32
CHUaNG 3
cAc nANH GIA CHOLOP HAM G
Trang chu'dng nay, chung Wi se tie'n hanh danh gia cac d(;liIu'Qngd~c tru'ng
cho mi~n chu§'n A va modun cua cac ham g EG. E>~thie't l~p cac danh gia cho
lOp ham G, chung ta c~n d1!avao cac danh gia cac d(;liIu'Qnghinh hQc cu~ lOp
ham
f
E
F,
voi
dii
f=g-l,gEG
M'(oo,f)=m*(oo,gfX=1,
g=f-l,
neu
a
ph~n
1.2
voi
chu
Y
fEF.
3.1 Danh ghi M* (0, g)
Dinh ly 3.1: Du'oi cac ky hi~u va gia thie't dii neu a ph~n 1.2, Vg EG ta co:
M*
(0, g)
M' (O,g);'
E>~ngthuc
2::
(3.1)
1,
2-';'
(3.2)
(~r
a (3.1) xay ra khi va chi khi B = Bo voi Bo la m~t ph~ng phuc ma rQng
w bi celt dQc p cling troll d6ng Him t(;li 0 sao cho Bo bie'n thanh chinh no bai
phep quay ;=/~w
va g(w)=awlwr-1 voi lal=1.
Chung minh:
Xet PBHKABG f
E
F mi~n A len mi~n B, theo (2.24)ta co:
P\
:rRK
D1!avao (1.11) va (2.20) ta du'Qc
2
~Sl
:rRK(g)
M* (0, g fK , g
E
G,
trang do d~ng thuc xay ra khi va chi khi w=f(z)=g-l(z)=bzlzr~-l
B = f (A) = Bo.
(3.3)
voi Ibl=1, tuc
33
Tif (3.3), ta co:
*
M
-1:
(O,g)
PSI
~1-~,gEG,
7rRK
hay
M*(O,g}~ ~
1
~1,gEG.
1- PSI2
TrRK
Nhu' v~y ta co (3.1) voi tru'ong hQp d~ng thue xciy ra khi va em khi (3.3) xciy ra
d~ng thue, tue Ia B = Bo va z = g( w) = I-I (w) = awlwr-I voi lal= 1.
M~t khae, dl!a vao eong thue (2.32), ta co:
'
m (0,I ) ~
c(R,/)
4
-1-
1-'
I
E
F
P RK
2
=>m'(0,/) ~ 4"c(R,/)
d(R,/) ,/EF,
ke"t hQp voi (2.20), ta suy ra
M* (O,grX ~4* ~,gEG.
d
V~y ta co (3.2).
3.2 Danh gia Ig(w)1
Dinh Iy 3.2: Du'oi cae ky hi~u va gicithie"t(j phffn 1.2, Vg E G, WEB ta co:
4-~lwIK~lg(w)I~4~ M*(O,g)lwIK.
Chung minh:
Theo(2.31),
V/EF,zEA,taeo:
4-~ m'(O,f)lzIX
Thay z=g(w) va f(z)=w
~
I/(z)1 ~ 4~ Izlx.
, ta du'Qe
1-
4-p m'(O,/)lg(
1
1-
I
W)IK ~ Iwl ~ 4p Ig( W)IK,
(3.4)
34
tlido
....
Ig(w)l~
va Ig(w)I~4-~lwIK,
4pIWlK K
m'(O,j)
ke't h
K
K
K
<
(
I
4-plwl
4p
~ g w
K
Iw
I
)1
- M*(O,g
-1'
)
suy ra (3.4)8
3.3 Danh gia ban klnh R(g)
Djnh ly 3.3: Du'oi cae ky hi~u va gia thie't d phftn 1.2, Vg E G ta co cae danh gia:
K
K
4-PdK ~R(g)~4P
(3.5)
M*(O,g)CK,
K
R(g»
PSI
[ ~(1-M*(0,g)f)
-2
]
voi SI >0.
Chung minh:
Tli (2.32), chung minh tu'dng tv' (3.4) ta co
Rt ~
~(R,j)
va Rt ~4-;d(R,j),j
E
4-" m'(O,j)
hay
K
K
4pc
K
K,jEF.
