Tải bản đầy đủ (.pdf) (117 trang)

Tuyển tập 500 bài toán hình không gian chọn lọc phần 4 nguyễn đức đồng

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (32.88 MB, 117 trang )

V

A, B & cung

ben so v& i

(D)

D img A' d o i x i J ng vdi A q ua (D).
Luc do : A' v a B d kha c b e n so v6i

M A + M B > AB

(D),

n e n t r d v e t rUc f ng hop

tren :

<=>MA' + M A ^ AB .

min(MA + M B ) = min(MA' + M B ) = A B
ttfong Ofng : M a M Q = ( A ' B ) o
O Ket


Xa c

(D)

l u a n : v a y t r o n g m o i t r i f d n g h g p t a x d c d i n h di f ac M t h o a y c b t .


d i n h d i e m m t r e n d Uo T n g t h S n g ( d )

de

| MA

- MB |

T i f a n g tiT c a n p h a n b i e t h a i t rUc f ng h a p :

V A, B & cung

ben so v& i

|MA - MB | <

(D)

AB
M

ma x| M A ~ M B | = A B

Mo

(d)

tu a ng ling M = M Q = (AB ) r^ (D)
V A,B


d khdc

ben so v& i

(D)

| M A - M B | < |MA' - M B | ^

AB

yiy^

Vdi A' la h i n h doi xijfng ciia diem A qua (d), t h i A' va B

I

a cu ng p h ia (D).
ma x I M A - M B | = ma x J M A ' - M B | = A B

\

(D )

/Mo

A'

ta ong tjfng M s M Q = (A'B ) n (D)

O Ket lu a n : vay tr on g moi tri/dng hap ta da xac d in h diem M thoa ycb t.


n. Gl A l T OAN T HI
Bai

393 ( D A I H O C K H O I A M I E N B A C -

1972)

Cho mot kh oi t i l dien AB C D .
a/ Mot ma t phang song song vdri canh B C cat cac canh AB , AC, D C, D B d c^c diem M , N , P, Q.
Chufng m i n h rS ng tuT giac M N P Q la mot h i n h th a n g pha i thoa ma n dieu ki§n nao de tuT gidc
do la mot h i n h b in h h a n h ? la mot h in h c h a n h a t ?
b/ Cho b iet cac goc B AC , C AD , D A B la vu ong, con B C D la mot ta m g iic deu canh a. Tin h th^
tich cua kh oi tijf dien theo a.
c/ Cho b iet B C D la mot ta m giac deu canh a va c6 ta m la diem O. Ti n h doan OA theo a sao
cho m a t cau ngoai tiep ti l dien AB C D n h a n dudng tr on (B CD ) l a m mot ducfng tr on Idn. Tinh
dien tich m a t cau tr on g trU dng hap ay. Xac d in h vi t r i ciia d in h A tr en m a t cau ay de the tich
h in h t i J dien A B C D I6n n h a t.
G ia i
aJ Ta c6 : mp(P) // B C = (AB C) n (B CD )

=> M N // PQ

Vay th iet d i6n M N P Q la mot h in h th a n g (ycbt).
300


Muon cho M N P Q la h i n h b i n h h a n h ; tifang t u
tren ta phai c6 t h e m dieu k i e n N P // M Q , (P) // A D .
Vay dieu k i e n de M N P Q la h i n h b i n h h a n h


la

mat phang (P) p h a i song song d o n g thcfi v d i : BC
AD (ycbt).
Hcfn nOa de M N P Q la h i n h chfl n h a t t h i ta p h a i
c6 MN

1

NP.

Vi BC // M N va A D // N P =i> BC

1

AD

Vay dieu k i e n de M N P Q la h i n h chff n h a t la BC 1 A D (ycbt).
b/ Tuf dien A B C D la tuT d i e n v u o n g d A.

fBC = CD = DB

= a

AB = A C . A D = ^

=

2


^

2

Vay the t i c h k h o i tuT dien A B C D la :

V= - A B . - A C A D = i ( A B ) ^=i
2

3

6

24

6

(ycbt).

