ~ r?

G9i S Ia di~n tich cua A;, do tfnh baa loan tfnh d6i xUngquay dip p qua PBHBG

len mi~n chu~n (xem [171tr.l09) ta co

S= P .
1'(

a) V6i p'?2:
Ap dung b6 d~ 2,7, v6i D' = lJI(D), ta co
,D'

f3 = arCSIn

,

=-1 arCSIn
~
2RI
2

RI

~

rs

[ 2

1'(

-In(1 -


f3 ~ arcsin

,
RI
~ arCSIn -

tr2

)

t~
-

P

ln 1- t,2
1'(

R ~-ln(l-t'2)
1

2#

Theo (3.3) taco: RI ~R(p,C~I,OtK ~R(p,C-I,OtK
Tu bat dlmg thuc cua Thao [171tr.110 d6 dang suy fa:
-I

1

-I


4P R?Z
(

Theo (2,28) ta co:

-1

)

1

~co ~c~d~do

1

~4P M'(oo,f)Rf,Vf=g-l,gEG

J


32

B

B'

~


W

A'

A

1

\

;

z

0

R-I

;-)

( 0 I-Z
))l

B'I

BI/
Co

do
WI


Azo---1-1
17

= In WI

0

I

p 170

iT[

-

-iT[
-

u=U(S))

171

17 B2

@)

P
I


I)

= ip17

1)1

I

2

B3

(; = sin I)

-T[
2

I

8

1)1

1)0

J1

IT[

2


I

(;1
B4

pp)
I

(;

t =K((;)

(;0
-1

1

0

1

G
t

I1mh 3.1

1

)



33

I

I

I

I

do :::; Pm'(oo,g)~ R?( :::; Pm'(oo,g)~ R(p,C-1,at < 4Pm'(oo,g)~ c = do
4
4
1

Co ;, T(P,R,.i',O

r

sh(flnd,)
Vi v~y (I =

> 4; R,* > 4;(4-; m' (00, g}d

1

Sh( ~ Inco )


Sh(; Inco)

f: - (dof:

1 (do)f + (co)f -(raft

v6i

-(daft

R(I,t"O)
'
D0 d0:

('

d ~ Co

sh( ~Ind; ) +1

= (do)f - (co)f + (co

~

4 -: m'(oo,g)*

< Sh(~ In~)

Sh(; Inco)


r,

r=

sh(flna;t

sh( ~Indo ) +1

(

K

=>

- - p < (do)f (co + (coff - (dor:
(do)f +(cop -(coff -(dor:

t

~ T(1,r,~,O)

. R(p,c-l,atK~-In(I-?2)
13 < arCSIn

C

2 ;p

< T(l,r,~,o)~


(
I

(3.11 )
I'

=131

(3.12)

xac d!nh a (3.11).

b) V6ip=I:

Co th~ xay fa

1T:::; 13 < 21T nen
2

duOngkfnh D cua nhat d.t Li co th~ kh6ng

phai Ia khoang cach cua hai mut cua Li . D~ kh~c ph\lc di~u nay ta lam nhu sau:
Gqi w = h(w) v6i h(00 )= 00 bien baa giac don di~p mi~n B leu mi~n
B = {wllwl I}, chua nhat c~t l = {wla c:::;!WI:::;
~
<
d,argw= a} sao cho bien C thanh
!w!=1.
Ta c~t mi~n


B bai ria argw = 1Tthl trong cac mi~n B, A se co cac duOng

cong tuong ling noi C v6i w= 00ho~c Izl= 1 v6i z = 00.


34

B

\,~
W

~

~,

I~

z = g(w)

"

A

".

