ÔN THI HỌC KỲ II
MÔN TOÁN 10
TÓM TẮT LÝ THUYẾT
I. Phần Đại số
1. Bất phương trình và hệ bất phương trình
D
⇔
!"#
∀
∈
D
⇔
$$
"#
∀
∈
D
⇔
$!$
%&
≥
"'(
≥
"#
∀
∈
D
⇔
) )
P x Q x<
2. Dấu của nhị thức bậc nhất
!
x –
∞
b
a
−
+
∞
f(x) *+,-'.+/01 0 23,-'.+/01
"#$4.+!"5
f x a a f x a
≤ ⇔ − ≤ ≤
f x a
f x a
f x a
≤ −
≥ ⇔
≥
3. Phương trình và hệ bất phương trình bậc nhất hai ẩn
%6+7,+89:+/;<-%&=
c
≤
) )
a b+
"
≠
Bưc 1:*>;?=#'@%AB
∆
ax + byC
Bưc 2:D-=
E
o o o
M x y
∉ ∆
%AF-=
o
M O
≡
Bưc 3:*G
>
=
>
'(0>0
>
=
>
'($
Bưc 4:HF:
>
=
>
I;A
∆
JK
>
F(;+L+/;<
ax + by
c
≤
>
=
>
!I;A
∆
MNJK
>
F(;+L+/;<
ax + by
c
≤
%6OA;+L+/;<%P;+L+/;<ab=$
K+L+/;<ax + by
c≥
'(ax + =!%P%&Q$
%6+7,+89:+/;</-%&:-)R
4.+;S+-%&>/#;+L+/;<5'(
TO;+LUFT+$
VM+F(;%FWF%P1+'.+-X>/3;
;9#;+LUFT+MNTGF(;+L+/;</Y>$
4. Dấu của tam thức bậc hai
%&'()*+, -
&'(C
)
#
≠
"
5;01
α
0>>
( )
$ "a f
α
<
)
Z
C">++/;+/
'(
)
Z
V1
α
[;+\)+/;
)
x x
α
< <
Hệ quả
2>;J:+C
)
#
≠
"#
∆
C
)
]^
∆
"3,-'.+/01$$!"#
∀
∈
_
∆
C"3,-'.+/01$$!"#
∀
≠
)
b
a
−
∆
!"3,-'.+/01M+
>`!
)
E+,-
'.+/01M+
)
$4.+
#
)
F(++/;<'(
)
Bảng xét dấu: C
)
#
≠
"#
∆
C
)
]^!"
x –
∞
x
1
x
2
+
∞
f(x)
(Cùng dấu vi hệ số a) 0 (Trái dấu vi hệ số a) 0 (Cùng dấu vi hệ số a)
#$, - '.'./+0)1234 5
"
∆ <
+
)
!"#
∀
⇔
"
"
a
>
∆ <
++
)
"#
∀
⇔
"
"
a
<
∆ <
+++
)
≥
"#
∀
⇔
"
"
a
>
∆ ≤
+'
)
≤
"#
∀
⇔
"
"
a
<
∆ ≤
5. Bất phương trình bậc hai
%&6
6-%&:)F(5,T!"a>`
≥
"#"#
≤
"#>5F(;;J:+$C
)
#
≠
"
%7
b7+X+-:+#,cFG'W,-;J:+
Bưc 1:b`'+[#d+,-
Bưc 2:eQ'(>X,-'(+L<7MF:+/;<
II. Phần Hình học
1. Các vấn đề về hệ thức lượng trong tam giác
%2'89 -
2>;+f62562C#f2C#f6C#=fKC
a
m
#
6KC
b
m
#2KC
c
m
&'$93
)
C
)
)
])$>0fE
)
C
)
)
])$>06E
)
C
)
)
])$>02
:2;7
g
>0fC
bc
acb
)
)))
−+
>06C
ac
bca
)
)))
−+
>02C
ab
cba
)
)))
−+
&'$3
C
c
B
b
A
a
0+0+0+
==
C)_ '.+_F(MG%AU>T++;+
f62
%%&<+=>?, -
^
)
^)
))))))
)
acbacb
m
a
−+
=−
+
=
E
^
)
^)
))))))
)
bcabca
m
b
−+
=−
+
=
^
)
^)
))))))
)
cabcab
m
c
−+
=−
+
=
%.(+2( -
• VC
)
a
a
C
)
b
b
C
)
c
c
VC
)
$0+2C
)
$0+fC
)
$0+6
VC
R
abc
^
VC VC
cpbpapp −−−
'.+C
)
2. Phương trình đường thẳng
* Để viết được phương trình đường thẳng dạng tham số cần phải biết được Toạ độ
1 điểm và 1 vectơ chỉ phương
* Để viết được phương trình đường thẳng dạng tổng quát cần biết được toạ độ 1
điểm và 1 vectơ pháp tuyến
a. Phương trình tham số của đường thẳng
∆
:
+=
+=
)"
"
tuyy
tuxx
'.+ K
""
E yx
∈ ∆ '(
E
)
uuu =
F( 'h& i %&
4*2
b. Phương trình tổng quát của đường thẳng
∆
: ]
"
x
=]
"
y
C"=
=C"
'.+C]
"
x
]
"
y
'(
)
)
≠" >5K
""
E yx
∈∆'(
E ban =
F(
'h&=4**
• %&%ABj+c9T+++7;fE"'(6"E
F(
=+
b
y
a
x
• %&%AB+k+7;K
""
E yx
5/015k5,T
=]
"
y
Ck]
"
x
c. Khoảng cách từ mội điểm M (
""
E yx
