Tải bản đầy đủ (.pdf) (50 trang)

Sóng đàn hồi và ứng dụng trong địa chấn

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (737.83 KB, 50 trang )

ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐẠI HỌC KHOA HỌC
PHẠM THÙY LINH
SÓNG ĐÀN HỒI VÀ ỨNG DỤNG
TRONG ĐỊA CHẤN
LUẬN VĂN THẠC SĨ TOÁN HỌC
THÁI NGUYÊN - 2014
ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐẠI HỌC KHOA HỌC
PHẠM THÙY LINH
SÓNG ĐÀN HỒI VÀ ỨNG DỤNG
TRONG ĐỊA CHẤN
LUẬN VĂN THẠC SĨ TOÁN HỌC
Chuyên ngành : TOÁN ỨNG DỤNG
Mã số : 60 46 01 12
Người hướng dẫn khoa học:
TS NGUYỄN VĂN NGỌC
THÁI NGUYÊN, 2014
i
Mục lục
Mở đầu 1
1 Thiết lập phương trình sóng đàn hồi 4
1.1 Biến dạng và ứng suất đàn hồi . . . . . . . . . . . . . . . . . . . . . . 4
1.1.1 Trạng thái đàn hồi của vật . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Khái niệm về ứng suất (Stress) . . . . . . . . . . . . . . . . . . 4
1.1.3 Khái niệm về sự biến dạng (Strain) . . . . . . . . . . . . . . . . 5
1.2 Các hằng số đàn hồi và định luật Hooke suy rộng . . . . . . . . . . . . 6
1.2.1 Các hằng số đàn hồi . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Định luật Hooke suy rộng . . . . . . . . . . . . . . . . . . . . . 7
1.3 Mật độ năng lượng biến dạng . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Phương trình cân bằng sóng đàn hồi . . . . . . . . . . . . . . . . . . . 8


1.4.1 Lực tạo bởi ứng suất . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 Định luật hai Newton - Hệ phương trình cân bằng Navier -
Cauchy - Hệ phương trình Lame . . . . . . . . . . . . . . . . . . 9
1.4.3 Tọa độ trụ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.4 Tọa độ cầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Điều kiện đầu, điều kiện biên và các bài toán liên quan của các phương
trình sóng đàn hồi. Định lý về duy nhất nghiệm . . . . . . . . . . . . . 11
1.5.1 Điều kiện đầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5.2 Điều kiện biên . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5.3 Bài toán Cauchy . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5.4 Bài toán biên-giá trị ban đầu . . . . . . . . . . . . . . . . . . . 12
1.5.5 Định lý về duy nhất nghiệm . . . . . . . . . . . . . . . . . . . . 12
2 Sóng điều hòa-Các sóng đàn hồi điều hòa cơ bản 13
2.1 Một số kiến thức bổ trợ . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 Khái niệm về sóng điều hòa . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Khái niệm về δ hàm Dirac và hàm Heaviside H(x) . . . . . . . 14
2.2 Biểu diễn nghiệm của phương trình sóng đàn hồi . . . . . . . . . . . . 15
2.2.1 Hệ không có nguồn . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Hệ có nguồn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Sóng P, sóng S, sóng SV, sóng SH và sóng PSV . . . . . . . . . . . . . 19
2.3.1 Sóng P và sóng S (P-sóng và S-sóng) . . . . . . . . . . . . . . . 19
2.3.2 Sóng SV, sóng SH và sóng PSV . . . . . . . . . . . . . . . . . . 20
2.4 Vận tốc pha và vận tốc nhóm . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Vận tốc pha . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
ii
2.4.2 Vận tốc nhóm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.3 Vận tốc tốc pha và vận tốc nhóm của một số môi trường . . . . 22
2.5 Sóng khối phẳng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.1 Phát biểu bài toán . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.2 Bài toán giá trị ban đầu (Bài toán Cauchy)đối với sóng khối

phẳng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.3 Bài toán giá trị biên đơn giản của sóng phẳng . . . . . . . . . . 24
2.6 Sóng cầu đối xứng sinh bởi hệ thuần nhất . . . . . . . . . . . . . . . . 25
2.7 Sóng cầu được sinh bởi nguồn điểm đơn . . . . . . . . . . . . . . . . . 28
2.7.1 Các thế vị của nguồn . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7.2 Phương trình của các thế vị . . . . . . . . . . . . . . . . . . . . 29
2.7.3 Công thức của các chuyển vị . . . . . . . . . . . . . . . . . . . . 30
3 Sự phản xạ và khúc xạ của các sóng đàn hồi phẳng 34
3.1 Các phương trình cơ bản . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.1 Các phương trình liên quan tới hai nửa không gian . . . . . . . 34
3.1.2 Thế vị phẳng điều hòa . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Phản xạ và khúc xạ của sóng SH . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 Hệ số phản xạ và khúc xạ . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Phản xạ toàn phần . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Phản xạ của sóng P tại một bề mặt tự do . . . . . . . . . . . . . . . . 40
Kết luận 45
Tài liệu tham khảo 46
1
Mở đầu
Dưới tác dụng của ngoại lực một vật rắn nào đó bị biến dạng. Nếu vật có thể
khôi phục được hình dạng và kích thước ban đầu thì trạng thái biến dạng nói
trên được gọi là trạng thái đàn hồi. Ngược lại, trạng thái biến dạng được gọi là
dẻo, hay là dư.
Lý thuyết đàn hồi (LTĐH) là môn học nghiên cứu về chuyển vị, biến dạng
và ứng suất xuất hiện trong vật thể đàn hồi dưới tác dụng của tải trọng, hay va
chạm với các vật khác. Nội dung của LTĐH bao gồm các vấn đề chính sau đây:
• Thiết lập quy luật vật lý cơ bản của LTĐH (Định luật Hooke) giữa ứng suất
và biến dạng.
• Thiết lập các phương trình cơ bản của LTĐH, các điều kiện biên và điều kiện
đầu.