1

r~

z'~Fz

~h(W)

B

J

d

0;0
Hinh3.2

Dung ham ph1;}z" = x(z) =...Jz (ch(;mnhcinh J1 = 1) th1Jchi~n phep bi€n mnh

mi~n A l~n mi~n A" (hinh ve). Khi do: R" = x(Rj ) = ..jR;,L" = x(L j ) Gg
cung L" la 2fJ", thi 2fJ"= fJ < Jr n~n duOngkinh D" cua nhat cAt L" chinh Ia
khming cach hai mut cua L" . Ham z" = x[g(w)] th1Jchi~n PBHKABGmi~n B bi cAt
l~n mi~n A".
Tuong t1;t hu tr~n ta co:
n
D'" = If/(D"), R'" = If/(R") = ~ Rj-j .

fJ"-

D'"
2 arcsin-:S;arcsill .

-


2R'"

(7r
V2

~

Jr

2R'" -In(l- t,2)
. R(l,c-j,O)~ ~-ln(1-t'2).
:S;arCSill

2..[i

. ~-ln(1-t'2)
< arCSill
2fiR:j
2R-


35

~

/3 = 2/3" ::;2 arcsin R(l,c-],o)f ~-ln(l-

2-/2


('2 )

Lam m9t cach tuong tVnhu phan a ta c6
(3.13 )

. R(l,c-] ,o)f ~-ln(1-(12) = /32
/3 < 2 arCSIn
2-/2
v6'i

('

xac dinh b (3.11).
Chli y: Trong (3.12) va (3.13), neu mi~n B ban dau c6 d,:mgcua mi~n B]

(hinh 3.1), co dinh d = do va cho c = Codan den do, khi d6 /3] ~ 0,/32 ~ 0 v6'iVK

nen danh gia (3.12) va (3.13) kh6ng hi~n nhien.
BuO'c
2:
D~ chia mi~n B thanh p mi~n nhi lien btmg nhau ta thvc hi~n nhu sau
Ve m9t duemg cong Jordan Yon&m trong B noi bien C cua B v6'i di~m
W=OO.

G<;>i j Ia cac duemg c6 duqc do Yo quay nhU'ng g6c 21lj(j = l..p -1). Cac
y
p

duemg yj nay chia mi~n B thanh p mi~n nhi lien v6'i cac bien trong la p thanh
phan bien gj cua B. G<;>i Ia m9t trong p mi~n nhi lien d6 v6'ibien trong g].

B]
Ky hi~u C(a,r) chi duemgtroll tiim t';lia, ban kinh r.
G<;>i
C(wprJ Ia m9t duemgtroll gi6'ih~ m9t t~p d6ng chua gl' G<;>i
C(w2,r2)
Ia m9t duemgtroll n&mtrong

B]

(bao d6ng cua B]) bao b<;>cuemg troll C(W]'r]) .
d

G<;>i 2 la mi~n nhi lien gi6'i h';ln bbi c( WI'r]) va c( w2'r2)' Theo tinh ch~t don
B
di~u cua m6dun mi~n nhi lien ta c6:

(3.14)

mod(B2)::; mod(B] )

Dilt

;;] = mill ~wl,WE C( w2' r2)}
;2 = max~wl, WE C(W2,rJ}

tuc

;;]

= IW21- r2';;2


= IW21 r2 .
+

(3.15)


36

va gia su ;1 ;:::: tuc hlnh vanh khan
M

{wi;} < Iwl< ;z} nmn trong mi~n B.

B3 =

T a t!nh ti€n va quay mi~n Bz r6i ap d1;lllg d~ 2.9 thl mi~nBz c6 th~ bi€n
b6
bao giac dO'Il i~p bd
v6i r =r (rI' rz, h) -

z
-hz -r I )Z -4hz r

rzz-hz +rIz -J~zz

z

I


21jrz

.

(3.1-6)

trongd6 h=lwz -WI I.

~

z =g(w)

>= Inz)
~
27r

A3

P

M"
in --;-.
m
Hinh 3.3 p = 4


37

D~t Al

M~t

khac

= g(BIXc A), Az = g(BzXc AI) vai g EG,

t6n

t(;li phep

Az = g(Bz),g E Glen

bi€n

hlnh

hlnh

v~mh khan

bao

giac

don

di~p

mien


~ = ~(w)

Bs: r' < I~I < 1. Vi phep bi€n hlnh hqp
]

~ogos-Imien

Ap

B4 leu mien Bsla mQt PBHKABG nen theo (3.13) ta co: r' ~ rK

dl;1ng tinh

don

di~u

(1.14) cua

ham

phl;1 T(p,r,s),

ta to:

I

t=T(1,r',O)~T(1,rK,O)

D~t m" =m(rpg),M"


yair duqcxacdinhbbi(3.16).