) đến đường thẳng
∆
:=C"
%PGh>NJ ,KE∆C
))
""
ba
cbxax
+
++
d. Vị trí tương đối của hai đường thẳng
∆
=
cybxa ++
= " '(
)
∆
=
)))
cybxa ++
= "
^
∆
j
)
∆
⇔
) )
a b
a b
≠
E*9+>+7;<
∆
'(
)
∆
F(+/;</
) ) )
C"
C"
a x b y c
a x b y c
+ +
+ +
∆
⁄ ⁄
)
∆
⇔
) ) )
a b c
a b c
= ≠
E
∆
≡
)
∆
⇔
) ) )
a b c
a b c
= =
'.+
)
a
#
)
b
#
)
c
M"
3. Đường tròn
$%&%AU;I(a ; b) MGR5,T
]
)
=]
)
C_
)
=
)
=
)
])])=C")'.+C
)
)
]_
)
• 4.++LM+/
)
)
]!"%&
)
=
)
])])=C"
F(%&%AU;
lEMG_
• b%AU2;lEMG_+m'.+%AB
∆αβ=γC"M+'(iM+,lE∆C
))
$$
βα
γβα
+
++ ba
C_
4. Phương trình Elip
%*>;`B?=>)+7;n
ZE"#n
)
E"'(n
n
)
C)!!"#C
>0$oF+oF(:P+7;Kn
Kn
)
KC)$
a=oC
)
p q ) rM F M F M a
+ =
%@(A, B'C'=
) )
) )
x y
a b
+ =
)
C
)
)
%=D, B'C'=
a+++7;n
ZE"#n
)
E"
61if
ZE"#f
)
E"#6
ZE"#6
)
E"
b,(+cF.f
f
)
C)
b,(+cO6
6
)
C) *+Qn
n
)
C)
+%:+E, B'CF
o5)c1+JF(?#?='(5;1+JF(19
s
C. BÀI TẬP MẪU
CHUYÊN ĐỀ 1: HỆ THỨC LƯỢNG TRONG TAM GIÁC
Dạng 1: Tính một số yếu tố trong tam giác theo một số yếu tố cho trước
G%@
VI,cQ+FG2>0+'(FGV+
29/JF%PGP1+'.+;+7G;01=1W
+$
H%I=
Bài 12>;+f625Ct;#Cs;'(2>0fC"#u$
*G#V+f#,+/G<;+f62$
*G%A>
-vif'(MG_<%AU>T++
;+$
Giải
*h>FG2>0+5
)^g)g)u#"$s$t$)st>0)
)))))
cmaAbccba ==⇒=−+=−+=
$
K`M'V+
)
fC]2>0
)
fC
s
^
)s
u
)s
w
=⇒=−
SinA
^
s
^
$s$t$
)
$$
)
)
cmSinAcbS
===⇒
*v
)
)t
)^
)x$))
$
)
cm
a
S
hhaS
aa
===⇒=
$
*h>FGV+
)
)s
s
^
$)
)^
)
) cm
SinA
a
RR
SinA
a
===⇒=
Bài 2:
2>;+f625f6C);#62Ct;#2fC";$
*G5fCy
*G,+/G;+'(+L><
*GMG%AU++<;+$
,
*G,(+%A=;
-vif<;+$
h
*GMG%AU>T++_<;+$
Giải
*G5fCy
*h>/kX<FG2>0+5
u#"
)$"$)
t)"
)
>0
))))))
=
−+
=
−+
=
bc
acb
A
*5
)^
)
"t)
)
cm
cba
p =
++
=
++
=
*h>NJN5
x^")^t)^))^)^
)
cmS =−−−=
e>5
x
)
x^$))
$
)
cm
a
S
hhaS
aa
===⇒=
u
*5VC$
s#g
)^
x^
===
p
S
r
, b,(+%A=;
%PGh>NJ
x#w)s#x^
)s#x^
^
ggt
^
)
)
"t
^)
))))))
)
≈=⇒
==−
+
=−
+
=
a
a
m
acb
m
h *GMG%AU>T++_<;+
*5
R
abc
S
^
=
u)s#"
x^$^
"$t$)
^
===
S
abc
R
EHJ7 -
$ @$
VI,cFG2>0+#FGV+#FGzg5>;;+[
x"
"
#F(;+'N570I,c/JF%P>;+$
H% I=
Bài tập
{+X+;++
C^EC"E
"
^s
|
=A
C^ECsECt
Giải
*5
Abccba >0)
)))
−+=
"))
^s>0"$^$)"^
−+=
)g
gs#s)sxw#"$)x"""wu
)
≈
≈−−+≈
a
a
}g^^})u)"^sx"
|
|
x"
|
})u)"
|
g^wg#"
)g
^s$^$
""""
"
≈+−≈+−=
=⇒≈==⇒=
BAC
B
Sin
a
SinAb
SinB
SinB
b
SinA
a
}gg^
|
x)xu#"
t"
sx
t$s$)
^ts
)
>0
"
))))))
≈⇒≈=
−+
=
−+
=
A
bc
acb
A
}g)")s^^}gg^x"
|
|
x"
|
})s^^
|
t^)x#"
su
^"
t$^$)
st^
)
>0
"""""
"
))))))
≈+−≈+−=
≈⇒≈=
−+
=
−+
=
BAC
B
ac
bca
B
:KLMN&OH@:PQNJRSTN:&PUNJR:VNJ
EG
W>X
∆
;
" "
E M x y
)=Y-<)
)
E u u u
=
r
ViÕt ph¬ng tr×nh ®êng th¼ng
∆
trong c¸c trêng hîp sau :
a. §i qua
E )M −
vµ cã mét vtcp
)E u = −
r
.
b. §i qua hai ®iÓm
E)A
vµ
gE^B
c. §i qua M(3; 2) vµ
−=
+=
ty
tx
d
)
qq
t
d. §i qua M(2; - 3) vµ
) s g "d x y⊥ − + =
.
