OÂn thi toát nghieäp THPTQG 2015
y x + x –= −
!
"#$%&'()#*
+ x x m – –+ =
,-.
(/!
!
0%&'()#*
x x
1
3
log 3=
"--%1*
I x dx
2
2
0
4= −
∫
"#0"2340"33
x
y
x
2 3
3 2
+
=
−
)5678!
9:;)<,;-)=>
h r3=
!
"-?/-@>(A>$-;)<!
"#
$%&'(%)*+, /+%(%0+
12!")(;B((Oxyz4$CD77
4E+7747+7F!
G((CE>B(!H%&'()#
5E!
H%&'()#IJ>A>F$C4E4K!
32"#%GLMN*
z i z
z i z
2
1
− =
− = −
O")(
4%&'(%)*+, /+%++,(2'
15!")(;B(($CD774
EF7+7D 7D7F!
"#P:#>QC)&R(S(E!
H%&'()#IJ>,1C%@TUE!
350%&'()#>)V%W%%G*
( ) ( )
F F +z z z z z z–+ + + + + =
DDDDDDDDDDDDDDDDDDDDDDDD
67
+XXF
!
x
1
3
=
2)
I
π
=
3)
[ ]
[ ]
y y
2;3
2;3
max 3; min 7= − = −
xq
S r
2
2 3
π
=
4
V r
3
3
π
=
12
x t
BC y t
z t
: 1
1 3
=
= −
= +
+
2 2 2
x y z x y z+ + − + − =
32
z i= +
15
x y z
231 27 36
; ;
51 51 51
−
= = =
÷
2 2 2
x 1 y 3 z 2
760
( ) ( ) ( – )
17
+ + − + =
35
i
z z z
1 15
1; 4;
2
− ±
= − = − =
!
4!!!O")(!
OÂn thi toát nghieäp THPTQG 2015
(3,0 điểm
y x mx x m
3 2
1 2
3 3
= − − + +
( )
m
C
!
;Y
+!
"#$P
( )
m
C
!
3,0 điểm
"#()ZU.M.
y x x
4 2
8 16= − +
)56D78!
"--%1
x
I dx
x
7
3
3
2
0
1
=
+
∫
0.%&'()#
x
x
0,5
2 1
log 2
5
+
≤
+
1,0 điểmG?/[!CE,[C>B((,UI
%S(CE4[CYa7CEYCYb4
·
BAC 60
°
=
!\1
;-IJ>(5%G?/[!CE!
"#3,0 điểm
2%&'(%)*+, /+%(%0+
122,0 điểm")(;B((U/5:Oxyz*
2V%%&'()#IJ>,1]D77%@TU
I%S(
x y z2 2 5 0+ − + =
"- ;( (^ I %S(*
x y z x y z( ): 4 2 12 0; ( ):8 4 2 1 0
α β
− − + = − − − =
!
321,0 điểm0%&'()#*
z z
4 2
3 4 7 0+ − =
)V%
%G!
4%&'(%)*+, /+%++,(2'
O")(
15 (2,0 điểm ")(;B((U/5: Oxyz4
&R(S(?,%&'()#*
x y z1 1
2 1 2
− +
= =
I%S(
x y z x y z( ): 2 5 0; ( ):2 2 0
α β
+ − + = − + + =
!2V%%&'()#IJ>1
]>:&R(S(?%@TUI%S(
( ),( )
α β
!
351 điểm) "-?/-#%S((U5_
*
y x y x y, 2 , 0= = − =
DDDDDDDDDDDDDDDDDDDDDDDDDD
67
4
1; ; (1;0)
3
−
÷
!
f x f x
1;3 1;3
max ( ) 25 , min ( ) 0
− −
= =
2)
I
141
20
=
3)
x
x
5
1
7
< −
≥
a b
r
2 2
4 3
= +
12
( ) ( ) ( )
x y z
2 2 2
2 1 1 1+ + − + − =
2)
d
25
2 21
=
32
z z i
7
1;
3
= ± = ±
15
( ) ( ) ( )
x y z x y z
2 2 2
2 2 2
8 7 5 200 50
; 4 1 5
3 3 3 27 3
− + − + − = + + + + + =
÷ ÷ ÷
35
S
7
6
=
y x x
3 2
3 1= − + −
!