=M(r2,g)

v6i gEG,

!£ - K
Theo (3.5) ta co: M" < 4 p r 2 = M" ,

(3,17)

~
_K
m" >4 Pm*(oo,g)Yl =m" gEG,

G9i D la duemg kinh cua bien trong cua Az

(3,18)
'

D la duemgkinh cua nhat cat

Lj(J=O..p-1), R6rang D>D,

* Dung bd de'2,7:
- N€u p = 1, d~ co quail h~ D = 2R]sin 13 c~n thi€t sau nay ta c~n them gia
thi€t phl;1 213 < TC, vi n€u khang thl D = 2R], Mu6n v~y d~t R] = 4-Km*(00,g)dK (~RI)

Do D ~ D thl dieu ki~n du d~ 213< TC


<0>

Ia D < 2R]

2T( 2,r~,0 )M" < 2.4-K m'(oo,g)dK

T( 2,r+,0)M
Q

4K d-K

< m*(oo,g)
I

Q m*(oo,g»

-

- K

2.4ZK rKd-K rz

N€u Vp ~ 2 thl 213 < 2TC< TCdo do ta 1uan co D = 2RI sin 13'
p

(3.19)


38


V~y

D

neu vp ~ 2

= 2R, sin

ho~c neu p = 1 thoa (3.19) thl ap d\1ngb6 d~ 2.7 ta co:

D' ,; 2T( 2, r* ,0JM'

fJ ,;

I

I~_K

M"T ( 2,rK,O )
.
~ Ji'; arcsInI

R,
2K

2r* M"
.
2rK 4P 12
.

= arCSIn -K
< arCSIn
-.
K
(R')
[ 4 ' m (oo,g}d }

I

K

,8 ~ arcsin 2.4P r K;2
{

d-K [m.«X), )jl
g

(3.20)

=,83
}

v6'ir xac dinh a (3.16).
* Dung b6 de'2.8.
Ham r; = Inz (lay nhanh don tri In1 = 0) bien A2 thanh A3 la mi~n nhi lien

v6'i bien trong Ia m(>tduang cong kin co duang kinh

D"


bao b9C nhat ciit th~ng

A = [InRI -i,8,lnRI +i,8], tuc d(>dai cua A la 2,8va bien ngoai la m(>t duang cong

kin Dam trong tu giac cong v6'i hai c~nh la cac do~n th~ng cling d(>dai 2ff Dam tren
p
Rer; = In!Ji va Rer; = InM" va hai c~nh con l~i la hai cung co the ch6ng khit leD
nhau bOi phep tinh tieD q

M" m"

= r; + i 2ff , tuc di~n tich gi6'ih~n bOibien ngoai cua A3 Ia
p

m " S , ~-ln2ff
M"
pm'"

Ap d\1ng b6 d~ 2.8 ta co:
"

M" lfJ ,; D" ,;

-In(ltilc

,8 ~

11

~


!"
In(1-t2)

t2

2p

)In M,:'
m

I

1/2fflnM"

= ~

m" In(l-

p

-ff

t' )

(
lln 1- t' )In~.

,,-


V

p


39

!rong d6 rxac

djnh II (3,16),

t = T(l,r*

,0). M'

xac dinh II (3,17), m' xac dint II

(3.18).
Mifltkhac ta co:
(

= T I, r* ,O < 4r* = t ,
(
J

do do neu ( < 1 thi
-In (
1-

2


(

)= In~
1-(

1

1

< In

1

1

- = In

-

(( r

-2

1-16r

>0

K


~ _K
va In

-K

4PY2

-K

>0

4 P m*(oo,g)Yl

V~y,8$;./1n

$; /In

~ _K
1
4P Y2
2In =!!...
_K
1-16rK
4 P m*(oo,g)Yl

1 2 In
4 '; [m' (oo,g
1-16r K {

1

,84=./In

W(r: - r; J }

2K

2In4p[m*(oo,g)[
1-16r

K

{

1

-K

= ,84

-K
(3.21).