{+X+
b+kKEZ)'(5;'F(
)E u = −
r
4%AB
∆
+kKEZ)'(5'F(
)E u = −
r
%&;01
<%ABF(
−−=
+=
ty
tx
)
)
b+k++7;fE)'(6gE^
4
∆
+k++7;fE)'(6gE^
∆
5'h&i%&
)E)=AB
%&;01<
∆
F(
+=
+=
ty
tx
))
)
b+kKgE)'(
−=
+=
ty
tx
d
)
qq
b%AB,5'h&i%&F(
E) −=
d
u
$4
∆
0>0>'.+,
∆
:'h&
E) −=
d
u
F(;'h&i%&$a=
E) −=
∆
u
#
∆
+kKgE)'
':=
∆
5%&%ABF(
−=
+=
ty
tx
)
)g
d) §i qua
)E gM −
vµ
) s g "d x y⊥ − + =
.
b%AB,)]s=gC",5'h&=F(
sE) −=
d
n
$
4
∆
'N5'.+%AB,
∆
'h&=<,F('h&
i%&$4':='<
∆
F(
sE) −=
∆
u
$
∆
+kK)EZg%&
%AB
∆
F(
−−=
+=
ty
tx
sg
))
Dạng 2 : ViÕt ph¬ng tr×nh ®êng th¼ng
∆
®i qua
" "
E M x y
vµ cã mét vtpt
E n a b=
r
.
ViÕt ph¬ng tr×nh tæng qu¸t cña ®êng th¼ng
∆
trong c¸c trêng hîp sau :
a. §i qua
E)M
vµ cã mét vtpt
)E gn = −
r
.
b. §i qua
gE)A
vµ
qq ) "$d x y− − =
c. §i qua
^E gB −
vµ
)
x t
d t R
y t
= +
⊥ ∈
= −
¡
.
{+X+
b+kKE)'(5;'F(
)E gn = −
r
4%AB
∆
+kKE)'(5'F(
)E gn = −
r
%&;01
<%ABF(
)]]g=])C")]g=^C"
b+kfgE)'(qq,)]=]C"
x
%AB,)]=]C"5'F(
E) −=
d
n
$
e%AB
∆
0>0>'.+%AB,
∆
:
E) −=
d
n
F(;'h&
=$4
∆
+kfgE)'(5'F(
E) −=
∆
n
∆
5%&F(
)]g]=])C")]=]^C"
b+k6^EZg'(
b%AB,5'F(
E) −=
d
u
$4
∆
'N5'.+,
∆
:'<,
F(;'
E) −=
∆
n
$b%AB
∆
+k6^EZg'(5'
E) −=
∆
n
∆
5
%&zkF(
)]^]=gC")]=]C"
Dạng 3ViÕt ph¬ng tr×nh ®êng th¼ng
∆
®i qua
" "
E M x y
vµ cã hƯ sè gãc k cho tr-
íc.
Z
%AB
∆
5/015M'h&i%&<
∆
F(
E ku =
Z
HP+X+
∆
+kK
"
E=
"
6(+:
ViÕt ph¬ng tr×nh ®êng th¼ng
∆
trong c¸c trêng hỵp sau :
a. §i qua
E)M −
vµ cã hƯ sè gãc
gk =
.
b. §i qua
gE)A
vµ t¹o víi chiỊu d¬ng trơc
Ox
gãc
"
^s
{+X+
§i qua
E)M −
vµ cã hƯ sè gãc
gk
=
.
∆
5/015MCg
∆
5'F(
gE=
∆
u
$
∆
+kKZE)'(5'F(
gE=
∆
u
5%&F(
+=
+−=
ty
tx
g)
b+kfgE)'(T>'.++L,%&c>5^s
"
{+X0I%AB
∆
5/015M#%':=M%P>~+NJ
MC
α
'.+
"
^s=
α
MC^s
"
MC
b%AB
∆
/015MC':='<
∆
F(
E=
∆
u
#
∆
+kfgE)
∆
5%&F(
+=
+=
ty
tx
)
g
6(+:)
Cho tam giác ABC, với A(1; 4); B(3; - 1); C(6; 2).
Hãy viết phương trình tổng quát của đường cao AH, và trung tuyến AM
của tam giác ABC.
{+X+
+ Ta có: AH ⊥ BC AH nh:'h&
BC
= (3; 3) là vecto pháp tuyến của AH.
•a+kfE^'(:
BC
= (3; 3) F(;' Phương trình tổng quát của
(AH) là:
w
3(x - 1) + 3(y - 4) = 0 3x + 3y - 15 = 0.
+ Goùi M laứ trung ủieồm cuỷa BC, ta coự:
=
+
=
+
=
=
+
=
+
=
)
)
)
)
)
w
)
ug
)
CB
M
CB
M
yy
y
xx
x
4:=
)
E
)
w
M
=
)
t
E
)
t
AM
F( vec t&i%&<%ABfK$
b%ABfK+kfE^'('
=
)
t
E
)
t
AM
fK5%&
=
+=
ty
tx
)
t
^
)
t
:KLMN&OZW[RS\RPQNJ&]^J^_`:`^&PUNJR:VNJ
Bi tp 1:
Xét vị trí tơng đối các cặp đờng thẳng sau và tìm toạ độ giao điểm trong trờng hợp
cắt nhau:
a)
)
) "E ) g "x y x y + = + =
.