• Năng lượng đàn hồi.
• Định lý về tồn tại và duy nhất nghiệm, v.v
Lý thuyết đàn hồi là cơ sở để tính toán độ bền biến dạng và ổn định trong
kỹ thuật xây dựng, trong chế tạo máy, khai khoáng và các lĩnh vực khác của kỹ
thuật, cũng như trong địa chấn v.v
Một trong những ứng dụng quan trọng của việc nghiên cứu sóng đàn hồi là
ứng dụng trong địa chấn học. Sóng địa chấn là những dạng sóng năng lượng hình
thành và lan truyền bởi sự va chạm của lớp địa tầng khi xảy ra động đất. Sóng
địa chấn có nhiều dạng với nhiều cách lan truyền khác nhau, trong đó có thể
phân ra hai nhóm lớn là sóng khối và sóng bề mặt. Sóng khối có thể lan truyền
trong các tầng đất phía sâu, còn sóng bề mặt chỉ lan truyền ở lớp đất phía trên
của vỏ trái đất. Có hai dạng sóng khối chính là sóng P (premier wave-sóng sơ
cấp) và sóng S (secondary wave-sóng thứ cấp).
Thăm dò địa chấn là phương pháp địa vật lý nghiên cứu đặc điểm trường
sóng dao động đàn hồi trong môi trường đất đá nhằm giải quyết các nhiệm vụ
địa chất khác nhau, như nghiên cứu cấu trúc vỏ quả đất, tìm kiếm thăm dò dầu
khí và tài nguyên khoáng sản, nghiên cứu nền móng công trình Trong thăm dò
2
địa chấn, bằng các kích động nhân tạo như nổ mìn, rung, đập người ta kích
thích vào môi trường địa chất các xung lực. Sự kích thích lực làm đất đá rung
động và làm xuất hiện sóng đàn hồi. Các sóng này truyền qua hay phản xạ trên
các lớp đất đá và các máy thu sẽ ghi nhận thời gian các sóng phản xạ truyền
đến ở dạng các băng địa chấn phản ánh các thông tin về lớp đất cần thăm dò.
Luận văn tập trung nghiên cứu về bản chất của sóng đàn hồi, các loại sóng
đàn hồi và một số ứng dụng trong các vấn đề của của địa chấn học. Bố cục luận
văn gồm có 3 chương:
Chương 1: Thiết lập phương trình sóng đàn hồi tuyến tính cổ điển. Trong
chương này có trình bày một số kiến thức về biến dạng và ứng suất đàn hồi,
định luật Hooke, mật độ năng lượng và vấn đề cơ bản nhất của chương này, đó
là phương trình cân bằng của sóng đàn hồi. Đã trình bày các điều kiện biên và

điều kiện đầu đối với hệ phương trình sóng đàn hồi.
Chương 2: Sóng điều hòa - Các sóng đàn hồi cơ bản. Nội dung chính của
chương này gồm có các phần sau đây.
• Phần thứ nhất trình bày cách tìm nghiệm của hệ phương trình sóng đàn
hồi bằng phương pháp thế vị, đưa hệ phương trình đàn hồi về các phương trình
sóng tuyến tính cấp hai thuộc lớp phương trình hyperbolic của lý thuyết các
phương trình đạo hàm riêng.
• Phần thứ hai trình bày về sóng điều hòa và các loại sóng đàn hồi, như sóng
P (sóng sơ cấp), sóng S (sóng thư cấp), các sóng thứ cấp đứng ( SV), thứ cấp
ngang ( SH), sóng sơ-thứ cấp đứng (PSV), v.v
• Phần thứ ba trình bày ba bài toán cơ bản của phương trình sóng. Đó là bài
toán Cauchy và bài toán biên giá trị ban đầu đối với sóng khối phẳng; bài toán
biên giá trị ban đầu đối với sóng cầu đối xứng thuần nhất khi biết các điều kiện
đầu và các điều kiện biên trên một mặt cầu nhỏ cho trước; bài toán Cauchy đối
với sóng cầu có nguồn điểm ở gốc tọa độ.
Chương 3: Sự phản xạ và khúc xạ của sóng đàn hồi phẳng. Chương này trình
bày sự phản xạ và khúc xạ của sóng SH, sóng P và sóng SV trên bề mặt phân
cách z = 0 cửa hai nửa không gian là những môi trường đàn hồi khác nhau.
Các vấn đề được đề cập trong luận văn này có thể tìm thấy những ứng dụng
của địa chấn học và chủ yếu được hình thành từ các tài liệu [1], [2], [3], [4], [5]
và [6].
Luận văn này được hoàn thành tại trường Đại học Khoa học - Đại học Thái
Nguyên. Tác giả xin bày tỏ lòng biết ơn sâu sắc với TS Nguyễn Văn Ngọc, người
Thầy đã hướng dẫn tận tình và động viên tác giả trong suốt thời gian nghiên
cứu vừa qua.
3
Xin chân thành cảm ơn tới các thầy, cô giáo trong Bộ môn Toán - Tin, Phòng
Đào tạo Khoa học và Quan hệ quốc tế , các bạn học viên lớp Cao học Toán
K6B trường Đại học Khoa học - Đại học Thái Nguyên, và các bạn đồng nghiệp
đã tạo điều kiện thuận lợi, động viên tác giả trong quá trình học tập và nghiên

cứu tại trường.
Tác giả cũng xin bày tỏ lòng biết ơn sâu sắc tới gia đình và người thân luôn
khuyến khích, động viên tác giả trong suốt quá trình học tập và làm luận văn.
Mặc dù có nhiều cố gắng nhưng luận văn khó tránh khỏi những thiếu sót và
hạn chế. Tác giả mong nhận được những ý kiến đóng góp quý báu của các thầy
cô và bạn đọc để luận văn được hoàn thiện hơn.
Thái Nguyên, ngày 10 tháng 9 năm 2014
Học viên
Phạm Thùy Linh
4
Chương 1
Thiết lập phương trình sóng đàn hồi
Chương này trình bày cơ sở lý thuyết của lý thuyết đàn hồi tuyến tính, bao
gồm Định luật Hooke suy rộng về mối liên hệ giữa ứng suất và biến dạng, các
phương trình cân bằng, v.v Nội dung của chương này chủ yếu được hình thành
từ các tài liệu [1], [2], [3] và [4].
1.1 Biến dạng và ứng suất đàn hồi
1.1.1 Trạng thái đàn hồi của vật
Dưới tác dụng của ngoại lực một vật rắn nào đó bị biến dạng. Nếu vật có
thể khôi phục được hình dạng và kích thước ban đầu thì trạng thái biến dạng
nói trên được gọi là trạng thái đàn hồi. Ngược lại, trạng thái biến dạng được gọi
là dẻo, hay là dư. Xét ví dụ: Giả sử ta kéo nhẹ một lò xo khỏi vị trí cân bằng
rồi buông thì chiếc lò xo vẫn có hình dạng và kích thước ban đầu, ta có trạng
thái đàn hồi. Nếu ta kéo mạnh hoặc quá mạnh thì sau khi buông, chiếc lò xo
không thể lấy lại được hình dạng và kích thước ban đầu nữa, thậm chí bị phá
huỷ (hỏng) hoàn toàn, ta có trạng thái dẻo (dư), hoặc phá huỷ.
1.1.2 Khái niệm về ứng suất (Stress)
Trong lý thuyết đàn hồi, ứng suất là một khái niệm quan trọng. Ta hình dung
qua điểm x của môi trường vẽ một mặt đủ nhỏ ∆S. Lực đàn hồi giữa các phần
của môi trường ở phía này của ∆S tác động lên các phần tử của môi trường ở