( Y2-Yl J}

Djnh IS'3.2: C~n tren cua ,8(g)
V6'i cae gia thiet va ky hi~u nhu trong ffit;lC
2.2:

- Neu p = 1


thi,8 $; ,82 .

- Neu p;:::: hoiflc p = 1 va thoa (3.19) thi ,8 $;min{,8p,83 ,,84}'
2
trong do
a

. R(p,c-I,Or~-In(~-?2)

1-'1= arcsm

C
2vp

~ -, 1 ,R(P,C-l,Or~-In(~-?2)
va
C

' neu «

2vp

$;
1.


40

°


fJ = 2arcsm
2

-

R(I,c-l,o)f~
J,..
2",2

2K
P

.

fJ3 - arcsm { 2.4

1

K
r

~
-,
, R(I,c-l,0)fv'=!n(I-?2)
, nt::u I < 1 va
J,..
2",2

-K


Y2 d

*

2;

1

[m (oo,g)j } , nfu

i

4 r Y2
1
d Km *(oo,g ) ~- 2
2K

4
fJ4

= JIn

1 ~ In

{ 4': [mO(oo,g)t'(;;: ;;~)}
-

1- 16r K

V6i I' xacdinho(3.11),


~1

"IOu j

P

K

(

Y2

K

- Yl

J

mo(oo,g)

~
16rK < 1

>1

r xac dinh 0(3.17) YpY2xacdinho(3.15).

Vi dlJ 3.1:


Cho p = 4

B2

Hinh 3.4
Mi~n B ban <1ftu bi~n trong 0 Iii duang trOll C(O,I) vii P
co
boA

1 1,
°

,

leD con

5:

c;u a Vi

=

C

'

) /. J.
,ai's V<1l =O..3,

i~


Fz

=4
'

thanh phAn
'

o

Th h h b
2
ai =e a, a> Fz -1 - an p an l~n

00chinh Iii duang trOll C(ao,s )v6i ao = a,r1 = s, v6i S du<1I1g be.
du
Ta Iffy duang cong Jordan Yo Iii duang phful giac cua goc phAn tU tha tU.


41

Ve duemgtroll C(a,r2) sao cho ban kinh r2 la khmmg each 1611 hat tu a den
n
duemgphan giac cua goc phflntu thu nhat.
Khi do mi~n

B2

la mi~n nhi lien giOi h';U1 C(a,&) vaC(a,r2)'

bOi

. n: a
a r2 = a sm"4 = .J2' rl = & nen

M'

A

2
r2

r=

2

+&

f 2
2
-"\j r2 - &

(

)

2

&
=-=-


2&r2

.

r2

f,...

&"1/
2

a

Theo (3.20):
2K

/33

= arcsin

{

I

2.44 r K r2 d-K [m' (00,g )jl
}

Ta co p = 4,d = 1
I

K
-

f3 = arcsin

{

&"1/2

K

-

I

r

2.4 2 (-;;-)
K

.

f,...-

2

[m' (00,g)j

}


I

/3 ~ arcsin 2.42 (.J2)KrJm' (00,g )jl ~
-&K
I-- I
a

cho a (>
thi /3 ~ 0

tJ

(3.22)

K

c6 djnh, kha Ian. Ta (hay khi

8 ->

0 n€u

m' (00,g) <: <5> 0

,

Vi v~y trong truemg hqp nay danh gia /3 ~ /331a kh6ng hi~n nhien

(0 <


jJ

<

.

;

)

vati~m

cijn dung.