4-PdK~R~
m'(O,j)
Ke't h
Tli cong thuc (3.3) ta d~ dang suy ra du'
R-i (g)~~(l-M*
PSI
tuc ta co (3.6)8
SI > 0,
(O,gri), Vg E G,
F,
(3.6)
35
Danh gia (3.1) co th€ lam cho s~c han nho
H~ qua 3.1:
D~t
E=
PSI c!(;~~O),ta co:
7rC22 p
M*(O,g)~(l+E)t
,VgEG.
(3.7)
D~ng thuc xiiy ra khi va chI khi B=Bo va g(w)=awlwIK-1voi lal=1.
Chung minh:
Ke't h<;5p(3.3) va (3.5) ta suy ra
PSI
7r4; C2M* (O,g)t
~ 1- M* (O,g)-t
hay
M* (O,g)t ~ 1+
P~I
7r4P C2
.
Tli do ta co (3.7).
D~ng thuc (3.7) xiiy ra khi va chI khi d~ng thuc (3.3) xiiy ra hIe do SI= 0 keD
theo E=O, tuc 1a B=Bo va z=g(W)=f-I(W)=awlwIK-I voi lal=1..
H~ qua 3.2:
Trang tru'ong h<;5pK = 1, M*(O,g)=Ig'(O)1nen (3.7) trd thanh
Ig' (0)1 ~ ../1+ E, Vg E G .
(3.8)
D~ng thuc xiiy ra khi va chI khi B = Bo va g (w)= aw voi lal= 1, ba'"td~ng thuc
nay s~c han ba'"td~ng thuc c6 di€n Ig'(O)1~ 1,Vg E G voi K = 1 (xem [10], IT.350).
3.4 Dauh gia g6c md 2~(g)
Nhu'ta dff bie't 0 < ~(g) < 7r,Vg E G. Bay gio, ta tim cae danh gia co th€ s~c
P
han cho ~(g) trong mQt s6tru'ong h<;5pnaG do.
36
3.4.1 C:}n dum cua r3(g): (Dung phuong phap dQ dai qie tri)
Dinh Iy 3.4: Voi cae ky hi~u va gia thie't trong ml,le 1.2, gia sa c < d, khi do
VgEGtaeo:
n
f3(g)
1£
ITK21n4' dM* (O,g)t
c
'2 IT _
d
p
2p f- dr
c rO(r)
'2 IT -
P
nO.oK2In 4 P dM* (O,g)t
2pln~ c
c
~/
.
(3.9)
Chung minh:
~
A
..R......
"""'"
""""::::::::"':§~::"':::::~
'/
(T
2
O
.
:
\
'"
0
..(""""""""""""""""",~
\..
o
:
(
(Tj
"'~
>""~:::::::::4.::::"""
:
/t
"""'"
:
(.. "
\..::::':.:::::::=::::<::/
0
""""":~
..., '. L I
~:::::::::::::::::./
\
z
j
)
i
,)
Hinh 3.1
Ap dl,lngb6 d~ 2.10 vao bai loan dang xet voi
Bo
la tu giae eong co hai
e~nh n~m lIen hai duang tron Iwl= c va Iwl= d; hai eanh con l~i la cae eung cua
(TIva (T2va dQ do p(z) = 1~I'zE Ao, Ao=g(Bo), ta co:
Ip
(
Cr = fp(z) Idz 1=f~,
) - zI
1
co'
voi Cr={zllzl=r}nBo,c~r~d,Cr
c,
=g(CJ.
Iz I
Ir I
= dr + irdqJ I
r
'2
1
+ ire'
1
I dz I = I e'
1
B<)tz=re'
irdqJ I =1 dqJ I.
r
37
(Ba't d~ng thuc tren co duQc VIc<;lnhhuy€n cua tam ghic vuong khong nho hon
c<;lnhgoc vuong).