b)
+=
=
=+
ty
tx
yx
))
^
""^)
)
=
=
=+
ty
tx
yx
^u
su
")"x
)
Gii
)
) "E ) g "x y x y + = + =
01+>+7;<
)
v
GF(01+/;</%&
=+
=+
"g)
")
yx
yx
{+X+/(=m5;`+/;#=CE$
4:=+%AB(=jT++7;#9+>+7;F(#=CE$
+=
=
=+
ty
tx
yx
))
^
""^)
)
*v%&%AB
)
5C]^'(=C))='(>
%P
)]^^))C"
"]xxC""C"'NFG+%AB
(=MN5+7;$
4:=+%AB
)
v
0>0>'.+$
=
+=
=+
ty
tx
yx
^u
su
")"x
)
b%AB
)
5'F(
^Es =u
)
5'F(
sE^=n
$
)
+k+7;59
ZuEu
)
5zkF(^us=]uC"^s=]uC"$
V1+>+7;<
)
v
GF(01+/;</%&
"
=−+
=−+
"us^
")"x
yx
yx
a/(=5'101+/;
)
∆∆ và
3$
#$(+>(==WX+;9+>+7;,3)$(+
>i=W;'G%&1+<+%AB,3
6(+:) X¸c ®Þnh gãc gi÷a hai ®êng th¼ng
a)
)
^ ) u "E g "x y x y∆ − + = ∆ − + =
+=
−=
∆=−+∆
ty
tx
yx
))
^
""^)
)
,
])=sC",
)
g]=C"$
Giải
)
^ ) u "E g "x y x y∆ − + = ∆ − + =
5
( )
) )
)
) ) ) )
) )
>0 #
a a b b
a b a b
+
∆ ∆ =
+ +
'.+
C^E
CZ)E
)
CE
)
CZg
4:=
( )
( )
"
)
))))
)
^sE
)
)"
"
"$)"
"
"$)"
€"€
g$)^
€g$)$^€
E
=∆∆⇒
====
−+−+
−−+
=∆∆Cos
+=
−=
∆=−+∆
ty
tx
yx
))
^
""^)
)
b%AB
)
∆
5'F(
)E^
)
−=
∆
u
'':='<
)
∆
F(
^E)
)
=
∆
n
b%AB
∆
5'F(
^E)
=
∆
n
$
4:=
( )
( )
"
)
))))
)
"E
)"
)"
)"$)"
€)"€
^)$^)
€^$^)$)€
E
=∆∆⇒
===
++
+
=∆∆Cos
,
])=sC",
)
g]=C"$
*5
)
)s
s
w$^
)g
$
E
)
)
)
)
)
)
))
)
==
++
+
=
++
+
=
baba
bbaa
ddCos
4:=5+\,
'(,
)
C^s
>
Bài tập 3:
2J;+[+%AB0'N5'.+
+=
−=
∆=−−∆
ty
tx
yx
))
)
""))
)
"^u)sg
)
=−+∆+=∆ xyxy
Giải
+=
−=
∆=−−∆
ty
tx
yx
))
)
""))
)
b%AB
)
∆
5'F(
)E)
)
−=
∆
u
'':='<
)
∆
F(
)E)
)
=
∆
n
b%AB
∆
5'F(
)E)
−=
∆
n
$
4':=
( )
( )
"
)
))))
)
"wE
"
x$x
€"€
))$))
€)$))$)€
E
=∆∆⇒
==
+−+
−+
=∆∆Cos
4:=+%AB'N5'.+$
"^u)sg
)
=−+∆+=∆ xyxy
b%AB
)
∆
)=u]^C"=CZg)$
)
∆
5/015M
)
CZg
b%AB
∆
5/015M
Cg$M
$M
)
Cg$ZgC"
)
∆∆ và
'N5'.+
:KLMN&Oab:cdNJe:RfghR&^ig&jN&PUNJR:VNJ
Bài tập 1
*GM>Xv+7;,%AB%P>%&J%0
fgEs'(
∆
^g=C"
6E)'(
}∆
g]^=C"
Giải
*5
s
)x
wu
s$gg$^
# =
+
++
=∆Ad
s
^
uw
)$^$g
}# =
+
+−
=∆Ad
Bài tập 2
*GM>Xv+7;%AB%P>%&J%0
f^EZ)'(%AB,
+=
−=
ty
tx
))
)
6ZtEg'(%AB,•
=
−=
ty
tx
g
Giải
f^EZ)'(%AB,
+=
−=
ty
tx
))
)
b%AB,+k+7;59E)'(5'F(
)E)−=
d
u
'':='<
,F(
)E)=
d
n
%&zk<%AB,F()])=])C"
))=ZuC"
)
*5
)
))
)
x
)
^^
u)$)^$)
# ===
+
−−+
=dAd
6ZtEg'(%AB,•
=
−=
ty
tx
g
b%AB,+k+7;59E"'(5'F(
gE−=
d
u
'':='<
,F(
Eg=
d
n
%&zk<%AB,F(Z]g=]"C"Zg=
C"
*5
"
t
w
g$gt$
# =
+
++−−
=dAd
:KLMN&Ok@:PQNJRSTN:&PUNJRSlN
EGN+E-< '=>m%R-
0-)=5(>m$
G%@
Cách 1:b%%&'L,T
)
=
)
Z)Z)=C" (1)
Z‚,-+7J;C
)
)
]
;!"F(%&%AU;l#MG
cbaR −+=
))
Cách 2:Zb%%&'L,T]
)
=]
)
C;)
Z;!")F(%&%AU;lEMG
mR
=
H%I=
Bài tập 1:*>%&0#%&(>+7,+8%AU$aY=
;;'(MG5
)
=
)
]ux=""C"
)
=
)
^Zu=Z)C"
)
)
)=
)
Z^x=Z)C"
Giải
)
=
)
]ux=""C"
5,T
)
=
)
Z)Z)=C">5CgECZ^#C""
‚+7J;C
)
)
]Cg
)
Z^
)
]""Cwu]""Cts"
4:=%&MNX+F(%&<%AU$
)
=
)
^Zu=Z)C")
)5,T
)
=
)
Z)Z)=C">5CZ)ECg#CZ)
‚+7J;C
)
)
]CZ)
)
g
)
)C^w)C)s!"%&
)F(%&%AU;lZ)Eg'(5MG
s)s)g)
))))
==++−=−+=
cbaR
g
)
)
)=
)
Z^x=Z)C"g
*5)
)
)=
)
Z^x=Z)C"
)
=
)
])^=ZC"$
%&(=5,T
)
=
)
Z)Z)=>5CECZ)$
‚+7J;C
)
)
]C
)
Z)
)
Cu!"$%&(=F(%&
%AU;lEZ)'(5MG
u)
))))
=+−+=−+=
cbaR
Bài tập 2
2>%&
)
=
)
]);^;=u;ZC"
4.++(><;%&F(%AUy
Giải
%&5,T
)
=
)
Z)Z)=C"'.+C;ECZ);ECu;]
$
F(%&<%AUM+'(iM+;C
)
)
]!"$
4.+
)
)
]!";
)
Z);
)
]u;!"