!
4!!!O")(1
OÂn thi toát nghieäp THPTQG 2015
H%&'()#%>`%>`
,>B((,U&R(S(
d y x
1
( ): 2009
9
= −
!
!
0%&'()#*
x x3 3
2 2
log (25 1) 2 log (5 1)
+ +
− = + +
"# ( ) ZU . M . ` Y
x x x
3 2
2 3 12 2+ − +
)
[ 1; 2 ]−
"--%1>*
x
x
I e dx
x
2
2
2
0
sin2
(1 sin )
π
= +
+
∫
G?/=>CEa5a!0PQZ#
>>B((,C@>(%Ea!"-?/-@>(
A>$-;)<,&R()b`(5%
(Ea=>CQ!
"# 89
$%&'(%)*+, /+%(%0+
12!")(;B((Oxyz4977D43
7+7DI%S(c*
x y z3 2 1 0+ + − =
!
H%&'()#I%S(dA>$943
>B((,c!
H%&'()#IJ>[1]D77%@T
I%S(c!
32 "-?/-#%S((U5_
&R(,%&'()#*
y x x
3
3= −
y x=
4%&'(%)*+, /+%++,(2'
O")(3
15!")(;B((Oxyz4C77D4E7
+7D&R(S(?*
x y z1 2
2 1 1
− +
= =
−
!
H%&'()#I%S(cA>$C7E(
(U?!
H%&'()#IJ>[1C%@TU&R(
S(?!"#P:%$!
35"-?/-#%S((U5_
*
x x
y
x
2
4 4
1
− + −
=
−
4/V@&R(S(@Y
7@YaUae!"#a$?/-`f(!
DDDDDDDDDDDDDDDDDDDD
67
y x y x9 6; 9 26= − − = − +
!@YD
[ ] [ ]
y y
1;2 1;2
max 15; min 5
− −
= = −
I e
1 3
2ln2
2 2
π
= + −
xq
a
S
2
2
2
3
π
=
7
a
V
3
6
9
π
=
12
x y z5 7 17 0− − − =
x y z
2 2 2
9
( 1) ( 3) ( 2)
14
+ + − + − =
32[Yg
15
x y z3 5 3 0+ + + =
x y z
2 2 2
( 1) ( 2) ( 2) 14− + − + + =
7
M(3; 1; 1)− −
35
S aln( 1)= −
7
a e
3
1= +
1
4!!!O")(:
OÂn thi toát nghieäp THPTQG 2015
4+$*
y x x x
3 2
1
2 3
3
= − +
,!
!
a4#$%&'()#>,(/
%1/*
x x x m
3 2
1
2 3 0
3
− + − + =
!4+$
"#0"2340"33*
x
y
x
2
2 1
−
=
+
)5
1;3
!
"--%1*
x
I x x e dx
2
1
0
1
3
= +
÷
∫
0%&'()#*
x x 2
2 2
log (2 1).log (2 4) 3
+
+ + =
4+$9:#,,h[4;(i1K
`?1`>(CE`f(a4
·
SAO 30=
o
4
·
SAB 60=
o
!
"-:?&R(ja!
"#4+$
$%&'(%)*+, /+%(%0+*
124+$")(;B((U/5:Oxyz$
C77&R(S(∆,%&'()#*
{
x t y t z t; ;= − = = −
!
"#5:$QZ#>>B((,$C
)&R(S(!
"#5:($3&R(S(I%S(c
,%&'()#*
+x z– − =
!H%&'()#&R(S(?
f)(c4?A>$3>B((,U∆!
324+$"#B>%G*
i
z
i
1 3
2
+
=
+
!
O")(
4%&'(%)*+, /+%++,(2'
154+$")(;B((U/5:Oxyz4I
J>[,%&'()#*
F F k +x y z x y z+ + − − + − =
&R(
S(?*
x y z1 2
2 2 1
− +
= =
−
!
H%&'()#I%S(cG)<OxlI
J>[j:&R()b,;-f(F!
H%&'()#&R(S(∆A>1IJ>
[4l>B((,U&R(S(?!
154+$
x x
y
x
2
4 3
1
+ −
=
+
!G()f(-
;(i:$.;m)&R(
/V,Z>BZ:f(!