phía bên kia.
Hợp lực của các lực nói trên bằng nhau về độ lớn nhưng có chiều ngược nhau
(lực trực đối). Để nói về chiều của các lực đó, ta vẽ pháp tuyến n đến mặt ∆S.
Giả sử rằng, các lực tác dụng lên ∆S theo hướng của pháp tuyến n về tĩnh học
5
tương đương với hợp lực T và moment của cặp lực M. Xét các đại lượng
τ = T/(∆S), µ = M/(∆S).
Giả thiết rằng đối với các đại lượng này tồn tại giới hạn khi ∆S → 0. Các giới
hạn này phụ thuộc vào điểm x và pháp tuyến n. Nếu chọn hướng ngược lại của
n thì các giới hạn sẽ đổi dấu. Nếu qua điểm x ta chọn mặt khác ∆S

thì ta lại
có hình ảnh khác.
Ta giả thiết rằng các giới hạn trên đây không thay đổi đối với mọi mặt ∆S
đi qua điểm x có cùng pháp tuyến n. Ký hiệu
τ
(n)
= lim
∆S→0
T/(∆S), µ
(n)
= lim
∆S→0
M/(∆S).
Các đại lượng τ
(n)
, µ
(n)
phụ thuộc vào điểm x và thời điểm t. Đại lượng τ
(n)

được gọi là ứng suất lực, còn đại lượng µ
(n)
đựợc gọi là ứng suất moment tại
điểm x theo hướng của pháp tuyến n.
Trong không gian ba chiều Oxyz, nếu tại điểm x = (x, y, z) xét các mặt đủ
nhỏ đi qua x vuông góc với các trục toạ độ với pháp tuyến có hướng là hướng
của các trục toạ độ, thì có các véctơ ứng suất:
τ
x
= (τ
xx
, τ
xy
, τ
xz
),
τ
y
= (τ
yx
, τ
yy
, τ
yz
),
τ
z
= (τ
zx
, τ

zy
, τ
zz
),
trong đó τ
xx
, τ
xy
, τ
xz
tương ứng là toạ độ của vectơ τ
x
trên các trục toạ độ
Ox, Oy, Oz. Tương tự đối với các véc tơ τ
y
và τ
z
. Ứng suất có tính chất
τ
xy
= τ
yx
, τ
xz
= τ
zx
, . . . .
Trong nhiều tài liệu dùng ký hiệu
σ
x

= τ
xx
, σ
y
= τ
yy
, σ
z
= τ
zz
.
1.1.3 Khái niệm về sự biến dạng (Strain)
• Chuyển vị. Ký hiệu r
M
là bán kính véctơ của điểm M và P (r
M
, t) là ứng suất,
áp suất (trong chất lưu) tại điểm M của không gian Euclid R
n
ở thời điểm t. Đơn
vị của ứng suất là N/m
2
, hay P a (Paxcan). Xét điểm M(x, y, z) ∈ R
3
thuộc đối
tượng nghiên cứu ở thời điểm t. Dưới sự tác dụng của các lực, ở trạng thái cân
6
bằng điểm M sẽ dịch chuyển (rất nhỏ) đến điểm M

(x


, y

, z

). Véc tơ u
M
= MM

được gọi là véc tơ chuyển vị của điểm M : u
M
= u(x, y, z; t). Ta có hệ thức:
r
M

= r
M
+ u
M
.
• Biến dạng. Trong giới hạn đàn hồi có ba loại biến dạng cơ bản:
1) Biến dạng nén ( Compressional strain) = Thể tích thay đổi/ Thể tích ban
đầu.
2) Biến dạng trượt đơn giản (Simple shear strain ) = Số gia của độ dài/ Độ dài
ban đầu.
3) Biến dạng trượt thuần tuý (Pure shear strain)= Bị nén + Bị kéo (diện tích
(area) không thay đổi, góc thay đổi).
Giả sử dưới tác dụng của lực véc tơ chuyển vị của điểm (x, y, z) là
u = (u
1

, u
2
, u
3
).
• Độ biến dạng theo các phương Cauchy- Navier
ε
ij
=
1
2

∂u
i
∂x
j
+
∂u
j
∂x
i

, ε
ij
= ε
ji
. (1.1)
• Độ biến dạng giãn nở
1) Thể tích nguyên tố ban đầu (Original Volume): V = δxδyδz,
2) Thể tích nguyên tố biến dạng (Deformed Volume):

V + δV = (1 + ε
xx
)(1 + ε
yy
)(1 + ε
zz
)δxδyδz,
3) Biến dạng giãn (nở) của thể tích nguyên tố:
δV
V
= (1 + ε
xx
)(1 + ε
yy
)(1 + ε
zz
) − 1
≈ ε
ii
( lấy tổng theo i từ 1 đến 3) = ∂
i
u
i
= ∇.u = divu.
Vậy ta có công thức
δV = V.ε
ii
= V (ε
xx
+ ε

yy
+ ε
zz
) = V (
∂u
∂x
+
∂v
∂y
+
∂w
∂z
). (1.2)
1.2 Các hằng số đàn hồi và định luật Hooke suy
rộng
1.2.1 Các hằng số đàn hồi
• Modun Young E mô tả đàn hồi dạng kéo, hoặc nén dọc theo trục(của thanh,
hay lò xo) khi lực tác dụng đặt dọc theo trục đó, nó được định nghĩa bằng tỷ số
7
giữa ứng suất kéo (nén) cho độ biến dạng. Đơn vị của modun Young là N/m
2
.
• Modun đàn hồi trượt G miêu tả xu hướng một vật thể của một vật thể bị
cắt(trượt, hình dạng biến dạng với thể tích không đổi) khi bị tác động bởi các
lực ngược hướng, nó được định nghĩa bằng ứng suất cắt (trượt) chia cho biến
dạng kéo. Đơn vị của modun trượt G là N/m
2
.
• Modun đàn hồi λ (hằng số Lame). Khi chịu sự tác động của một ứng suất
kéo hoặc nén, một vật sẽ phản ứng bằng cách biến dạng theo tác dụng của lực.