s;
)
]u;!"
>
<
s
m
m
EHn, >m
G%@
Cách 1
Z
*;9;lE<%AU2
Z
*;MG_<2
Z
4+%&%AUh>,T]
)
=]
)
C_
)
"#$
Z2+kf#6lf
)
Cl6
)
C_
)
Z2+kf'(+m'.+%AB;T+flfC,lE;
Z2+m'.++%AB;
'(;
)
,lE;
C,lE;
)
C_
Cách 2
Z
{9+%&<%AUF(
)
=
)
Z)Z)=C" (2)
Z
*v+LM+/<L(+%/%&'.+R01F(##
Z
{+X+/%&;##'(>)%P%&%AU
H%I=
Bài tập 1
D:%&%AU2>%AP0
$ 25;lZE)'(+m'.+%AB;])=tC"
$ 25%AMGF(f6'.+fE#6tEs$
Giải
^
*5
s
)
^
t)$)
E =
+
+−−
== mIdR
b%AU25;lZE)5MG_C
s
)
%&%A
UF(
)
=])
)
C
s
^
*;l<%AU2F(+7;<f6
5
gE^
g
)
s
)
^
)
t
)
I
yy
y
xx
x
BA
I
BA
I
⇒
=
+
=
+
=
=
+
=
+
=
4':=
gg^
))
=−+−== IAR
4:=%&%AUF(]^
)
=]g
)
Cg
Bài tập 2
4+%&%AU+k+7;fE)E6sE)E2EZg
Giải
‚%AU25,T
)
=
)
Z)Z)=C"
2+kf#6#2M+'(iM+f#6#2O;Y%&%AU#J
F(
−=
−=
=
⇔
=−−
=−+
=−+
⇔
=++−+
=+−−+
=+−−+
)
g
"u)
)w^"
s^)
"u)w
"^"^)s
"^)^
c
b
a
cba
cba
cba
cba
cba
cba
4:=%&%AU+k+7;f#6#2F(
)
=
)
Zu=]C"
EZn?$
1. Phương pháp
n9EGD:%&+=T+K
"
E=
"
%AU2$
Z;9;lE<2$
Z%&+='.+2T+K
"
E=
"
5,T
"
]]
"
=
"
]=]=
"
C"
"n9EHD:%&+=,<2M+%+9++7;
Z,3+LM+/+7,
,+m'.+%AU2;l#MG_,l#,C_
H%I=
Bài tập 1
4+%&+='.+%AU
2]
)
=)
)
C)s
*T++7;K^E)%AU2
s
Giải
b%AU25;F(lEZ)$4:=%&+='.+%AUT+
K^E)5,T
"
]]
"
=
"
]=]=
"
C"
^]]^))=])C"g^=])"C"
Bài tập 2
D:%&+='.+%AU2
)
=
)
]^])=C"
6+[+=+k+7;fgEZ)
Giải
%&%AB,+kfgEZ)5,T
=)CM]gM]=])ZgMC"
b%AU25;l)E'(5MG
s"^
))
=−+=−+= cbaR
,+m'.+2
,l#,C
−=
=
⇔=−−⇔+=+⇔=
+
−−−
)
)
"^u^sgs
g))
)))
)
k
k
kkkk
k
kk
4:=5++='.+2%PMƒvfF(
,
)]=]xC"
,
)
)=C"
:KLMN&OoCn^@
EGLập phương trình chính tắc của một (E) khi biết các thành phần đủ
để xác định Elip đó
G%@
Z*v(WY+#,cNJF+k;%P%&
Gj<o5$
ZD:*2*h>NJo
)))
)
)
)
)
cba
b
y
a
x
+==+
Z*5/J "
)
C
)
]
)
*+Qn
n
)
C)
b,(+cF.f
f
)
C)
b,(+c6
6
)
C)
aMFMFEM )
)
=+⇔∈
a+++7;n
ZE"En
)
E"$
a+icF.f
ZE"Ef
)
E"
a+icO6
"EZE6
)
"E
H%I=
Bài tập 1:
D:*2*<oF+>;S+%AP0
u
b,(+cF.["'(+Q[u
K++7;
( )
"Eg−
'(+7;
)
g
E
[;oF+
KicF.F(+7;gE"'(;9++7;F(Z)E"
, oF++k++7;K"E'(
)
g
E
Giải
b,(+cF.["'(+Q[u
*5,(+cF.[")C"CsE
*+Q[u)CuCg
4.+
)
C
)
]
)
C)s]wCu$*v=5%&Gj<hF+
F(
u)s
))
=+
yx
K++7;
( )
"Eg−
'(+7;
)
g
E
[;oF+
%&Gj<o5,T
)
)
)
)
=+
b
y
a
x
4o5;++7;
( )
g"Eg
=− cnênF
$
b+7;
)
g
E
[;o
^
g
))
=+
ba
4.+
)
C
)
)
C
)
g'(>5
$^g"ws^g^gg^
^
g
g
)))^))))
))
=+=⇒=⇔=−+⇔+=++⇔=+
+
abbbbbbb
bb
4:=%&GjF(
^
))
=+
yx
KicF.F(+7;gE"'(;++7;F(Z)E"
KicF.F(+7;gE"5Cg
K++7;F(Z)E"C)$V=
)
C
)
]
)
Cg
)
])
)
Cw]^Cs
4:=%&GjF(
sw
))
=+
yx
,oF++k++7;K"E'(
)
g
E
%&Gj<o5,T
)
)
)
)
=+
b
y
a
x
4o+k++7;K"E'(
)
g
E
=9++7;K'(
'(>%&o%P
=
=
⇔
=+
=
^
^
g
)
)
))
)
a
b
ba
b
4:=%&GjF(
^
))
=+
yx
$
t
EHXác định thành phần Elip khi biết PTCT của E đó.