VI v~y, ta co:
lp(c,);, c,fld~;'2a~t
M~t
khac,
do
tinh
d6i
xung
H={wlc
m(c,g)~lzl~M(d,g),gEG,
ta
-P).
quay
(1.4)
A'
tha'y
va
n~m
trong
d~t
B' =BnH
hlnh
vanh
taco:
S p ( Ao ) = Jf p2
Au
( Z ) dxdy =! H p2 ( Z ) dxdy
P A'
=! Ifdxt =! If ~dY2 =! Ifrdr~qJ
P A' Izl
P A' X + y
P A' r
~!
P
2] dqJ1dr
0
m
r
= 21l:1rlM(d,g).
P
m(c,g)
Tli do theo b6 d€ 2.10 ta suy ra
21l:In M(d,g) ~.l(2a)2
P
m(c,g)
K
Jc rQ(r)
dr ~.l(2a)2 ~ Jdr ,
K
Qo c r
tuc
M(d,g)
a~
~Kln
1l:Kln m(c,g) ~
d
dr
M(d,g)
m(c,g)
2pIn d
c
2p cf rQ(r)
Ngoai fa, theo (3.4) k€t hQp voi (1.8) va (1.9), ta co:
-K
K
m(c,g)=4PcK va M(d,g)=4PM*(O,g)dK,gEG.
voi
khan
38
Suy fa
2K
2K
n-Kln 4" M*(O,g)dK
~Kln
I
cK
d
<
a:::::
2p
f rO(r)
dr
4" M*(O,g)dK
cK
2pln-
-
c
d
c
VI f3= TC-a ta c6 (3.9) .
p
Nhan xet:
Ne'u c=const, d=const va cho Do~O ma M*(O,g):::::M~=constthl a~O
TC
~
We f3 ~ - .
p
Vi dV 3*1:
--
B
~
/"""'
\
:;
I
-
=k (z )
/
;..
/.
\\
(:_~) red
K-l
~A
2J
CS
r
~
z=zz '
;=h(w)
\R
------
(
\
""""""""\
~
y/
t"");
:
-,)
/""""""""'~"""
((
Ii
~:::
gEG
~
'......
(-';
\
:.::::~
)\
R
j
Hinh 3.2
Gia sa Bo=Bn{wlr
e6d<;lngnhuhinh3.2(p=2),c6dinh
eho Do~ 0 ta chung rninh M* (0, g), g E G kh6ng dffn de'n
M* (O,g):::::Mo =const.
00
c, d va
khi Do ~ 0 tuc la
39
GQi
; = h (w)
la PBHBG don di<%pmi€n BIen mi€n A la m~t ph~ng md
rQng bi ca:t dQc p cung troll tam 0 thai h (0) = 0, h (00 ) = 00 va khai tri€n Laurent
cua h(w) trong Ian c~n w= 00 c6 dc,lllg
a1 az
(3.9a)
h( w) = w+ao +-+2+'"
w w
tuc la anh cua duong trOll Iwl = R voi R ra't IOnbdi h g~n trung voi duong troll
1;1
= R . N6i cach khac
m* (oo,h) = Ih' (00)1= Hm Ih( w)lw-+ooIwl - 1.
Theo Thao[ll,
va do d6 mi€n
tr. 109], ham h(w) Ia PBHBG don di<%pmi€n B !en mi€n
A
c6 tfnh d6i xung quay ca'p p. GQi z =k(;)
PBHKABG mi€n A len mi€n A trong d6 m6i duong troll
duong troll
Izi
1;1
=R
A
=;VIK-lla
duQc bie'n thanh
= RK . VI argz = arg; nen k(;) cling c6 tfnh d6i xung quay ca'p p.
Khi d6 z = g (w)= ko(h (w)) la PBHKABG mi€n BIen mi€n chufin A c6 tinh d6i
/
,.('
xl1ngquaycap
-
p. Honnua
*
. M(R,g)
I1m
m (oo,g) = R-+oo
K
R
. RK
= IR-+oo
1m~=.