Trong một giới hạn biến dạng nhỏ, độ biến dạng này tỷ lệ thuận với ứng suất
tác động. Hệ số tỷ lệ này được gọi là modun đàn hồi và được xác định theo công
thức
λ =
ứng suất (stress)
biến dạng (strain)
.
• Các hằng số Lame: λ, µ, thứ nguyên N/m
2
,
λ =
νE
(1 + ν)(1 − 2ν)
, µ =
E
2(λ + µ)
.
• Modun đàn hồi ( Modun Young): E, thứ nguyên N/m
2
,
E =
2µ(3λ + 2µ)
λ + µ
.
• Hệ số Poison (Poisson’s ratio): ν, không thứ nguyên:
ν =
λ
2(λ + µ)
, 0 < ν < 1/2.
• Hệ số cứng hay modun đàn hồi trượt, thứ nguyên N/m

2
:
G =
E
2(1 + ν)
.
1.2.2 Định luật Hooke suy rộng
Trong môi trường đồng nhất đẳng hướng ứng suất và biến dạng liên hệ nhau
theo công thức
τ
ij
= λδ
ij
ε
kk
+ 2µε
ij
, (1.3)
trong đó δ
ij
là ký hiệu Kronecker, (i, j = x, y, z); λ, µ được gọi là các hằng số
Lame.
8
Trong hệ trục tọa độ Oxyz và với véctơ chuyển vị u = (u, v, w), công thức
(1.3) có dạng
τ
xx
= λ

∂u

∂x
+
∂v
∂y
+
∂w
∂z

+ µ
∂u
∂x
, (1.4)
τ
xy
= µ

∂u
∂y
+
∂v
∂x

, (1.5)
τ
xz
= µ

∂u
∂z
+

∂w
∂x

, (1.6)
τ
yy
= λ

∂u
∂x
+
∂v
∂y
+
∂w
∂z

+ µ
∂v
∂y
, (1.7)
τ
yx
= µ

∂v
∂x
+
∂u
∂y


, (1.8)
τ
yz
= µ

∂v
∂z
+
∂w
∂y

, (1.9)
τ
zz
= λ

∂u
∂x
+
∂v
∂y
+
∂w
∂z

+ µ
∂w
∂z
, (1.10)

τ
zx
= µ

∂w
∂x
+
∂u
∂z

, (1.11)
τ
zy
= µ

∂w
∂y
+
∂v
∂z

. (1.12)
(1.13)
1.3 Mật độ năng lượng biến dạng
Mật độ năng lượng biến dạng của vật đàn hồi được xác định bởi công thức
E =
1
2

i,j=x,y,z

τ
ij
ε
ij
(1.14)
=
1
2

i,j=x,y,z
[λδ
ij
ε
kk
+ 2µε
ij

ij
(1.15)
Nhận xét rằng, mật độ năng lượng biến dạng là một dạng toàn phương xác
định dương đối với sáu đại lượng độc lập ε
ij
; i, j = 1, 2, 3.
1.4 Phương trình cân bằng sóng đàn hồi
1.4.1 Lực tạo bởi ứng suất
Xét thể tích nguyên tố δV đủ nhỏ. Hợp lực tác dụng lên δV là véc tơ F =
(F
x
, F
y

, F
z
) = (F
1
, F
2
, F
3
), trong đó
F
x
=


xx
+
∂τ
xx
∂x
δx) − τ
xx

δyδz +


xy
+
∂τ
xy
∂y

δx) − τ
xy

δxδz
9
+


xz
+
∂τ
xz
∂z
δz) − τ
xz

δxδz + f
x
δxδyδz =

∂τ
xx
∂x
+
∂τ
xy
∂y
+
∂τ
xz

∂z
+ f
x

δxδyδz.
Vậy, với i = x, y, z thì
F
i
=

∂τ
ix
∂x
+
∂τ
iy
∂y
+
∂τ
iz
∂z
+ f
i

δV, (1.16)
trong đó f
i
là toạ độ của véc tơ mật độ lực khối f = (f
1
, f

2
, f
3
).
1.4.2 Định luật hai Newton - Hệ phương trình cân bằng Navier
- Cauchy - Hệ phương trình Lame
ρδV

2
u
i
∂t
2
= F
i
, i = x, y, z = 1, 2, 3. (1.17)
Thay (1.16) vào (1.17) ta được hệ phương trình cân bằng ứng suất - chuyển vị
của lý thuyết đàn hồi động














ρ

2
u
1
∂t
2
=
∂τ
xx
∂x
+
∂τ
xy
∂y
+
∂τ
xz
∂z
+ f
1
,
ρ

2
u
2
∂t
2

=
∂τ
yx
∂x
+
∂τ
yy
∂y
+
∂τ
yz
∂z
+ f
2
,
ρ

2
u
3
∂t
2
=
∂τ
zx
∂x
+
∂τ
zy
∂y

+
∂τ
zz
∂z
+ f
3
,
(1.18)
trong đó
τ
xy
= τ
yx
, τ
yz
= τ
zy
, τ
zx
= τ
xz
. (1.19)
Chú ý (1.19), từ (1.3) và (1.18) ta có hệ 9 phương trình đối với 9 ẩn hàm là
u
1
, u
2
, u
3
, τ

xx
, τ
xy
, τ
xz
, τ
yy
, τ
yz
, τ
zz
. Hệ (1.18) được gọi là hệ phương trình cân bằng
Navier - Cauchy.
Đưa (1.16) vào (1.17), chú ý (1.1) và đưa các hệ thức (1.4)-(1.12) vào (1.18),
ta được
ρ ¨u
i
= (λ + µ)
∂(∇.u)
∂x
i
+ µ∇.∇(u
i
) + f
i
, i = 1(x), 2(y), 3(z), (1.20)
hay là ta có phương trình sóng đàn hồi đối với chuyển vị ở dạng véc tơ
ρ
¨
u = (λ + µ)∇(∇.u) + µ∇.∇u + f. (1.21)

Hệ phương trình cân bằng ở dạng chuyển vị (1.21) được gọi là hệ phương
trình Lame.
10
1.4.3 Tọa độ trụ
Trong tọa độ trụ r, θ, z ta có các phương trình sau đây.
• Hệ thức giữa biến dạng và chuyển vị
ε
rr
=
∂u
r
∂r
, ε
θθ
=
1
r

∂u
θ
∂θ
+ u
r

, ε
zz
=
∂u
z
∂z

, ε
zr
=
1
r

∂u
r
∂z
+
∂u
z
∂r

, (1.22)
ε

=
1
r

1
r
∂u
r
∂θ
+
∂u
θ
∂r


u
θ
r

, ε
θz
=
1
r

∂u
θ
∂z
+
1
r
∂u
z
∂θ

. (1.23)
• Phương trình cân bằng ứng suất-chuyển vị
∂τ
rr
∂r
+
1
r
∂τ


∂θ
+
∂τ
rz
∂z
+
1
r

rr
− τ
θθ
) + f
r
= ρ

2
u
r
∂t
2
, (1.24)
∂τ
θr
∂r
+
1
r
∂τ

θθ
∂θ
+
∂τ
θz
∂z
+
2
r
τ
θr
+ f
θ
= ρ

2
u
θ
∂t
2
, (1.25)
∂τ
zr
∂r
+
1
r
∂τ

∂θ

+
∂τ
zz
∂z
+
1
r
τ
zr
+ f
z
= ρ

2
u
z
∂t
2
. (1.26)
1.4.4 Tọa độ cầu
Trong tọa độ cầu r, θ, φ ta có các phương trình sau đây
• Hệ thức giữa biến dạng và chuyển vị
ε
rr
=
∂u
r
∂r
, ε
θθ