G%@
2(W<o
)
)
)
)
=+
b
y
a
x
F(
*+Qn
n
)
C)
b,(+cF.f
f
)
C)
b,(+c6
6
)
C)
aMFMFEM )
)
=+⇔∈
Z*59+7;`+/<o
a+++7;n
ZE"En
)
E"$
a+icF.f
ZE"Ef
)
E"
a+icO6
"EZE6
)
"E
*i01
<
a
c
%&%ABJT<\:&0~F(
byax ±=±= E
H%I=
2>o5%&
w)s
))
=+
yx
‚,(+c#9++7;#9i
{+X+
%&Gj<o5,T
)
)
)
)
=+
b
y
a
x
'':=5
=
=
⇒
=
=
g
s
w
)s
)
)
b
a
b
a
^
))
=−=⇒ bac
4:=o5Z*cF.f
f
)
C)C"
Z*cO6
6
)
C)Cu
Za+++7;n
Z^E"En
)
^E"$
Z61if
ZsE"Ef
)
sE"
6
"EZgE6
)
"Eg
D. BÀI TẬP TỰ LUYỆN
I. Phần Đại số
1. Bất phương trình và hệ bất phương trình
Bài 1:*;+LM+/<%&0=
)
)
)
g
x
x
x
+
< +
−
g
g
)
)
w
) g
x
x
x x
+
+ ≥
− +
Bài 2:{+X+-%&0
x
g s "x x− + − ≥ −
)
)
x x
x
− −
<
−
)
g
g
x
x x
+
− + > +
,
g s )
) g
x x
x
+ +
− ≤ +
h
g) s gx x x− + − − > − −
)
^ "x x− + >
Bài 3: {+X+/%&
s )
^
g
u s
g
g
x
x
x
x
+
≥ −
−
< +
^ s
g
t
g x
)
^
x
x
x
x
−
< +
+
> −
) g
g s
s g
g
)
x x
x x
x
x
− ≤ −
< +
−
≤ −
,
g g) t
)
s g
sg
) )
x
x
x
x
−
− + >
−
− <
Bài 4: {+X+0
$ ^]^]
)
!"
$
)
)
) g
^ ) w
− − +
− +
"
$
) g
) g
+ <
− − −
,$
)
+ −
+ >
−
h$
)
"
s )
−
≥
+
Bài 5: {+X+/0
$
)
s " "
) "
− >
− − <
$
)
)
g )" t "
) g x "
− − <
− + >
$
)
) ^ g
)
u u "
−
>
+ −
− − <
,$
)
)
^ t "
) "
− − <
− − ≥
h$
g
s ) t
s g g s
^ " g
− +
− < −
− − +
− <
,$
)
g x g "
)
"
+ − ≤
+ >
2. Dấu của nhị thức bậc nhất
Bài 1: {+X+-%&
])" gg])sx
)
"
s
g x
>
−
,
^
g
g
x
x
− +
≤ −
+
h
)
g
)
x x
x
x
+ −
> −
−
) s gx − <
) ) gx x− > −
) g xx x− − =
M
)x x x+ ≤ − +
3. Phương trình và hệ bất phương trình bậc nhất hai ẩn
Bài 1: 6+7,+89:+/;<-%&0
)g=!" ]s=g ^]s=]g!)]w
,g=!)