R
"
1 V ~y gE G .
GQi C, la anh cua C, = {wllwl= r} voi r ra't be bdi h va C~ Ia anh cua C,
bdi k;
Zl EC~
sao cho Izll=M(r,g),
;1 EC, sao cho k(~)=z,
va w,EC, sao cho
h(w,)=~. Ta c6:
M. (0 , g) = lim
M (r , g) = lim
1:J = lim
k (~ )1= lim ~ K
,-+0 rK
,-+0rK
,-+0 rK
,-+0 rK
I
= lim Ih(WI)IK= lim h(Wl)
K
I
H-+o
Iw,IK
H-+o
W,
I
I
= h'(O) K -:I:-0 (VI h Ia PBHBG)
l
I
40
Mi;it khac, nSu r~O
thl ta colh(w)I~lh'(O)llwl=lh'(O)1r
tuc Cr g~n trung
; =Ih'(O)fr.
du'ong tron 1;1=;, voi
NSu n6i hai cung cua nhat cfit trong mi€n anh
A d€ du'Qc du'ong troll
1;1
= R)
thl trong mi€n B cling se co hai cung n6i tu'dng ling. Nhu' da: neu tren, anh cac
du'ong troll Iwl= R,
du'ong troll
Iwl
= R va
1;1
= r voi R d't IOnva r ra't be bdi h g~n trling voi cac~
1;1
=Ih'(O)lr.
Khi cho Qo ~ 0 do tinh ba't biSn cua modun hai mi€n nh! lien qua PBRBG
; = h (w) ta co
R
R
R)
R) ~
d'
Ih' (0)1 r
~ .:.
r
A,.,!'
,.,!' /
,
,.,!'
/
' V <;lyneu R rat 1on va r rat b e th 1 R) ~ d , Ih '0( )1~ -R)
c
R~
00
ta co
I
~
'
d
-.c Ch0 r ~ 0 va
h ' (0)1= dc .
T6m I~i, ta c6 M' (O,g)=(
~r
<00.
V~y danh gia (3.9) la co y nghia va tic$mc~n dung trong tru'ong hQpnay.
3.4.2 C~n tren cua ~(g):
D~u lien, ta chia mi€n B lam p ph~n b~ng nhau b~ng p du'ong cong
JordanYj(J=1,2,...,p)
n6i 0 va 00, du'ong nQ chuy€n thanh du'ong Ida bdi phep
quay mOt goc 2nj. Cac du'ong cong Yj nay chia mi€n B thanh p mi€n nh! lien
p
B~,(J = 1,2,...,p) voi bien trong la mOtthanh ph~n bien G"jcua B.
Ki hic$uC(a,r) chi du'ong trOlltam t<;lidi€m a va ban kinh la r.
Tren
B]
( baa dong cua mi€n
B]
= B; ) ta co th€ ve -them hai du'ong trOll phg:
Du'ong troll thu nha't la C (W)'1)) gioi h<;ln mOt hlnh troll dong chua thanh ph~n
41
bien (}j; Duong troll thu hai la C (w2'r2) chua trong Bl va baa bQc C (WI'1j). GQi
B2 la mi€n nhi lien gioi h~n bdi C(w],1j) va C(W2'r2).
z=g(w)
~
B
c:::::>
Q
/
.
~
.. ..
.;..
..f
A
.
~
/.
I::i'l
...\
\
w
///
AI
~~
/
.'
/>3
fI\;\ B, )) B,
0 ., \jJ)
~~
.........
--./
A,
.
..~
z
Hinh 3.3: PBHKABG z = g( w)bie'n mi€n A leD mi€n A voi p = 4
Thea h~ qua 2.3, ta co:
mod(B2) ~ mod(B]).
D<)t
R.
= min{lwllw
E C(w2,r2)}'
~ = max{lwllwE C(w2,r2)}'
RI=lw21-r2
tuc
(O<)~
(3.10)
=lw21+r2
Sau do ta tie'p t\lCve hai duong troll C(0, RI) va C(0, ~), tuc C(w2'r2)n~m trong
phftngiaa cua
BJ
va hlnh vanh khan B3={wiR, < Iwl< ~} .
