Tải bản đầy đủ (.doc) (3 trang)

Đề tuyển sinh vào 10 môn toán có đáp án số 48

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (104.55 KB, 3 trang )

ĐỀ 48
Câu 1(2.0 điểm):
1) Giải phương trình:
x 1 x 1
1
2 4
− +
+ =

2) Giải hệ phương trình:
x 2y
x y 5
=


− =

Câu 2:(2.0 điểm )
a) Rút gọn biểu thức: A =
2( x 2) x
x 4
x 2

+

+
với x

0 và x

4.


b) Một hình chữ nhật có chiều dài hơn chiều rộng 2 cm và diện tích của nó là
15 cm
2
. Tính chiều dài và chiều rộng của hình chữ nhật đó.
Câu 3: (2,0 điểm)
Cho phương trình: x
2
- 2x + (m – 3) = 0 (ẩn x)
a) Giải phương trình với m = 3.
a) Tính giá trị của m, biết phương trình đã cho có hai nghiệm phân biệt x
1
,
x
2
và thỏa mãn điều kiện: x
1
2
– 2x
2
+ x
1
x
2
= - 12
b)
Câu 4:(3 điểm)
Cho tam giác MNP cân tại M có cậnh đáy nhỏ hơn cạnh bên, nội tiếp
đường tròn ( O;R). Tiếp tuyến tại N và P của đường tròn lần lượt cắt tia MP và
tia MN tại E và D.
a) Chứng minh: NE

2
= EP.EM
a) Chứng minh tứ giác DEPN kà tứ giác nội tiếp.
b) Qua P kẻ đường thẳng vuông góc với MN cắt đường tròn (O) tại K
( K không trùng với P). Chứng minh rằng: MN
2
+ NK
2
= 4R
2
.
Câu 5:(1,0 điểm)
Tìm giá trị lớn nhất, nhỏ nhất của biểu thức: A =
2
6 4x
x 1

+
Hết
ĐÁP ÁN ĐỀ 48
Câu I.
a,
x 1 x 1
1 2(x 1) 4 x 1 x 1
2 4
− +
+ = ⇔ − + = + ⇔ = −
Vậy tập nghiệm của phương trình S=
{ }
1−

b,
x 2y x 2y x 10
x y 5 2y y 5 y 5
= = =
  
⇔ ⇔
  
− = − = =
  
Vậy nghiệm của hệ (x;y) =(10;5)
Câu II.
a, với x

0 và x

4.
Ta có:
2( 2) 2( 2) ( 2) ( 2)( 2)
1
( 2)( 2) ( 2) ( 2)( 2) ( 2)( 2)
x x x x x x x
A
x x x x x x x
− − + − − +
= + = = =
− + + − + − +
b, Gọi chiều rộng của HCN là x (cm); x > 0

Chiều dài của HCN là : x + 2 (cm)
Theo bài ra ta có PT: x(x+2) = 15 .

Giải ra tìm được :x
1
= -5 ( loại ); x
2
= 3 ( thỏa mãn ) .
Vậy chiều rộng HCN là : 3 cm , chiều dài HCN là: 5 cm.
Câu III.
a, Với m = 3 Phương trình có dạng : x
2
- 2x
( 2) 0x x
⇔ − =

x = 0 hoặc x = 2
Vậy tập nghiệm của phương trình S=
{ }
0;2
b, Để PT có nghiệm phân biệt x
1
; x
2
thì
'
0 4 0 4 (*)m m∆ > => − > => <
.
Theo Vi-et :
1 2
1 2
2 (1)
3 (2)

x x
x x m
+ =


= −

Theo bài: x
2
1
-
2x
2
+ x
1
x
2
= - 12 => x
1
(x
1
+ x
2
) -2x
2
=-12

2x
1
- 2x

2
= -12 ) ( Theo (1) )
hay x
1
- x
2
= -6 .
Kết hợp (1)

x
1
= -2 ; x
2
= 4 Thay vào (2) được :
m - 3 = -8

m = -5 ( TM (*) )
Câu IV .
a,

NEM đồng dạng

PEN ( g-g)
2
.
NE ME
NE ME PE
EP NE
=> = => =
b,

·
·
MNP MPN=
( do tam giác MNP cân tại M )
·
·
·
( ùng )PNE NPD c NMP
= =
=>
·
·
DNE DPE
=
.
Hai điểm N; P cùng thuộc nửa mp bờ DE và cùng nhìn DE
dưới 1 góc bằng nhau nên tứ giác DNPE nội tiếp .
c,

MPF đồng dạng

MIP ( g - g )
2
. (1)
MP MI
MP MF MI
MF MP
=> = => =
.


MNI đồng dạng

NIF ( g-g )
H
E
D
F
I
P
O
N
K
M
2
IF
.IF(2)
NI
NI MI
MI NI
=> = => =
Từ (1) và (2) : MP
2
+ NI
2
= MI.( MF + IF ) = MI
2
= 4R
2
( 3).
·

·
NMI KPN=
( cùng phụ
·
HNP
)
=>
·
·
KPN NPI=

=> NK = NI ( 4 )
Do tam giác MNP cân tại M => MN = MP ( 5)
Từ (3) (4) (5) suy ra đpcm .
Câu V .
2
2
6 8
x 8 6 0 (1)
1
x
k k x k
x

= <=> + + − =
+
+) k=0 . Phương trình (1) có dạng 8x-6=0  x=
2
3
+) k


0 thì (1) phải có nghiệm 
'

= 16 - k (k - 6)

0
2 8k
<=> − ≤ ≤
.
Max k = 8

x =
1
2

.
Min k = -2

x = 2 .

×