c) De y dUcfng t r o n ( B C D ) la m o t dudng t r o n I d n cua m a t cau ngoai t i e p tiir d i e n A B C D va c6
0 la tam ciia t a m giac B C D canh a, nen t a m O cua t a m giac deu B C D cung c h i n h la t a m cua
mat eau ngoai t i e p tuf d i e n A B C D .
^0 A =

O B = ^

Tir do dien t i c h Sc ciia m a t cau ngoai t i e p tuf d i ? n A B C D l a :

Se = 471 OA^ = 471


aV3

4
2
= — 7ca
3

Goi A H la dUcfng cao ciia tuf d i e n A B C D ha t i f d i n h A
suong mat day (BCD).
AHOC ( f i = 9 0 " )

=i> A H < O A

Va t i n h duoc the t i c h cua k h o i tuf d i e n A B C D b a n g :
V = ^ S , „c D . A H =

V3.a2
12

.AH <

I

1

aV3

2


2

Vs.a 2
12

.a

.AH

.OA

(1)

Dau dang thufc t r o n g (1) xay ra <=> l i = A ( h i n h ch6p A . B C D deu)

3maxV=

12

.OA

(ycbt).

301


Bai

394


(D A I H O C K H O I A - M I E N B A C -

1974)

Trong mat p hlng (P), cho hinh vuong ABCD c6 canh b ing a. Tren dUdng thi ng Ax di qua
A va vuong goc vdi mftt p hing P, ngucri ta lay mpt diem S tiiy y, ro i difng mat p hing Q qua A
c i t SB, SC, SD Ian lirat tai B', C, D'. Biet (Q) i SC.
a/

ChuTng minh rSng SB vuong g6c A B' va SD vuong goc vdi A D'.

b/ Tim c^c quy tich ciia B', C, D' khi S chay tren Ax.
c/ Xac dinh v i tri cua S tren Ax sao cho hinh ch6p C'ABCD c6 the tich \dn nha't va tinh thi
tich ay.
Gi&i
a/ Ta c6 :

CB 1 A B
C B± S A

CB ± (SAB) 3 A B' => CB 1 A B'

Mat khac ta c6 : SC _L A B' (vi A B' n^m trong mp(Q) ma SC 1 Q).
Do d6 A B' 1 (SBC) 3 SB => A B' ± SB

(dpcm).

ChiJng minh hoan to^n tUcfng tif ta c6 A D' 1 SD (dpcm).
b/ De y :


B' e (SAB)
A B ^ = 90° ; A, Bco dinh

=> Vay quy tich ciia nhiJng diem B' la dudng
tro n (trong mat p hlng (SAB) dtfdng kinh A B. (Doc
gia tif lam phan dao)
• Taang ti i ta c6 quy tich ciia nhufng diem D'
trong mat p hing (SAD) difdng kinh A D (ycbt).
• Tucfng tu ta cung c6 quy tich cua nhCifng diem
C la dudng tro n tro ng mat p hing (SAC) dadng
kinh AC (ycbt).
0/

Ha CO 1 AC. va thay OC // SA; SA 1 P n6n :
V = VC'ABCI) = — SA BCD - O C '

Vi hinh chU nhat A BCD la co d inh, nen the tich V se I6n nhat khi OC la Idrn nhat. C luon
luon nam tren diidng tro n dtfdng kinh AC. Vi vay OC se Idrn nhat khi no la ban kinh. (NhK
vay CO hai v i tri Co' va Co" doi xufng vdi nhau qua AC cung thoa man tinh chat d6 :
C'oC'o ± AC tai O; C'oC'o c (SAC).
Khi do OC = OA = OC =

hay nay tam giac vuong SAC co OC la difdng trung binh,

taang ling do do : AS = 20C = a-s^ .
Vay khi S (nam tren A x) each A mOt doan a ^/2 (co hai v i tri SQ va SQ' doi xufng vdi nhau
qua A) thi hinh chop C'ABCD c6 the tich Idn nhat, va the tich d6 la :
1V 2

V = i a ^ ^

3

3
a"-^V2

2

(ycbt).

302


Bai 395 ( D A I H O C Y - N H A - D L f d C -

1976)

Cho h i n h vuong A B C D canh a. Goi SA la doan thSng goc vdri mSt p h ^ n g ( A B C D )
vk M la m o t d i e m d i dong t r e n doan SD. DSt S M = x.