=
1
r

∂u
θ
∂θ
+ u
r

, ε
φφ
=
1
r sin θ

∂u
φ
∂φ
+ u
r
sin θ + u
θ
cos θ

, (1.27)
ε

=
1

r

1
r
∂u
r
∂θ
+
∂u
θ
∂r

u
θ
r

, ε
θφ
=
1
2r

1
sin θ
∂u
θ
∂φ
+
∂u
φ

∂θ
− u
φ
cot θ

, (1.28)
ε
φr
=
1
r

1
r sin θ
∂u
r
∂φ
+
∂u
φ
∂r

u
φ
r

. (1.29)
• Phương trình cân bằng ứng suất-chuyển vị
∂τ
rr

∂r
+
1
r
∂τ

∂θ
+
1
r sin θ
∂τ

∂φ
+
1
r
(2τ
rr
− τ
θθ
− τ
φφ
+ τ

cot θ) + f
r
= ρ

2
u

r
∂t
2
, (1.30)
∂τ
θr
∂r
+
1
r
∂τ
θθ
∂θ
+
1
r sin θ
∂τ
θφ
∂φ
+
1
r


θθ
− τ
φφ
) cot θ + 3τ



+ f
θ
= ρ

2
u
θ
∂t
2
, (1.31)
∂τ
φr
∂r
+
1
r
∂τ
φθ
∂θ
+
1
r sin θ
∂τ
φφ
∂φ
+
1
r



φθ
cot θ + 3τ
φr

+ f
φ
= ρ

2
u
φ
∂t
2
. (1.32)
11
1.5 Điều kiện đầu, điều kiện biên và các bài toán
liên quan của các phương trình sóng đàn hồi.
Định lý về duy nhất nghiệm
1.5.1 Điều kiện đầu
Với phương trình đàn hồi ở dạng chuyển vị thì các điều kiện đầu sẽ là
u
i
(x, y, z; 0) = ϕ
i
(x, y, z),
∂u
i
∂t
(x, y, z; 0) = ψ
i

(x, y, z), i = 1, 2, 3. (1.33)
Điều kiện thứ nhất trong (1.33) biểu thị chuyển vị ban đầu của các điểm, còn
điều kiện thứ hai biểu thị vận tốc ban đầu các chất điểm của môi trường.
1.5.2 Điều kiện biên
Giả sử phương trình cân bằng đàn hồi được cho trong miền Ω ⊂ R
3
với biên
là ∂Ω.
• Điều kiện biên loại một. Trên ∂Ω cho biết giá trị của các chuyển vị
u
i
(x, y, z; t)


∂Ω
= g(x, y, z, t), (x, y, z) ∈ ∂Ω; t = 1, 2, 3. (1.34)
Ý nghĩa vật lý của các điều kiện trong (1.34) là cho biết chuyển vị trên biên
của miền mà ta quan tâm.
• Điều kiện biên loại hai. Trên ∂Ω cho biết giá trị của các ứng suất.
Để minh họa xét các ví dụ đơn giản sau đây.
Ví dụ 1.1. Một khối bao gồm 2 nửa không gian, ngăn cách bởi một mặt phẳng
tại z = 0.
Các chuyển vị là u
x
, u
y
, u
z
, và các ứng suất là p
xx

, p
xy
, p
xz
, p
yy
, p
yz
, p
zz
Điều kiện biên z = 0 cho các kết hợp khác nhau của nửa không gian được:
rắn - rắn: u
x
, u
y
, u
z
, p
xz
, p
yz
, p
zz
liên tục,
rắn - lỏng: u
z
, p
zz
liên tục; p
xz

= p
yz
= 0,
lỏng - lỏng: u
z
, p
zz
liên tục,
rắn - cứng: u
x
= u
y
= u
z
= 0,
lỏng - cứng: u
z
= 0,
chân không - rắn: p
xz
= p
yz
= p
zz
= 0,
lỏng - chân không: p
zz
= 0.
Nếu tại một bề mặt với vector pháp tuyến n
i

, ứng suất không phải là không
(vector ứng suất P
i
), vector ứng suất trong khối có được giá trị biên này.
12
p
(r)
ij
n
j
= P
i
, (1.35)
p
(r)
ij
là những giá trị biên của các thành phần của ứng suất tensor ở bề mặt,
và nó có thể được tính từ (1.35).
Ví dụ 1.2. P(t) trên một mặt phẳng. Đối với trường hợp áp lực
Hình 1.1: Áp lực lên một bề mặt phẳng
−→
n = (−1, 0, 0) = (n
1
, n
2
, n
3
),
−→
P = (P (t), 0, 0) = (P

1
, P
2
, P
3
).
Tương tự như vậy, sự dịch chuyển có thể được quy định trên bề mặt của
khối.
• Điều kiện biên loại ba (hỗn hợp). Giả sử ∂Ω = Γ
1
∪ Γ
2
, Γ
1
∩ Γ
1
= ∅ và trên
Γ
1
cho biết giá trị của các chuyển vị, còn trên Γ
2
thì cho điều kiện về ứng suất.
1.5.3 Bài toán Cauchy
• Các phương trình được cho trong toàn bộ không gian R
n
.
• Chỉ có các điều kiện ban đầu.
1.5.4 Bài toán biên-giá trị ban đầu
• Các phương trình được cho trong miền Ω ⊂ R
n

.
• Các điều kiện ban đầu.
• Các điều kiện biên tương ứng trên biên ∂Ω của miền Ω.
1.5.5 Định lý về duy nhất nghiệm
Một vấn đề đặt ra là nghiệm của các bài toán của lý thuyết đàn hồi giải theo
chuyển vị hay ứng suất có duy nhất không? Người ta đã chứng minh được Định
lý về duy nhất nghiệm bằng nhiều phương pháp khác nhau.
Định lý 1.1. Nếu thừa nhận về trạng thái tự nhiên của vật và định luật về độc
lập tác dụng của các lực thì nghiệm của các bài toán biên cơ bản thứ nhất và thứ
hai của lý thuyết đàn hồi là duy nhất.
13
Chương 2
Sóng điều hòa-Các sóng đàn hồi
điều hòa cơ bản
Chương này trình bày cách giải của hệ phương trình cân bằng của sóng đàn
hồi đã thiết lập được trong Chương 1 bằng cách đưa ra các hàm thế vị để biến
đổi hệ phương trình sóng đàn hồi về các phương trình sóng cấp hai độc lâp.
Trên cơ sở đó đã trình bày khái niệm về sóng điều hòa và các loại sóng P, sóng S
và một số loại sóng khác. Xét một số bài toán về sóng khối phẳng và sóng khối
cầu. Nội dung chủ yếu của chương này được hình thành từ các tài liệu [2],[3],
[4], [5] và [6].
2.1 Một số kiến thức bổ trợ
2.1.1 Khái niệm về sóng điều hòa
Để đơn giản, xét phương trình sóng một chiều không gian
1
c
2