Bài 2:6+7,+89:+/;</-%&
w
g w "
g "
x y
x y
+ − ≥
− + ≥
g "
) g "
x
x y
− <
− + >
g "
) g
)
x y
x y
y x
− <
+ > −
+ <
h
g
)
y x
y x
y x
− <
+ <
>
4. Dấu của tam thức bậc hai
Bài 1: ‚,-;J:+
g
)
]) ]
)
]^s )
)
)
)
Bài 2:‚,-+7J0
f =
) )
)
t
) )
) )
x x x
− − − −
÷ ÷
6 =
)
)
g ) s
w
x x
x
− −
−
2 =
)
g
s t
x
x x
+
− + −
,e =
)
)
g )
x x
x x
− −
− + −
Bài 3: *;+<;01;7;S+%&05+/;
)
)
);)g^;;
)
C"
;]
)
]);g];)C"
Bài 4: *;+;7%&
)
);w;]sC"5++/;;+/
)
]u;)]);w;
)
C"5++/;,%&+/
;
)
;
)
);]g;]sC"5++/;,%&+/
Bài 5:‚;7;J0FN,%&'.+;9+
)
;);t
)
^;]s
g;
)
]g;;^ ,;
)
])]s
Bài 6: ‚;7;J0FN;'.+;9+
;
)
];]s )];
)
);]g];
;)
)
^;];
)
,;]^
)
;);]
Bài 7:‚;7(;01C
)
^ gmx x m− + +
%P'.+;9+$
Bài 8: *;+<;0170+/;m'.+;9+
s
)
];!" ;
)
]"]s"
;;)
)
);)!" ,;
)
]);]g;]g
≥
"
Bài 9:*;+<;0170'N+/;
s
)
];
≤
" ;
)
]"]s
≥
"
Bài 10: 2>%&
)
g u s "x m x m− − − + − =
'.++(><;
$%&'N+/;
$%&5+/;
$%&5)+/;+,-
,$%&5++/;+/
$25+/;M'(;+/;M5
$25++/;,%&+/
Bài 11: 4.++(><;/05+/;
{ {
) )
w )" " s ^ "
g ) " ) "
x x x x
a b
x m m x
− + ≤ − + >
− > − ≥
)"
Bài 12:4.++(><;/0'N+/;
{
{
)
s ^ "
s u "
^ ) "
g "
x
x x
a b
x m
x m
− ≥
− + >
− − <
− <
5. Phương trình bậc hai & bất phương trình bậc hai
Bài 1. {+X+%&0
) ) )
g ) g ^ ^ ga x x x x b x x x
+ + = + − − = −
)
€ € € g€ ^ ) s gc x x x d x x x
+ + + = + − − = −
Bài 2. {+X+-%&0
)
) sg ) g
" "
) s ^
x x x x
a b
x x x
− − − −
≤ >
+ − +
)
) )
^ g
) )
) s g w g ) ) ^ )
x x
x
c d x e
x x x x x x
− +
−
> < − <
− + − − − +
) ) )
)
€ ) €
g )^ )) ) € s ^ € u s
) )
x
f g x x x h x x x x
x x
−
≤ + + ≥ + − + > + +
− −
Bài 3. Giải các hệ bất phương trình
)
)
)
s
"
g ^ "
) )
^ g
x x
x x
x
a b
x x
x x x
− +
≤
− + + ≥
− − < −
− < −
Bài 4:{+X+-%&0
]
)
]^
)
≤
" ]
)
g])
)
]su
≥
"
g
]g
)
^)]gu!" ,g
)
]t^
)
^!"
Bài 6: {+X+-%&0
)
"
s )
x
x
−
>
+
^ )
) s )
x
x x
−
>
− −
)
)
)
"
^ s
x x
x x
+ +
<
− −
,
)
)
g " g
"
^ ^
x x
x x
− +
≥
+ +
h
) g
g )x x x
+ <
+ + +
)
) s
u t g
x
x x x
−
<
− − −
2){+X+/0
)
)
)
s
u ^ t
s ) )
t ) "
t
g
x g
w "
) s
g t " "
)
x x
x x
x x
a b c
x
x x
x
x x
+ < +
− > +
− + <
+
− − ≥
< +
+ − ≥
6. Thống kê
Bài 1:2>X1M„0-Fm…Tq„;wwx<giv
/f~'(>F(
g" g" )s )s gs ^s ^" ^" gs ^s
gs )s ^s g" g" g" ^" g" )s ^s
^s gs gs g" ^" ^" ^" gs gs gs gs
e-+/+LF(yb&'+Ly
)
aY=F:
o 6X1W01
o 6X1W0-
eQ'(>MkX<aY=:'L%.:<01
F+/1M
Bài 2:b>M1+F%P<^skX>M1+F%PG[;#%A+
%P;†01F+/0
xu xu xu xu xt xt xx xx xx xw
xw xw xw w" w" w" w" w" w" w
w) w) w) w) w) w) wg wg wg wg
wg wg wg wg wg w^ w^ w^ w^ ws
wu wu wu wt wt
e-+/+LF(yb&'+LyaY='++M>
;†01F+/
D:X1-01'(W0-F.d;^F.'.+,(+M>XF(
)D.M>X‡xuExxˆF.)M>X‡xwEwˆ$$$
Bài 3:2>;†01F+/5X1W01'(W0-F.%0
5; H>X *W01
+
*W0-
+
‡xuExxˆ w )"‰
) ‡xwEwˆ )^$^^‰
g ‡w)Ew^ˆ w ^)$))‰
^ ‡wsEwtˆ u g$g^‰
*z C^s ""‰
4@+7dW01 4@+7dW
0-
4@+7d%A-MmW01 ,4@+7dkT
Bài 4:b>,(+;++;=&',(+F(;%P;†01F+/
0
^"$^ ^"$g ^)$" ^^$s ^w$x s"$u s$) sg$^ ss$s su$" su$^ st$)
st$^ sx$" sx$t sx$x sx$w sw$ sw$g sw$^ u"$" u"$g u"$s u)$x
*G01#01''(;1
D:X-01F.d;uF.'.+,(+M>XF(^5;W+F(
‡^"E^^5;J+F(‡^^E^xE$$$
Bài 5:H1+F%P<xs>FP<(FPl%P-d~T+N+FP
D:X1W0-F.#'.+F.%~
X
)4@+7dW017+/X$