SA = a

a/ Mat phang ( A B M ) cat doan SC t a i N . Chitog m i n h tiif gidc M A B N l a mot h i n h t h a n g vuong.
b/ Dat y = A M ^ . T i n h y theo a va x.
d Khao s a t sif b i e n t h i e n va ve dudng bieu d i e n cua y = A M ^ k h i M ve t r e n doan SD.

Gi&i
a/ Ta CO : A B // C D => A B // (SCD); A B c ( A B M N )
^
Lai


( A B M N ) n (SDC) = M N // A B // C D
CO :

A B 1 (SAD)

AB 1 AD
AB

I S A

=> A B 1 A M => M N 1 (SAD)
=>

M N I A M

Vay A M N B l a m o t h i n h t h a n g v u o n g h a i ddy l a A B va
MN (ycbt).
hi Goi H l a h i n h chieu cua M xuong canh CD.
ADMH oo ADAS

MH

MD

SA

DS

aV2


-

X

M H

=

aV2

AAHM ^ AM^ = A H ' + HM^
aV2-X

HMD vuong can => H D = H M =

AH = AD - HD = a -

a -

n ^- A » , 2
(aV2-x)2
Do do: A M ' = — +
2
2
^

x^ +

+


- 2aV2.x

=
2

A M ^ = x ' - a V 2 x + a^

Vay y = x ' - a V 2 x + a ^ Vx e [0; a V 2 ] (ycbt).
d Mien xac d i n h cua y : Df = [0; a ^/2 ]
^ y' = 2 x - a V 2

( aV2

= 0

Bang bien t h i e n :

Do t h i :
tV2

X

0

2

a^f2

y
y'


a'

a.

2

aV2

aV2

x

Dudng bieu d i e n la cung Parabola A S B .
303


Ba i 396 ( D A I H O C B A C H K H O A - T O N G H O P -

1980)

Trong khong gian cho ba tia Ox, Oy, Oz tifng doi mot tao wdi nhau mot goc a (0 < a < 90°)
tren Ox, Oy, Oz lay Ian lucft cac diem A, B, C sao cho : OA = a, OB = b, OC = c.
1/ a, b, c phai thoa man h? thilc gi de tam giac ABC c6 goc A vuong ? Hay tim dieu ki§n can
va du rang buoc b, c, a de tim dUcfc a thoa man he thufc ay.
21 Gia sijf a co dinh (0 < a < 90°) v^ b = c co dinh. Xac dinh a de tam giac ABC c6 g6c A Wn
nhat. Gia tr i Idn nhat ay cua goc A bang bao nhieu.
3/ Vdi cac gia thiet cua 2. Hay tinh the tich cua tiif dien OABC ufng vdi gia tr i \6n nhat cua
goc A.
Gi a i

1) AABC vuong ta i A

»

BC^ = AB^ + AC^

(1)

Dinh ly ham cosin trong cac tam giac :
AOAB, AOBC, AOAC cho :
(2)

BC^ = b^ + c^ - 2bccosa

(1)

AB'^ = a^ + b^ - 2abcosa
AC^ =

+ c^ - 2accosa

(3)

Thay (2), (3) va (4) vao (1).
(1)
<=> b^ + c^ - 2bccosa = 2a^ + b^ + c^ - 2a(b + c)cosa
<=> a^ - a(b + c)cosa + bccosa = 0
<=> g(a) = a^ - [(b + c)cosa]a + bccosa = 0

(5)


De tim dtfcfc a thoa man (5).
<=> A = (b + c)^cos^a - 4bccosa > 0
<=> A = cosaKb + c)^cosu - 4bc] ^ 0 (0 < a < 90° => cosa > 0)
<=> (b + c)^cosa - 4bc ^ 0

(6)

(ycbt)

(6) dieu kien can va du rang buoc b, c va a de tim difac a thoa man (5).
21 Xet gia thiet : b = c
Goi HB 1 OA

«

<=> AOAB = AOAC
CH 1 OA

^

B H = CH

Xet hai tam giac can ABC va HBC; chung co canh chung BC.
JAB ^ H B
^

gAC < B Ht; => maxBAC = B Ht; tircJngilngA^H.