2
u

∂t
2
=

2
u
∂x
2
. (2.1)
Ở đây x là biến không gian, còn t là biến thời gian, c là hằng số dương, có thứ
nguyên m/s, nếu u = u(x, t) có đơn vị là mét. Nghiệm tổng quát của phương
trình sóng (2.1) được cho bởi công thức d’Alambert
u(x, t) = F (x − ct) + G(x + ct), (2.2)
trong đó F (x) và G(x) là những hàm tùy ý hai lần khả vi liên tục.
Định nghĩa 2.1. Nếu nghiệm của phương trình sóng có dạng
u(x, t) = A(x, t) cos(ωt − kx + φ) hoặc = A(x, t) sin(ωt − kx + φ), (2.3)
14
thì nó được gọi là sóng điều hòa, trong đó
• A là biên độ,
• ω = kc là tần số góc,
• k = ω/c là số sóng,
• φ = const được gọi là pha ban đầu ở gốc tọa độ,
• Đại lượng ωt − kx + φ được gọi là pha của sóng ở thời điểm t tại điểm x.
Nếu A(x, t) = A(x), nghĩa là nếu biên độ của sóng không phụ thuộc vào thời
gian, thì sóng được gọi là sóng dừng.
Một số đại lượng khác đặc trưng cho sóng điều hòa.
• f = ω/(2π) là tần số: số dao động toàn phần trong một giây,
• T = 1/f là chu kỳ: thời gian thực hiện một dao động toàn phần,
• λ = 2π/k là bước sóng: khoảng cách ngắn nhất giữa hai dao động đồng pha.
Nói chung, sóng điều hòa có thể được biểu diễn ở dạng

u(x, t) = Aexp

iω(t −
x
c
)

= Aexp[i(ωt − kx)],
trong đó biên độ A có thể thực hoặc phức. Biểu diễn sóng điều hòa ở dạng mũ
đôi khi rất thuận tiện cho tính toán.
2.1.2 Khái niệm về δ hàm Dirac và hàm Heaviside H(x)
δ hàm Dirac là hàm suy rộng quan trọng do nhà vật lý người Anh đưa ra
vào khoảng 1926. Có thể hiểu δ hàm Dirac một cách hình thức như sau: δ hàm
là một " hàm " có các tính chất
1. δ(0) = ∞,
2. δ(x) = 0, x = 0,
3.

R
n
δ(x)ϕ(x)dx = ϕ(0) đối với mọi hàm liên tục ϕ(x).
Tính chất thứ 3 thông thường được lấy làm định nghĩa hàm suy rộng Dirac
như là phiếm hàm tuyến tính liên tục trên không gian các hàm cơ bản, được
xác định theo công thức [6]
< δ, ϕ >:= ϕ(0). (2.4)
Các tính chất 1 và 2 nói lên rằng, giá của hàm Dirac tập trung tại gốc toạ
độ x = 0, tức là δ- hàm có giá compact. Chú ý rằng, tính chất 3 tương đương với

R
n

δ(x − a)ϕ(x)dx =

R
n
δ(x)ϕ(x − a)dx = ϕ(a). (2.5)
15
Cùng với delta hàm, hàm Heaviside θ(x) là những hàm suy rộng cơ bản. Hàm
Heaviside được định nghĩa như sau
θ(x) =

1, x > 0,
0, x < 0.
(2.6)
Trong định nghĩa các hàm suy rộng, delta hàm là đạo hàm của hàm Heaviside
θ

(x) =
dθ(x)
dx
= δ(x). (2.7)
Đạo hàm theo nghĩa suy rộng được xác định theo công thức
(D
α
f, ϕ) = (−1)
|α|
(f, D
α
ϕ), ϕ ∈ C

o

. (2.8)
2.2 Biểu diễn nghiệm của phương trình sóng đàn
hồi
2.2.1 Hệ không có nguồn
• Phương pháp thứ nhất [4]. Để đơn giản xét trường hợp f = 0. Ta có phương
trình thuần nhất
ρ
¨
u = (λ + µ)∇(∇.u) + µ∇.∇u = 0. (2.9)
Chúng ta sẽ tìm nghiệm của phương trình (2.9)(véc tơ chuyển vị) ở dạng
u = ∇Φ + ∇ × Ψ, (2.10)
trong đó Φ là thế vô hướng (scalar potential), còn Ψ là véc tơ thế. Đối với véc
tơ Ψ có thêm điều kiện [4]:
∇.Ψ =
∂Ψ
1
∂x
+
∂Ψ
2
∂y
+
∂Ψ
3
∂x
= 0. (2.11)
Đặt (2.10) vào các vế của (2.9) ta được
ρ(∇
¨
Φ + ∇ ×

¨
Ψ) = (λ + µ)∇(∇.[∇Φ + ∇ × Ψ]) + µ∇.∇[∇Φ + ∇ × Ψ]. (2.12)
Chú ý rằng
∇.∇ × Ψ = 0, (2.13)
từ (2.12) ta được
ρ(∇
¨
Φ + ∇ ×
¨
Ψ) = (λ + µ)∇[∇
2
Φ] + µ∇
2
[∇Φ + ∇ × Ψ]. (2.14)
16
Nhân bên trái của (2.12) với ∇.(tích vô hướng) và chú ý tới (2.13) ta có
ρ∇
2
¨
Φ = (λ + µ)∇
2
[∇
2
Φ] + µ∇
2

2
Φ. (2.15)
Do đó


2

¨
Φ − (λ + µ)∇
2
Φ] = 0.
suy ra phương trình sóng
ρ
¨
Φ − (λ + µ)∇
2
Φ = 0, (2.16)
hay là
¨
Φ − c
2
p

2
Φ = 0, (2.17)
trong đó
c
p
=

λ + 2µ
ρ
, (2.18)
là vận tốc của sóng sơ cấp (premary wave).
Để tìm véc tơ thế vị Ψ, ta nhân hai vế của (2.14)với ∇×(nhân véc tơ) và chú