g*G+
D. M1+
F%P
*W
01
‡^sEss
‡ssEus
‡usEts
‡tsExs
‡xsEws
"
)"
gs
s
s
2 xs
))
Bài 6:*1M+7;><;F."e
%PMkX0
b+7; ) g ^ s u t x w "
*W
01
) ^ g g t g w g )
*;;1y*G01+7;#;01'y
Bài 7. 2>X01F+/0
V1+LFY+%P<;S+Tính bằng triệu đồng<))M+
,>M7v(=1>(F:N=>=<;N=
) g )#s ^ s u#s t ) g$s ^#sw
)#s u#s t ^#s g g#s s#s x#s t#s w#s )"
D:X1W01#W0-F.h>F.‡)E^#‡^Eu#‡uEx#
‡xE)"ˆ
4@+7d%A-MmW01
Bài 8.29)g90+'(+Š+W=<h;%P;†01F+/0
gw ^ ^" ^g ^ ^" ^^ ^) ^ ^g gx gw
^ ^) gw ^" ^) ^g ^ ^ ^) gw ^
$D:X1W01#W0-$
$*G01''(01;1<;†01F+/lấy gần đúng một chữ số thập
phân
Bài 9: 2+L><g"90+F."%PF+/M~X0&';
^s sx u s) s) ut
s" u" us ss ss u^
^t t" tg sw u) su
^x ^x sx ss ^w s)
s) s" u" s" ug t
aY=F:X1W0-F.'.+F.F(^sEssE‡ssEusE
‡usEtsˆ$
4@+7dW01#W0-#%A-MmW0-
7. Lượng giác
Bài 1:bz+01>50
) g g ) g
E EE E E E
g s " w u )
π π π π π
Bài 2:b1+01>50+gs
"
E)
"
g"
•
E"
"
Es
"
E))
"
g"
•
E))s
"
Bài 3:KU5MGs;$*;,(+%AU55
01>
u
π
)s
"
^"
"
,g
Bài 4:*%AUF%P+#+7;KM+[
MA
501>
)g
k
π
)
k
π
)
s
k k Z
π
∈
,
g )
k k Z
π π
+ ∈
Bài 5: *G+(;01F%P+<501>
Zuw"
"
^ws
"
t
g
π
−
,
s
)
π
Bài 6: 2>>0C
g
s
−
'(x"
"
)t"
"
$G0+##>
2>
α
C
g
^
'(
g
)
π
π α
< <
$*G>
α
#0+
α
#>0
α
Bài 7:_m9+7J
)
)>0
0+ >0
A
x x
−
=
+
) )
0+ > >0 B x x x= + + +
Bài 8:*G+<+7J
>
>
A
α α
α α
+
=
−
+0+
α
C
g
s
'("
α
)
π
2>
g
α
=
$*G
)0+ g>0
^0+ s>0
α α
α α
+
−
E
g g
g0+ )>0
s0+ ^>0
α α
α α
−
+
Bài 9: 2J;+BJ0
0+ >0 )
>0 0+ 0+
x x
x x x
+
+ =
+
0+
^
>0
^
C])0+
)
$>0
)
>0
>0 0+
x
x
x x
− =
+
,0+
u
>0
u
C]g0+
)
$>0
)
h
) )
) )
) )
>0 0+
0+ $>0
>
x x
x x
x x
−
=
−
)
)
)
0+
)
0+
x
x
x
+
= +
−
Bài 10: *G+F%P+<
)
π
s
)
π
t
)
π
Bài 11: 6+z+(z+7J
xxA g>0$s>0=
. *G+<+7J
)
t
0+
)
s
>0
ππ
=B
Bài 12: 6+z+(G+7J
g0+)0+0+
++=
xA
Bài 13:2J;+[
^
x
x
x
π
−
= −
÷
+
^
x
x
x
π
+
= +
÷
−
Bài 14:*G+<+7J
0+ $>0 $>0 $>0
)^ )^ ) u
A
π π π π
=
( ) ( )
" " " "
>0s 0+s $ >0s 0+sC = − +
) "
)>0 ts B = −
Bài 15:_m>+7J
0+ ) 0+
>0 ) >0
A
α α
α α
+
=
+ +
)
)
^0+
>0
)
B
α
α
=
−
>0 0+
>0 0+
α α
α α
+ −
− −
Bài 16:2J;++7J0MNc'(>
#
α β
0+ u $>g >0u
α α α
−
> $
α β α β α β
− − −
)
> $
g g g
α α α
−
÷
)^
Bài 17: *G+F%P+<5
α
2
sin
5
α = −
'(
3
2
π
π < α <
cos 0.8α =
'(
3
2
2
π
< α < π
13
tan
8
α =
'(
0
2
π
< α <
,
19
cot
7
α = −
'(
2
π
< α < π
Bài 18: 2J;+BJ0
$
2 2
2
2
sin 2cos 1
sin
cot
α + α −
= α
α
$
3 3
sin cos
1 sin cos
sin cos
α + α
= − α α
α + α
$
2 2
sin cos tan 1
1 2sin cos tan 1
α − α α −
=
+ α α α +
,$
2 2
6
2 2
sin tan
tan
cos cot
α − α
= α
α − α
h$
4 4 6 6 2 2
sin cos sin cos sin cosα + α − α − α = α α
II. Phần Hình học
1. Hệ thức lượng trong tam giác
Bài 1:2>
∆
ABC5Cgs#C)"#fCu"
"
$*G
E_E
Bài 2:2>
∆
ABC5f6C"#f2C^'(fCu""$*G'+<
∆
ABC#G
2
Bài 3:2>
∆
ABC5fCu"
"
#T2fCx;#Tf6Cs;
*G62 *G,+/G
∆
ABC ‚h;563
=9y
*G,(+%A>fa h *G_
Bài 4:*>
∆
ABC#+]C#fCg"
"
#
C)$*GV+6
Bài 5:2>
∆
ABC5Cg;#C^;#Cs;
*G,+/G
∆
ABC {563=9y*G6
*GMG_# , *G ,(+ %A
=;
Bài 6:2>
∆
f625gTwEsE'(t$*G5<;+y*GM>X
vf62
Bài 7:2>
∆
ABC
2J;+[V+6CV+f22>fCu"
"
#6Cts
"
#f6C
)#GTUFT+<
∆
f62
2. Phương trình đường thẳng
Bài 1:D:%&;01'(zk<%AB
∆
+
∆
kK])Eg'(54**
n
r
CsE
∆
kK)E^'(5
4*2
gE^u =
r
)s