J A O H C


AOBH

jO H = bcosa
' H B = HC = bsina

BC'^ = OB'' + OC' - 20B.OCcosa
AOBC
<^ B C' = 2b ' - 2b'cosa
B C' = H B ' + H C ' - 2HB.HCcosH

(7)

AHBC

(8)

B C' = 2b 'sin'a - 2b'sin'acosH
So sanh (7) va (8) theo ve :

=> 2b^ - 2b^ cosa = 2b^ sin^ a - 2b^ sin^ a cos H
=> 1 - cosa = sin'a - sin'acosH
304


sin^acosH = sin^u + cosa - 1 = cosa - cos^o

cosH =

cosa.2sin^ —


c o s a d - cosa)
sin^a

H = arccos

cosa

4sin —.cos —

2

cosa
2cos22)
cosa

Vay gia tri \6n nhat cua A la : minA = H = arccos

(ycbt).

2cos2^
2)
3/ The tich V cua tiJ dien OABC la :
V = i dt(AHBC).OH = - . - .HB.HCsinH.OH
3
3 2
=>

V = — .b^sin^a.sinH.bcosa = — b^sina.sin2a.sinH
12

6

(ycbt).

Bai 397 (DAI HOC BACH KHOA - TONG HCfP - Y - N H A - D L f d C - 1982)
Tren canh AD ciia hinh vuong ABCD canh a, ngudi ta lay diem M vAM = X (0 < X < a), va tren nijfa dacrng t h i n g Ax vuong goc t a i A vcri mat p h i n g cua hinh
vuong, ngUdi ta lay diem S \6i SA = y (y > 0).
a/ Chijfng minh rkng nhi dien canh SB tao bdi cac mat phang (SBA) va (SBC) la mot n h i dien
vuong.
b/ Goi I la trung diem cua SC, H la hinh chieu vuong goc cua I len CM. T i m quy tich cua H
khi M chay tren canh AD va S chay tren Ax.
c/ Tinh the tich hinh chop S.ABCM.
d/Vdi gia thiet x^ + y^ = ai^, t i m gia t r i Idn nhat cua the tich hinh chop S.ABCM.
Giai
a/ Ta CO

:

AD

1 (SAB)

BC ± (SAB)

BC / / A D

(SBC)

1 (SAB)


Vay nhi dien (SB) la mot nhi dien vuong (dpcm).
b/ Ta CO :

01 // SA

Mat khac I H 1 CM =>

^

O i l (ABCD).
OH 1 CM (dinh ly 3 difcrng vuong goc).

Vi M e (AD) va S G Ax nen H a trong iCCt). Vay H 0 tren cung tron O H Q cua dUcfng tron
dUdng kinh OC

HQ la trung diem cua CD, khi M e AD va S e Ax.

• Dao lai, lay mot diem H bat ky tren cung OHQ, ta c6 : O H 1 HC; CH n AD = M , tren nOfa
dudng t h i n g Ox' // Ax lay mot diem I sac cho CI c i t Ax tai S. Ro rang :
* I la trung diem cua SC.
* I H _L CM (dinh ly 3 dUcfng vuong goc).
Ket luan : Quy tich H la cung tron OHg cua dudng tron dudng kinh OC trong mat p h i n g
(ABCD) (xem hinh) (ycbt).
305


c/

The tfch hinh chop.

V(SABCM)

= - dt(ABCM).SA
3
= - . - .(A M + BOA B.SA
3 2
=

(x + a).a.y (ycbt)
6

d/ Xet : x^ + y^ = a^ «

y = Va^ -

V = V(SA BCM) = - ( x + aWa^ - x^
Ta CO ; maxV xay ra <=> max(3V)^ xay ra
maSV* = — (x + a)(x + a)(x + a)(3a - 3x)
36

(1)

Ap dung BDT Cauchy cho 4 so' khong am, ta c6 :
(1)

<=>3V^ <

(x + a) + (x + a) + (x + a) + (3a - 3x)
36
,2


81a'

V2

36.3 v2

.

36.3.16

Dau d ing thiifc tro ng (2) xay ra

3a^



V3

2

64
<=>

a + x = 3a - 3x <=>

(2)
a
X =


2

Do d6 khi M la trung diem A D thi the tich VSABCM ciTc dai va

73
maxV =

2

a

(ycbt).