ý tính chất
∇ × ∇Φ = 0, (2.19)
ta được phương trình sóng
ρ
¨
Ψ − µ∇
2
Ψ = 0, (2.20)
hay là
¨
Ψ − c
2
s

2
Ψ = 0, (2.21)
trong đó
c
s
=

µ
ρ
, (2.22)
là vận tốc của sóng thứ cấp (second wave)
• Phương pháp thứ hai [3]. Trong hệ tọa độ Cartesian, ta có các hệ thức
(∇
2
u
1

, ∇
2
u
2
, ∇
2
u
3
) = ∇
2
−→
u = ∇∇.
−→
u − ∇ × ∇ ×
−→
u . (2.23)
Sử dụng công thức (2.23), chúng ta viết lại hệ phương trình (2.9) ở dạng
ρ

2
−→
u
∂t
2
− (λ + 2µ)∇∇.
−→
u + µ∇ × ∇ ×
−→
u = 0. (2.24)
Đặt (2.10) vào (2.24) ta được hệ phương trình

ρ∇

2
Φ
∂t
2
+ ρ∇ ×

2
−→
Ψ
∂t
2
− (λ + 2µ)∇∇
2
Φ + µ∇ × ∇ × ∇ ×
−→
Ψ = 0. (2.25)
17
Viết lại hệ (2.25) ở dạng


ρ

2
Φ
∂t
2
− (λ + 2µ)∇
2

Φ

+ ∇ ×

ρ

2
−→
Ψ
∂t
2
+ µ∇ × ∇ ×
−→
Ψ

= 0. (2.26)
Các hàm Φ,
−→
Ψ sẽ được tìm, sao cho các phương trình sau đây được thỏa mãn
ρ

2
Φ
∂t
2
− (λ + 2µ)∇
2
Φ = 0, (2.27)
ρ


2
−→
Ψ
∂t
2
+ µ∇ × ∇ ×
−→
Ψ = 0. (2.28)
Hệ trên đây có thể được viết lại ở dạng
1
c
2
p

2
Φ
∂t
2
− ∆Φ = 0, (2.29)
1
c
2
s

2
Ψ
1
∂t
2
− ∆Ψ

1
+

2
Ψ
1
∂x
2
+

2
Ψ
2
∂x∂y
+

2
Ψ
3
∂x∂z
= 0, (2.30)
1
c
2
s

2
Ψ
2
∂t

2
− ∆Ψ
2
+

2
Ψ
1
∂y∂x
+

2
Ψ
2
∂y
2
+

2
Ψ
3
∂y∂z
= 0, (2.31)
1
c
2
s

2
Ψ

3
∂t
2
− ∆Ψ
3
+

2
Ψ
1
∂z∂x
+

2
Ψ
2
∂z∂y
+

2
Ψ
3
∂z
2
= 0. (2.32)
Chú ý 2.1. Các hàm thế vị Φ, Ψ được biểu diễn qua véc tơ chuyển vị u theo
các công thức ([3], tr.35):
Φ =
1



R
3
u.r
r
3
dxdydz, (2.33)
Ψ =
1


R
3
u × r
r
3
dxdydz, (2.34)
trong đó
r = (x, y, z), r =

x
2
+ y
2
+ z
2
.
2.2.2 Hệ có nguồn
• Xét hệ có nguồn hệ không thuần nhất . Biểu diễn véc tơ f ở dạng
f =

−→
f = ∇ϕ + ∇ ×
−→
ψ . (2.35)
Khi đó, khi điều kiện (2.11) được thỏa mãn, thì các thế vị Φ, Ψ thỏa mãn các
phương trình sóng không thuần nhất sau đây
1
c
2
p
¨
Φ − ∇
2
Φ =
ϕ
λ + 2µ
, (2.36)
1
c
2
s
¨
Ψ − ∇
2
Ψ =
−→
ψ
µ
, (2.37)
18

Véc tơ f =
−→
f biểu diễn ở dạng
f =
−→
f = ∇ϕ + ∇ ×
−→
ψ , (2.38)
trong đó các hàm ϕ,
−→
ψ được xác định qua véc tơ
−→
f theo công thức
ϕ =
1


R
3
f .r
r
3
dxdydz, (2.39)
−→
ψ =
1


R
3

f × r
r
3
dxdydz, (2.40)
trong đó
r = (x, y, z), r =

x
2
+ y
2
+ z
2
.
Khi đó các hàm ϕ,
−→
ψ sẽ thỏa mãn các phương trình sóng sau đây
1
c
2
p

2
Φ
∂t
2
− ∆Φ =
ϕ
λ + 2µ
, (2.41)

1
c
2
s

2
Ψ
1
∂t
2
− ∆Ψ
1
+

2
Ψ
1
∂x
2
+

2
Ψ
2
∂x∂y
+

2
Ψ
3

∂x∂z
=
ψ
1
µ
, (2.42)
1
c
2
s

2
Ψ
2
∂t
2
− ∆Ψ
2
+

2
Ψ
1
∂y∂x
+

2
Ψ
2
∂y

2
+

2
Ψ
3
∂y∂z
=
ψ
2
µ
, (2.43)
1
c
2
s

2
Ψ
3
∂t
2
− ∆Ψ
3
+

2
Ψ
1
∂z∂x

+

2
Ψ
2
∂z∂y
+

2
Ψ
3
∂z
2
=
ψ
3
µ
. (2.44)
Nhận xét 2.1. Phương trình (1.21) có thể viết thành hệ sau đây














ρ

2
u
1
∂t
2
− µ∆u
1
− (λ + µ)

∂x

∂u
1
∂x
+
∂u
2
∂y
+
∂u
3
∂z

= f
1
,

ρ

2
u
2
∂t
2
− µ∆u
2
− (λ + µ)

∂y

∂u
1
∂x
+
∂u
2
∂y
+
∂u
3
∂z

= f
2
,
ρ


2
u
3
∂t
2
− µ∆u
3
− (λ + µ)

∂z

∂u
1
∂x
+
∂u
2
∂y
+
∂u
3
∂z

= f
3
.
(2.45)
Nhận xét 2.2. Dạng vô hướng của biểu diễn nghiệm (2.10) sẽ là
u
1

=
∂φ
∂x
+
∂ψ
3
∂y

∂ψ
2
∂z
, (2.46)
u
2
=
∂φ
∂y
+
∂ψ
1
∂z

∂ψ
3
∂x
, (2.47)
u
3
=
∂φ

∂z
+
∂ψ
2
∂x

∂ψ
1
∂y
. (2.48)
19
2.3 Sóng P, sóng S, sóng SV, sóng SH và sóng PSV
2.3.1 Sóng P và sóng S (P-sóng và S-sóng)
• Thay
u = se
i(kx−ωt)
, (2.49)
tức là
u
1
= s
1
e
i(kx−ωt)
, u
2
= s
2
e
i(kx−ωt)