Ta tinh tie'n va quay mi€n
B2
r6i ap d\lng b6 d€ 2.11, mi€n B2 co th€ bie'n baa
giac don di~p len hlnh vanh khan B4 = {slr < Isl< I} saG rho C (W2'r2) tuong ung
voi Isl= 1,
42
2
,
va r = r(lj, r2,h) =
h 2 +lj
r2 -
2
-\I
I 2 h2 2 2 4h 2 2
(r2 -lj ) lj
I
2ljr2
f)~t Al =g(B1XcA),
A2 =g(B2XcA]),
~.
, VOl h = W2 -
W]
I
.
(3.11)
gEG.
M~t khac t6n t(,li PBHBG don di<%p; =; (z) mi~n
A2
ten hinh vanh khan
Bs ={;lr'
Vi phep bi€n hinh hQp ;ogos-]mi~n A2 ten Bs la mQt PBHKABG nen ta co:
r'<_r 7c.
Thea tinh don di<%u
(1.17) cua ham phv T(p,r,s), ta co:
T(2,r',0)~T(2,r7c,0) vdi r xacdinhnhu'(3.11).
GQi D la du'ong kinh cua mQt nhat cat cling trOll Li' D' la du'ong kinh cua anh
du'ong troll C (WI'r]) bdi z = g (w), g E G tilc du'ong kinh bien trong cua A2. R6
rang ta co D ~ D' .
f)~t m=m(Rpg)
, M=M(R2,g),
gEG.
Thea (3.4), ta co:
m 2::4 -:
R] K
=m
, M ~ 4 ~M* (0, g)
R; = M .
Thea b6 d~ 2.6, ta co
- N€u p = 1 , d€ co quail h<%D = 2Rsin ~ c~n thi€t cha vi<%c
tim c~n tren
cua P(g) ta c~n them gia thi€t 2p ~ n vi n€u 2p > nthi D = 2R.
Gia thi€t nay du'Qcthai n€u
(D ~ D)
= 2T( 2,rt,0)M
(R2, g) < 2.41 r7c4~ M* (O,g )R; < 2.4-~ dK « 2R),
tilc
1>:1-1.
4P+'rKM
*
-1>:
(O,g)R;
<4
pdK.
Luc nay ta mdi co th€ ap dvng du'Qcquail h<%D = 2R sin ~ .
(3.12)
43
- Ne'u p ~ 2 thi du'dng nhien 213s 2n S 1[do do ta luau co D = 2R sin p .
p
/
?
,
Ap dlJng ba de 2.6, ta du'Qc:
D's 2MF( 2,r-K,0).
Mi,Hkhac, ta co:
DsD'
va
M=M(Rz,g)sM.
Suy fa
DSD's2T(2,r-K,0)M.
Tildo
Ds2T(2,r-K,0)4~ M*(O,g)R~
s2.41r-K4~M*(O,g)R~ =4~+lr-KM*(0,g)R~.
M~t khac ta co D = 2R sin p
Suy fa
sin 13 = D < 4~+lr1-M* (O,g)RK
2R 2R
2
0
-K
Vi R chu'a bie't, ta thay R b~ng c~n du'oi, nghla la R ~ E = 4p dK .
Suy fa
0
4~+1r1-M*
sIn 13 <
-
(0' g ) RK2<
4~+1r1-M*
-
2R
(0 g ) RK2
K '
2A-1i dK
V~y
2.42: r1-M* (O,g)RK
f3(g)sarcsin
(
dK
2
J
=f31(g),
.
44
2K
ydi di€uki~n
2.4pr1-M*(O,g)R;
dK
::;1
0
M~t khac, ap dl:mgb6 d€ 2.8, ta co:
(
IS In 1-
D'::;
(2
-7r
)
(
ydi (= T 1,r t ,0) ,
7r
[
S::;SI = P M
2
(
2
)
R2,g -m
(
7r
Rl'g
K
*
K
)] ::;P [ 4p M (O,g ) R2 -4
_K
K
PRJ
V~y
D ::;D '::; ,I SIn (1- (2)
-7r
<=>
.