8
Bai

398

( D A I H O C B A C H K H O A - T O N G HCJP - Y - N H A - D l / d C -

1983)

Trong khong gian, cho hinh chop S.ABCD, day ABCD la hinh cha nhat vdi A B = a, AD = b;
canh SA cua hinh chop vuong goc vdi day, AS = 2a.
a/ M la mot difim tren canh AS, vdi A M = x (0 ^ x < 2a). Mat ph^ng MBC cMt hinh chdp theo
thiet dien gi ? Tinh dien tich thiet dien ay theo a, b, x.
Xac d inh x sao cho mat phSng (MBC) chia hinh ch6p ra hai phan c6 the tich bkng nhau.

c/


Xac d inh x sao cho thiet dien tren c6 dien tich Idn nhat.

hi

G iai
Al Goi N la giao diem cua mat p hing (MBC) vdi SD. Liic do :
Mat phang (MBC) chiifa BC // A D.
Ma A D = (SAD) n (ABCD)
^

(MBC) n (SAD) = M N // A D // BC

Han nfla v i BC 1 A B va BC 1 SA
=> BC 1 (SAB)

BC 1 MB

Thanh thijf thiet dien MBCN \k mgt hinh thang vuong

(6

= 1^ = 9 0 ° )

B

306


ASMN


MN _ SM

ASAD

M N = AD.

AD ~ SA

SM

= b.

SA

2a-X

=

2a

b

"[^

2a,

Vi vay h i n h t h a n g vuong M B C N c6 dien t i c h :
b +

b


X

1

2a

= b

.^[^77

a^

(ycbt).

4a j
b/ Vi S > 0, S dat gia t r i lorn n h a t k h i
Taco:

=

dat gia t r i Idm n h a t .

r(4a-x)2(x^+a^) =

- f i x ) ; Vx e [0; 2a]
16a'

=> fix)
^


= 2(x - 4a)(x'^ + a^) + 2x(4a - x)^

f (x) = 2(x - 4a)(2x^ - 4ax

pv,

,

.

n

Cho f (x) = 0 <=>

+a')

X

= 4a

a ( 2 ±V 2 )
V

x =

2
Lap difgtcbang bien t h i e n cua h a m so fix) t r e n doan [0; 2a].
a(2-V2)
a(2 + V2)

0
9
9

f(x)
16a'

fix)

a ' ( 7 1 + 8V2)
4
a'(71-8V2)

DiTa vac b a n g b i e n t h i e n n^y t a t h a y :
Vay amaxS^ o

khi:

X

= AM =

3maxS = —
8

^^^iJ^

^ 7 1 + 8^2

k h i va chi


(yebt).

d Hien n h i e n h i n h chop S.ABCD c6 the t i c h :
V= iAS.AB.AD=
3


3

De t i n h the t i c h V cua h i n h iSng t r u t a m giac cut M A B . N C D , t a difng m a t phSng ((3) qua N
1 vuong goc vdi BC; t h i m a t p h i n g (P) cat A D va BC I a n lifat t a i K va L , (P) chia l a n g t r u
I cut thanh h a i p h a n : l a n g t r u t a m gidc dtifng M A B . N K L c6 the t i c h :
V , = M N . d t ( M A B ) = - abx 1
2

2a j

va h i n h chop d i n h N , day K L C D , c6 the t i c h :
Va = - N K . d t ( K L C D ) =
3

-bx^
6

307


t h a n h t h i l ISng t r u cut M A B . N C D c6 t h e t i c h :
V = V i + Va = - a b x 3 6

2a J
Yeu cau b a i t o a n can xac d i n h x ( h i e n n h i e n 0 < x < 2a) sao cho V = 2V'.
2a^b
1 .
= — abx 3 3
3

2a )
X

Phiicfng t r i n h nay c6 n g h i e m :

- 6ax + 4a^ = 0

= a(3 + V S )

x = a(3-V5)
V i 0 ^ X < 2a n e n c h i c6 t h e c h o n : x = a ( 3 + V S ) ( y c b t ) .