, u
3
= s
3
e
i(kx−ωt)
,
trong đó k, s là những véc tơ hàng chưa biết vào phương trình sóng (2.9)ta được
ρω
2
s − (λ + µ)(s.k)k − µk
2
s = 0, (k
2
= k
2
1
+ k
2
2
+ k
2
3
). (2.50)
Các véc tơ k, s tương ứng được gọi là véc tơ số sóng và véc tơ biên độ. Mối quan
hệ hình học giữa hai véc tơ này gắn với các loại sóng. Nhân vô hướng hai vế của
phương trình trên đây với s ta được
ρω
2
|s|

2
− (λ + µ)(s.k)
2
− µk
2
|s|
2
= 0. (2.51)
• Xét trường hợp s.k = 0. Khi đó từ (2.51) suy ra
ω/k =

µ/ρ = c
s
. (2.52)
Trong trường hợp này công thức (2.49) cho ta sóng S được lan truyền với vận
tốc c
s
.
• Xét trường hợp s||k. Khi đó từ (2.51) suy ra
ω/k =

(λ + 2µ)/ρ = c
p
. (2.53)
Trong trường hợp này công thức (2.49) cho ta sóng P được lan truyền với vận
tốc c
p
. Rõ ràng là c
p
> c

s
.
• Sóng P (primary or compressional wave- sóng sơ cấp) là sóng dọc (tương tự
sóng âm) được lan truyền với vận tốc giữa 1 đến 14 km/s. Sóng dọc là sóng đàn
hồi do biến dạng của thể tích, trong đó các hạt vật chất dao động theo phương
trùng với phương truyền sóng.
• Sóng S (Shear or secondary-Sóng thứ cấp) là sóng ngang (tương tự sóng nước)
được lan truyền với vận tốc giữa 1 đến 8 km/s. Sóng ngang là sóng trong đó các
hạt vật chất dao động theo phương vuông góc với phương truyền sóng.
• Trong địa chấn thăm dò, sóng P có ý nghĩa hơn cả. Về nguyên tắc thì sóng
S cũng có ích, nhưng tạo sóng S có năng lượng cao như sóng P là rất khó. Các
sóng khác, như sóng Love, sóng Rayleigh v.v vì không mang thông tin của các
20
lớp đất đá ở dưới sâu nên ít có ý nghĩa đối với công tác thăm dò địa chấn. Sự có
có mặt của các sóng này gây trở ngại cho quá trình thu sóng có ích, nên chúng
được coi là nhiễu.
2.3.2 Sóng SV, sóng SH và sóng PSV
• Trong môi trường địa tầng, có thể có hai loại sóng S, đó là sóng SV (V-vertical)
chuyển động song song với nhau trong những mặt phẳng thẳng đứng và sóng
SH (H-horizontal) chuyển động song song với nhau trong những mặt phẳng nằm
ngang.
• Trong môi trường địa tầng sóng SH có thể xuất hiện ở giữa các mặt tự do
phân cách các địa tầng. Ta tưởng tượng rằng, nếu một sóng phẳng được lan
truyền trong mặt phẳng song song với mặt phẳng trang sách trong môi trường
địa tầng với các mặt phân cách nằm ngang, thì SH có thể được thể hiện bởi
phương trình sóng vô hướng
¨
ψ
y
= c

2
s

2
ψ
y
, (2.54)
trong mỗi tầng với vận tốc c
s
.
• Ngược lại, các sóng phẳng PSV có thể được cho bởi các phương trình
¨
ψ
x
= c
2
s

2
ψ
x
,
¨
ψ
z
= c
2
s

2

ψ
z
, (2.55)
trong đó y là toạ độ của trục vuông góc với trang sách này.
2.4 Vận tốc pha và vận tốc nhóm
2.4.1 Vận tốc pha
• Khái niệm. Vận tốc pha là vận tốc dịch chuyển của điểm có pha dao động
không đổi trong không gian theo hướng cho trước, thường được xem trùng với
hướng của véc tơ sóng.
Khái niệm vận tốc pha chỉ được sử dụng khi mô tả sóng điều hòa, hay còn gọi
là sóng đơn sắc (sóng có một tần số duy nhất, tức là sóng có dạng cos φ, sin φ, e

)
và những sóng có hình dạng tương tự.
• Công thức. Chúng ta biết rằng, đối với các sóng điều hòa với vận tốc truyền
sóng c
P (x, t) = A
o
e
i(kx−ωt)
, P(x, y, z, t) = A
o
e
i(k.x−ωt)
,
thì có hệ thức
c =
ω
k
, k =


k
2
x
+ k
2
y
+ k
2
z
,
21
trong đó k được gọi là số sóng. Công thức trên đây chính là công thức của vận
tốc pha sau đây
v
p
=
ω
k
, ω = v
p
k, (2.56)
được trực tiếp suy ra từ công thức pha của sóng phẳng trong không gian một
chiều φ = kx − ωt, hoặc φ = k.x − ωt trong không gian lớn hơn một chiều.
• Vận tốc pha của sóng De Broglie. Sóng De Broglie là sóng được sinh ra
do các hạt chuyển động với vận tốc cao. Khi đó vận tốc pha được tính theo công
thức
v
p
=

dx
dt
=
E
p
=
c
2
u
,
trong đó x- tọa độ, t- thời gian, E- năng lượng, u - vận tốc hạt, c - vận tốc ánh
sáng trong chân không.
• Vận tốc pha trong một số chất.
- Vận tốc pha của sóng trong chất rắn đàn hồi đẳng hướng
v =

G
ρ
,
trong đó G là modun trượt, còn ρ là mật độ của môi trường.
- Vận tốc của sóng dọc trong một thanh mỏng
v =

E
ρ
,
trong đó E là suất Young, liên quan đến ứng suất pháp σ =
F
S
theo công thức

σ = E
∆l
l
.
- Vận tốc sóng ngang trên sợi dây căng mảnh có mật độ ρ, sức căng F và tiết
diện S
v =

F
ρS
.
• Vận tốc pha có thể vượt quá vận tôc ánh sáng trong chân không
2.4.2 Vận tốc nhóm
• Để mô tả sóng không điều hòa, đặc biệt là các chùm sóng, ngoài khái niệm vận
tốc pha, người ta còn sử dụng khái niệm vận tốc nhóm để mô tả chuyển động
không phải của những ngọn sóng riêng biệt, mà là của một nhóm sóng, hay bó
sóng (các sóng điều hòa có tần số gần bằng nhau).

×