Theo (3.21):

Taco:
/3 ~ _/In

1 ~ In
1-16r K { 4

':[m'(oo,g)t'(r:

- r~J }


42

a

,
Mar-

r22+&2_~h2_&2Y
2&r2

-

a.J2

a

2

- 2+&
-

r2 =a+r2 =a+-=c2a,
2

~

2

rl =a-r2

2

2


2-&
.J2a&

2

J

-- 2&2 _.J2&
- .J2a& - a

a.J2

/"

,

.
/

~

VO'!CpC2 1a cac h ang

=a--=cla,
2

so duong.

fJ';


Iln

1

2

+ ';

[m'(oo,g)t' aK
(e;-en}

1-1{4q
1
~/35,

Iin

1

2K

fIn4p[m*(oo,g)jlaK(c;-CIK)r
{

2

1-16(.J2)K
~
aK
2


K

2

<0> Ii,;

.I-In

2
<0>fJ';

:f )

( 1-16(,/2)<

j16(.J2r

V& ffiQia(> fJ

1
a~

t

2K

+'[m" (oo,gW
aK(e;-en}


2K

I

{4

P

1

1

(3.23)

[m'(oo,g)r aK(c; -cnr'"

c6 djnh, khi "->0

n6u m'(""g)~o>Othl

fJ->O. VI

v~y trong tfuang hqp nay ta da chi fa danh gia /3 5,/34Ia kh6ng hi~n nhien
(0 < P<

;) va lati~m

cijn dung.



43

lJinh Ii 3.3 (C~n duOi cua fJ(g) )
VOi cae gici thi€t nhu trong b6 de 2.10 ta co:
2K

4

°oK7rln

P~

z = g(w)

w

1~2~
J

'i.
0

"~:::]

\"""-'-:"/""

(3.24)
"

2pln d

c

r\

/~>\

,

K

m'(oo,g)I~1 ]

~
Eo

d

l

;_./

Chfrng minh:

P

z

,"'-..'

",",


'

,,-' ct'::

"

0,1
T
"-1

:',

"""'",

""""

,'.,

"..,

':
",::

L
0

"

,


",

",'

",

,

,

,
"'

"

,

'

Hinh 3.5 p = 2
Ap d~ng b6 de 2.10, xet tu giac cong:

Eo

= (w = re'"le ~ r ~ d,r(r)

~ e ~ r(r)+n(r)}vffiO

d:J(r),;


no(,;

~) va p(z)=

~

ta co:
Ip

Cr
( ) = fp(z)ldzl= fldzl I vOi Cr =g(CJtrongdo
Iz
~Cr

Cr

~

Cr

la m(}tcling nfun trong A noi Lo vOi L].

Cr = {wllwl=r}n{wlwEBo} tuc


44

-


Idz I = I

D~t z =; e1rp
thl

e1rp

Iz I

C}t

n~n ~lp(

-P

-

-

-

d r+ ~r e1rp I = I d r+ ~ r dip I ~ Ii r ~ip I =1dipI
dip
Ir I
r
r

J

G9i Ao = g(Bo) thl

-

-n
Sp(Ao)=

ffp2(Z)dxdy

= H~d;

Ao

Ao

I I

= Hrd~2dip
Ao
r

= Hdr_dip
Ao
r

f

~M

m(c)

-


d_r
r

()

2ff

rp r +-

fdip = 2TrIn M(d)
rp(;)
p
m(c)

trong do A c {z: m(c,g)~1z I~M(d,g)} tuc la A c {z: m(c)~1z I~M(d)}
Do do theo (2.17):

~

2

Tr - 13

K[ (P
d~t a =

~

(;


-

jJ

Jdr ~ 2TrIn M(d)
c r
P
m(c)

J

Q

/

a2

d

2Tr

K °0

taco

4

2


J] °0

c

P

--In-~-ln-

M(d)

m(c)

llOoKln M(d)
a ~ I
m(c)
2pln-

d

c

K

-K

ta thay M(d)~ 4P Id IK, m(c)~ 4P m*(oo,g)1c IK vao ta co:
K
°oKTrln

a~


2K
-

4 P m*(oo,g)1
d
2plnc

K

4 P Id I

K 4P IdlK
c IK
-

°oKTrln m*(oo,g)1c IK
d
2 Inp c

~


45

2K

2K

vi


4' IdlK
d
Q"KJTln 4' IdlK ~O
d
m'(oo,g)lcIK >0,-;:->0 nen
m'(oo,g)lcIK
2plnc
2K
-