DDDDDDDDDDDDDDDDDDDD
67
F
+
m< <
!
k
y ymax ; min= = −
I e
1 7
2 18
= −
@ Y +
l a 2=
12Q7D7 3+77D7
{
d x t y t z t: ; ;= = + = − +
32
z 2=
15c*`nLY+
{
F x t y t z t: ; ;
∆
= − = + = − −
35
3 2
3
4!!!O")(;
OÂn thi toát nghieäp THPTQG 2015
(3.0 điểm)
y x x = + +
!
!
a4/Z>V(/%&'()#
>j*
m
x x + + =
!(3.0 điểm)
0%&'()#*
x x x2 2
2.2 9.14 7.7 0− + =
!
"--%1*
e
2x+lnx
I dx
x
1
=
∫
!
"#()ZU.M.
y x x x
3 2
6 9= − +
)567 8!
(1.0 điểm).#,%=>[!CE,:?5`
f(a455UI%S(`:(,
+
o+
!"-$
-;,%)!
"#4+$
$%&'(%)*+, /+%(%0+*
12 (2.0 điểm). ")(;B((U/5: Oxyz
A B C(2;0; 1), (1; 2;3), (0;1;2)− −
!
H%&'()#I%S(αA>$C4E4!
"##>>B((,(5:K)I%S(
α!
32 (1.0 điểm) "# %J%J %G*
z i i
3
5 4 (2 )= − + −
!
4%&'(%)*+, /+%++,(2'
O")(<
15(2 điểm)")(;B((U/5:Oxyz4I
%S( c &R( S( ? ZJ Z&W , %&'( )#*
p F +P x y z( ): + + + =
+
x t
d y t
z t
:
= +
= +
= − −
!
"#5:($C&R(S(?UI%S(
c!
&R( S( ?
, %&'( )#
x y z− − +
= =
−
!
G(&R(S(??
q>!H%&'(
)#I%S(dG&R((?((U
&R(S(?
!
35(1 điểm)"-()$>G
( ) ( )
P i i= − + +
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
67
r
e+
Y
Y+
rr+
(/
!@Y+7@YD
I e= −
[ ]
y
2;5
max 20=
7
[ ]
y
2;5
min 0=
a
V
3
3
12
=
12
+x y z+ + − =
H ; ;
÷
32Yk7YD
15
( 9;0;1)A -
( ) : 8 9 =0Q x y z+ +
35cY
D
4!!!O")(9
OÂn thi toát nghieäp THPTQG 2015
:
y x x = + +
!
!
H%&'()#%>`5$5
!
!
"--%1* ]Y
x
dx
x
4
0
tan
cos
π
∫
!
0%&'()#* Z(
x x
2 2
(4.3 6) log (9 6) 1− − − =
"#0"230"33
y x x x
3 2
2 3 12 2= + − +
)
[ 1;2]
−
!
#,%[!CEaU`CEaZ#
>B(5a![C>B((,UI%S(CEa4[CYa!
\1-?/-IJ>(5%#,%
[!CEa!
"#4+$
$%&'(%)*+, /+%(%0+*
12!")(;B((U/5:Oxyz4
$C7+74E+77+477g4aD77!
H%&'()#I%S(cA>C4E4!
O")(
H%&'()#IJ>1a4;-sY !G(
IJ>`lI%S(c!
32%G*
z i i
2
(1 2 )(2 )
= − +
!"-B>
%G
z
!
4%&'(%)*+, /+%++,(2'
15!")(;B((U/P:Oxyz4$
97
−
74&R(S(
y
x z1
( ):
1
1 1 4
∆
−
= =
−
4
( )
x t
y t
z
:
2
4
2
1
= −
∆ = +
=
I%S(c*
y z2 0
+ =
!
"#$3Z#>>B((,$9Z
&R(S(∆
!
H%&'()#&R(S(∆l&R(S(
∆
4∆
f)(I%S(c!
350%&'()#>*
x x
2
3 2 3 0− + =
)V%
%G!
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
67
`Y
!