2Rsinp ~ ~SIn~~t2)
Sur ra
SIn (1-
(2
)
-7r
13 (g) ::;arcsin
2R
K
Thay R = R = 4-P dK ta duQc
fJ(g)::; arcsin
'0
O;:;
YOI d leu
'
lln~~t')
ki <:fn
K I
4-P+2dK
::;1.
~s In (
J-t'
I
_K~7r
4
p+2
dK
)
1= 132 (g),
-
]=S.
(3.13)
45
Nhu' vi;tyta da tlm du'Qcci;tntren cua fJ(g) du'oi d~ng:
Dinh ly 3.5:
Du'oi cac ki hi~u va gia thie't trong m\,lc1.2, va nhu'moi lieU (j tren, Vg
Ne'u p
= 1 va
E
G ta co
thoa (3.12) hoi;lc p'2 2 thl fJ(g):::;mill {fJI(g), fJ2(g)},
trong d6
~ (g) = arcsin
[
2.41f r+M* (0, g) R:
dK
S In (1fJ2(g) = arcsin
(2
J
(3.14)
'
)
-7(
(3.15)
4-K+1
dK
voi r,~ va S xac dinh nhu' d (3.10), (3.11) va (3.13).
Vi d1} 3.2:
~
gEG
A
(
~
~
Y4
w
z
Hinh 3.4
46
Gia sa mi€n B c6 p
= 4 thanh
ph~n bien O"j' j = 1"",4 la cac du'ong troll
c (aJ'&) voi aj = euta; & du'dng, du be, Trang d6 thanh ph~n bien 0"1la du'ong
troll C(ap&)voi
al =a,&=fj
> 0 (ffinh 3.4),
Ta ve du'ong cong Jordan rl la du'ong phan giac cua g6c ph~n tu' thil nha't.
Sau d6 dung phep quay ta xac dinh du'Qcr2' r3 va r4 la 3 du'ong phan giac cua 3
g6c ph~n tu'con I~i, Cac du'ong phan giac nay chia B thanh 4 ph~n b~ng nhau,
Ta ve them du'ong troll C (a, r2)saD cho ban kinh r2 Ia khoang cach tu a d€n
du'ong phan giac cua g6c ph~n tu' thil nha't. Khi d6 mi€n B2 chinh la mi€n nhi
lien gioi h~n bdi hai du'ong troll C (a, &) va C (a, r2) ,
Mi€n
c6 th€ bi€n baa giac ddn di~p leu hinh vanh khan r < Isl< 1, Theo h~
B2
,;:,
1 r2
qua. 2 2 , tIllh b at blen cua mo dun mIen n h ~ Ilen, ta co - = -,
?
/
"'"
' "'"
?
'
~
' ~
/
r
&
M~t khac , ta c6:
ff
a
r2= a sin 4" = 12'
r = &12
a
V~y
Ap dvng (3,14), ta c6:
2.4':'2' EKM' (O,gJ( a+ ;JK
PI(g) = arcsin
I
Cho a c6 dinh kha lOn, &~ 0 , M* (0, g)
aK
t
(a + &
s const
thi PI (g ) ~ 0,
/
tilc
&
r = -,
r2
47
Tu'ongtv , ap dvng (3,15)
Sln(1-t2)
)
/32
voi t = +(
va
RJ
t
I
(g = arcsm
4K+!
<:)',0). s = : [M2 (R"g)-rn'
a
-Jr
V
,
I'
(a + &
(R"g)] ~: [4' M' (O,g)R;' -4-' R,'
r
a
=a- .[2,R2 =a+ .[2 .
Theo (1.24), ta co:
I
I
&.[2 K
&.[2 K
t T [ {--;;~
V~ykhicho
a c6dinhkhalOn,
J ' 0) ~ {--;;&~O,
J
.
->
0
kh1&
M*(O,g)~const
->
0.
thlln(1-t2)~O,tuc
ta
cling co /32(g) ~ o.
Nhu' v~y trong tru'ong h<;1pnay cae cong thuc (3.14), (3.15) Ia khong hi€n nhien
va ti~m c~n dung.