4 P Idl

Jr
nen fJ =--a
p

Jr
~-p

A

K

noKJrln m*(oo,g)lcIK
d
2plnc

tile ta eo (3.24).
Nhful xet:

N€u c = const,d = const,m*(oo,g)~canst > 0, khi no

~

0 tm a ~ 0, tile fJ ~ Jr ,
P

eo nghia dauh gia (3.24) ti~m e~n dung. Di~u nay se duminh hQabm:
Vi du 3.2:

~

Cho.P=2

~

r:

(~.Rl

'

~~

\r

R.

~Qo


~~1

WGd

\; =h(w)

Z=k(;)

Hinh 3.6

)


46

Vj

={we

<;

Ia mi~n

B

GQi

Iwl


<;

d,(j

Iwl

+ ~o

-I}n-

<;

bi

>1

arg

w

<;

j1T

khoet

hai

tIT giac


- ~o }o < no <

1T,

j

~

cong

0,1 lac

dong

cae Ihanh

phan bien (;1'(;2 Ia cac bien cua Vb Vz (hlnh 3.6).

Cho c,d co dtnh tITC c = const,d = canst. Khi °0
Ia

~

o thl

m*(oo,g) thay
~

d6i. Tuy nhien ta se chUng minh m*(00,g) kh6ng clan den 0, khi °0 ~ o tilc chUng
minh m *(oo,g);::: mo = canst> 0.


Theo [17]t6n t<:tiPBHBG dan di~p z = h(w) mi~n BIen
e~t dQc p cling troll tam 0 saD eho

Jwl

= 1 thanh

1;1

A Ia mi~n

1;1

> 1 bt

= 1,h(00 )= 00 . Han nua khai tri~n

Laurent cua h(w) quanh w = 00 co d<:tilg:
al

a2

h (w) =aw+-+2+3+'"
w w
TITC Ia Ih'(oo~

= lim
z->oo


l

Vi

h(w)
W

a3

(3.25)

w

(3.26)

= la! * °

1

= k(;)= ;I;IK-J Ia m<)tPBHKABG nen z = g(w) = k[h(w)]ding Ia m<)t

Z

PBHKABG.

Ve duemgtroll

Iwl

= r v6i r rat IOn.


Vi r IOndo (3.25) Ih( ~
w

troll

1;1=;

vai

; = lair.

~

lal\wl tITe imh cua \wi = r

= R vai R = r = lalKrK .

Tudo ta eo:

gall trimg v6i duemg

V~y lmh cua \wi= r bbi g = koh gan trung v6i duemg troll

_K
Izl

bai h

m*(oo,g) = limm(r;g) =lim ~ =lalK

r->oo
r
r->oor

*°.


47

Neu ta b6 sung hai cling cua nhat eM trong mi~n A d~ duqc duemg troll
1;1

= R] thl trong mi~n B cling se co hai cling n6i 6]va 62,
Khi cho Qo -+ 0 va e6 dtnh e,d, do tinh bat bien eua m6dun cae mi~n nht

lien qua PBHBG h thl R] -+ c
,r

r

r

r

-

c

'


'
'
va: - -+ - => - -+ - h ay r :::; - (mIen trO' th an h h IIIh van h kh an )
r
R]
d
c
d
d

Luc do theo (3.26) co:

;:::;

. ;::

?

rlh'(ool
c

Dodo:

(W
Ih'(oo~=

~

lim Ih


1wI--'" l WI

~ = lim~=limr
1wI--'"r

d =~=const>O

r--'" r

d

V~y theo (3.24) trong truemg hqp nay ta co f3 -+

0 < f3 <;

, tile danh gia (3.24) ti~m e~n dung.

;

khi Qo -+ 0, trong khi



×