I 2 1= −
@Y
[ ]
y
1;2
max 15
−
=
7
[ ]
y
1;2
min 5
−
= −
S a
2
6
π
=
12
x y z2 3 13 0+ + − =
x y z
2 2 2
( 3) ( 1) ( 2) 25+ + − + − =
32
z =
4!!!O")(!
OÂn thi toát nghieäp THPTQG 2015
153F77
x t
y t
z t
1 7
: 2
∆
= +
= −
=
35
z z i z i
1 2 3
1 3 1 3
0; ;
2 2 2 2
= = − + = − −
*
y x x –= − +
!
!
H%&'()#%>`5$,:
@YD!
!
"--%1>* ]Y
x
dx
x
4
2
0
1 tan
.
cos
π
+
∫
0.%&'()#*
x
x
2
2 1
log 0
1
+
>
−
*
Fy x + x mx= − + +
4m Z!"# m $
();(+7n
∞
!
Zt()<=>CE!CuEuu,`Z(
=>CE5f( a4e+4(,
·
B CC
0
30
′ ′
=
!0PH4H′ZJ
Z&WZ$-;Zt()<CE!CuEuu;
?/CECuEu!"-h*
V
V
′
!
"#
O")(
$%&'(%)*+, /+%(%0+
12! ")(;B(( Oxyz4IJ>[,
%&'()#*
F o +x + y z x y z+ − + − − =
\P:1-;-IJ>[!
H%&'()#I%S(c%@TU[5$
977D!
32QN`@%J4%J%G
>*
i
z i
i
1
1
1 2
−
= + −
+
4%&'(%)*+, /+%++,(2'
15!")(;B((Oxyz4$977+
&R(S(?,%&'()#*
x t
y t
z t
1 2
1
= +
= − +
= −
!H%&'()#
&R(S(?uA>94>B((,l?!
35")I%S(%G4N`#V%W%$
$>?v%GLM
z i 2− ≤
!
DDDDDDDDDDDDDDDDDDD
67
gy x= − −
!
I
3
2
=
x x2 1< − ∨ >
m 3≤ −
V
V
' 2
3
=
12]7D74sY c*`DFLDkY+
32
F g
a b;= = −
4!!!O")(1
OÂn thi toát nghieäp THPTQG 2015
15
x t
d y t
z t
2
': 1 4
2
= +
= −
= −
35Q#)b,1]+7
;-sY
;
*4+$*
Fy x x = − +
!
N!
"# m$%&'()#
+x x m− + =
,(/%1
/!
*4+$
0%&'()#*
F
g x x x log ( ) log+ = +
!
"--%1* ]Y
x
dx
x
2
2
0
sin2
1 cos
π
+
∫
"#()ZU.()M.*w@Y
x x
2
2+ −
!
*$;,%[!CE,ICE4[EZ
(=>5a[CY
a 3
2
!"-$-;,%
[!CEja!
"# 89
$%&'(%)*+, /+%%0+
O")(3
12*4+$")(;B((U/5:Oxyz4
&R(S(*
∆
*
x y z1 1 2
2 1 2
+ − −
= =
− −
4 ∆
*
x t
y t
z t
1 2
2
1 2
= −
= − +
= +
G()f(&R(S(∆
∆
((U
>!
"-;((^&R(S(∆
∆
!
32*4+$"#B>%G*
i
z
i
3 2
2
+
=
−
4%&'(%)*+, /+%+,(2'
15*4+$")(;B((U/5:Oxyz4
&R(S(*
∆
*
x y z2 1 1
1 2 3
− + −
= =
−
4 ∆
*
x t
y t
z t
2
1 2
=
= −
= +
IJ>
F o +S x y z x y z( ): – – –+ + + =
!
G()f(&R(S(∆
4 ∆
q>
-;((^&R(S(,!
H%&'()#I%S(α((U&R(
S(∆
4∆
lIJ>[j(>`Z&R()b
,>f(gπ!
35*4+$0%&'()#>)V%W%%G*
g +z i z + i– ( )+ =
!
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
67
+rrF
4!!!O")(:
OÂn thi toát nghieäp THPTQG 2015
!@YF ]YZ
max f x
;
( )
−
=
4
x f x
;
min ( )
−
= −
a
V
3
3
16
=
12
d 5=
32
z
65
| |
5
=
15
d
17
35
=
+x y z– – – =
35z
Y
7z
YF
<
o py x x x–= +
!
N!
"-?/-#%S((U5_4)<
&R(S(
@Y4@Y!
!
"--%1 ]Y
x
x e dx
1
0
(2 1)+
∫
!
0%&'()#* Z(
@DnZ(
@DY!
y xcos=
!G(`xng!`DY+!
O")(
;,%[!CEa,CEaZ#>B(
5a4[EY
a 3
[C>B((,UI%S(CEa!
"-$-;,%ja!
"#
$%&'(%)*+, /+%(%0+*
12!")(;B((U/5:Oxyz4
(CE,C−444E+444+4F!
G((CEZ(>B(!
0P9Z$
MB
uuur
Y
MC
uuur
!H%&'()#I
%S(cA>9>B(
(,U&R(S(E!
32 "#(/%G%&'()#V
F +z z – + =
!
4%&'(%)*+, /+%++,(2'*
15!")(;B((U/5:Oxyz4$
]4F4I%S(c,%&'()#
F +x y z –+ + =
!
H%&'()#IJ>[,1]%@TI
%S(c!
&R(S(?,%&'()#
x
1
Y
y
2
Y
z 1
3
−
!H
%&'()#&R(S(
∆>B((,U&R(S(?4A>$]((U
I%S(c!
35`Y
x mx
x
2
1
1
− +
−
!"#m$,
$5$>
C CT
y y . =
!
4!!!O")(;
OÂn thi toát nghieäp THPTQG 2015
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
67
S
13
4
=
!]Ynj @Y
a
V
3
2
3
=
12
F +x y z – –+ =
32z Y
i5 7
4
+
7z Y
i5 7
4
−
15
F x y z( – ) ( – ) ( – )+ + =
{
F F ox t y t z t: – ; ; –
∆
= = + =
35YD
9
x
y x x
3
2
11
3
3 3
= − + + −
!
N!
"#)$%1/943@G(>
A>)<>(!
!
O")(<
"--%1*
I x xdx
2
0
( 1)sin2
π
= +
∫
0%&'()#*
F +
x x x x
y( )sin( )
+
− + − + − + =
0%&'()#*
o
x x
log ( )log ( )
+
− − =
")(I%S(c(CE>B(
15E:%)(:&R()b
C I a( ; 2)
!")&R(
S(>B((,UI%S(c5$]4Z.`:$[
)&R()bZ.`:$9?/-
([C[E9=>f(
a
2
2
!"-ja$-
;G?/[CE9!
"#
$%&'(%)*+, /+%(%0+
12!")(;B((U/5:Oxyz4I
%S(c*F@−`nL−oY+&R(S(?
*
x
1−
Y
y 3
2
−
Y
z 1
3
+
4?
*
x 4
1
−
Y
y
1
Y
z 3
2
−
!
G()f(?
?
q>!
H%&'()#&R(S(∆f)c4(R∆
l?
?
!
32#,%G(=>[!CEa,5`
f(4(P[QZ&R(#,%!(i
)>($][QI[Ef(!"-$-
;,%[!CEa!
4%&'(%)*+, /+%++,(2'
4!!!O")(!9
OÂn thi toát nghieäp THPTQG 2015
15!")(;B((U/5:Oxyz4$
97 7 &R( S(
( )
x y z
d
1
2 1
:
3 1 2
+ −
= =
−
4
( )
{
d x t y t z t
2
: 2 2 ; 5 ; 2= − + = − = +
!
\q)-&'(&R(S(?
4?
!
H%&'()#&R(S(?A>9774l
&R(S(?
>B((,U&R(S(?
!
35"-?/-#%S((U5_
y x=
&R(S(?*`YD@
DDDDDDDDDDDDDDDDDDDDD
67
M N
16 16
3; , 3;
3 3
−
÷ ÷
!
I 1
4
π
= +
x y k;
π
π
= = − − +
÷
;∈y
+
g
k
x
x
log
log
=
=
V a
3
2
3
=
12
x y z2 7 5
:
5 8 4
∆
+ − −
= =
− −
32
a b
V
a b
3
2 2
2
3 16
=
−
15
x y z
d
1 1 1
:
3 1 1
− − −
= =
−
35
S
7
6
=
O")(!
y x mx m x
3 2 2
2 2= − + −
Z
;mY!
"#m$5$>5@Y!
!
0%&'()#*
x x x x
5 3 5 3
log .log log log= +
"--%1* ]Y
( )
x x x dx
2
0
sin2 2 cos .
π
+
∫
"-?/-#%S((U5_
x
y e=
4)<4)<>(&R(S(@Y!
#,%[!CE,[C⊥CE[CY
a4(CE,CEYEYa,(,CEf(
+
+
!
"-$-;,%[!CE!
"#
$%&'(%)*+, /+%(%0+*
12!")(;B((U/)<P:Oxyz
&R(S(?,%&'()#
x t
y t
z t
= +
= −
= − +
I%S(
c*
+x y z − + − =
"#($C&R(S(?I%S(c!
H%&'()#IJ>1]7D7%@TU
I%S(c!
32 "-$-;)b@`)?#
%S((U5_&R(
y x y x eln , 0,= = =
A>`A>)<K@!
4!!!O")(!!
OÂn thi toát nghieäp THPTQG 2015
4%&'(%)*+, /+%++,(2'
15!")(;B((U/)<Oxyz4
$C7+7+4E+77+4+7+7aD7D7D!
2V%%&'()#IJ>A>$C4E44a!
0P?Z&R(S(A>a((UCE!"-
;((^?%CE!
35 0 / %&'( )# *
x x y
x y
2
2 2
3 9
log log ( 1) 1
−
=
= + +
DDDDDDDDDDDDDDDDDDDDDDDD
67
Y
!@Y4@Y
I
4
3
π
= −
e
S
4
1
2
−
=
V a
3
3=
12C7D7
x y z( ) ( ) ( )− + + + − =
32
V e( 2)
π
= −
15
o k +
x y z x y z+ + + + − − =
d
24
7
=
3574
;
− −
÷
!
(3,0 điểm).
O")(!
C( )
y x x
3 2
3 2= − + −
!
"#.()m $&R(S(
y mx 2= −
l
C( )
5$%1/!
!(3,0 điểm )
0.%&'()#*
x
2
3
log ( 1) 2+ <
"--%1*
x
I dx
x
3
3
0
sin
cos
π
=
∫
"#()ZU.()M.
x
y xe
−
=
)5
[ ]
0;2
!
(1,0 điểm) #,%[!CE,`CEZ(
=>45=>f(a4(,(^5I`
f(
0
30
!"-$-;,%[!CEja!
"#(3,0 điểm )
$%&'(%)*+, /+%%0+
12 (2,0 điểm) ")(;B((5:
Oxyz
4$ A
&W@_/G
OA i j k2 3= + +
uuur r r r
&R(S(?,
%&'()#
x t
y t
z t
1
2
=
= +
= −
t ∈¡
H%&'()#I%S(
P( )
A>A>B((,
U&R(S(?!
"-;(i$A &R(S(?!
32(1,0 điểm)"#B>%G
z
i
17
2
1 4
= +
+
!
4%&'(%)*+, /+%+,(2'
4!!!O")(!1
OÂn thi toát nghieäp THPTQG 2015
15 (2,0 điểm) ")(;B((5:
Oxyz
4$ A
&W@_/G
OA i j k2= + +
uuur r r r
I%S(
P( )
,
%&'()#
x y z2 3 12 0− + + =
!
H%&'()#-l&R(S(?A>A
>B((,U
P( )
!
"-;((^&R(S(KCI%S(
P( )
!
35(1,0 điểm)%G
i
z
i
5 3 3
1 2 3
+
=
−
!"-
z
12
!
OOOOOOOOOOOOOOOOOOOOOOOOOO
67
m
9
0
4
≠ <
!
( 4; 1) ( 1;2)− − ∪ −
I
3
2
=
[ ]
y e
1
0;2
max
−
=
7
[ ]
y
0;2
min 0=
a
V
3
3 3
32
=
12
P x y z( ): 0+ − =
d
2 6
3
=
32
z =
15
x z z1 2 1
1 2 3
− − −
= =
−
d
6 14
7
=
35
z
12 12
2 4096= =
$*
y x x
3
3= −
4,!
N!
O")(!3