B a i 399

( D A I H O C K T - T H - SP - N N -

1983)

Cho tuf d i e n S A B C , day A B C la tarn giac vuong t a i A , A B = 2a, A C = 3a, canh SB vuong
g6c v d i day SB =
a/ C h i ro tarn v a b a n k i n h m a t cau ngoai t i e p tijf d i e n SABC.
b/ M l a m o t d i e m d i d o n g t r e n canh SC, dat M C = x. Goi H va K I a n liftft l a cdc h i n h chieu
vuong goc ciia M l e n cac m a t phSng (ABC) va (SAB). Mat p h l n g K M H , cat A B t a i L . ChiJng

m i n h r k n g : K M H L l a m o t h i n h chi? n h a t . V d i gia t r i nao cua x t h i K M H L la mot h i n h vuong.
c/

T i n h theo a va x do d a i dudng cheo M L ciia h i n h c h a n h a t K M H L . V d i gia t r i nao cua x

t h i M L C O do d a i nho n h a t ? l 7 n g v d i gia t r i da t i m difdc cua x, hay neu l e n dac t i n h h i n h hoc
cua dean M L .
d/

H a y t i n h theo a va x t h e t i c h V cua h i n h chop d i n h A , day PCMHL. K h a o sat sif bien thien

va ve do t h i ciia h a m V k h i M d i dong t r e n canh SC.
e/

Xac d i n h x sao cho : V =

4V3
27
Giai

a/ Goi O va I I a n lifat la t r u n g d i e m ciia SC va BC. Cac t a m gidc SAC, SBC theo thii ti(
vuong t a i A , B nen t a c6 :
0 1 l a t r u e dUcJng t r o n ( A B C )
|ma

Ola

trung diem S C

OA = OB = OS = OC

Vay O l a t a m cua m a t cau ngoai t i e p tuf d i e n SABC va
ban k i n h m a t cau l a :
R = OA = —
2

= 2a

That vay :
SC^ = S B ^ + B C ^ = S B ^ + A B ^ + A C ^
^

S C ' = 33^ + 4 a ^ + Qa^ = I G a ^

=> SC = 4a

=> R = 2a (ycbt).

308


b/ KMHL la hinh chuf nhat.
MK ±

(SA B)

A C 1 (SA B)

'

=> M K // AC ^


MK // HL // AC

M H // SB

M H // KL // SB

M H 1 (A BC)'
SB 1 (A BC) J

=c.

Vay tuT giac KM H L la mot hinh binh hanh.
De y den SB 1 AC => H L 1 LK : nhvt vay tit giac KM H L la mot hinh chff nhat (dpcm).
Dinh X de KM H L la mot hinh vuong. Ta c6 :
M H _ CM
SB

~

MH =

SC

MK

SM

AC


SC

MK =

SB.MC _ aVs.x _ V 3 x
SC

~

4a

"

4

A C SM _ 3 a ( 4 a - x) _ 3 ( 4 a - x)
SC

~

4a

~

4

Vay : KM H L la mot hinh vuong
«

d Ta


V3 x ^ 3 ( 4 a ^
4
4
CO

< ^ V 3 x = 3( 4a- x ) ^

: ML^ = M H ^ + HL^ =

3x2

9(4g _

16

16

x = 2 a V 3 ( V 3 - 1) (ycbt).

...
V3( x 2 - 6 a x + 12 a 2 )
V3(x - 3af
ML =
:
= -'^
2
M L>

9a'


3a

2

2

; Vx

G

3(x^ - 6 a x + 12 a 2 )

+ 9a^

^
;Vx

6

[0; 4a]

^^
[0; 4a]

( 1)

Dau dang thilc tro ng (1) xay ra <=> x = 3a
3a


=> minML = — , xay ra khi va chi khi x = 3a.
Ta CO : AB 1 (MKLH)
minML =

3a

A B± M L

= d[(AB); SC]

Vay khi M L nho nhat thi doan M L la doan vuong goc chung cua hai difdng th i n g A B va
SC (ycbt).
d/ The tich V hinh chop A .MHKL.
V = i d t(MHKL).A L = - M K.M H.A L
3
3
AB 1
Ta

CO

(2)

BS

: AB 1 ML

o

BS, M L, AC ciing vuong goc \6i A B.


AB 1 AC
<=> BS, ML, AC cung nkm trong 3 mat p hing song song.
Ap dung dinh ly Thales

AL

CM

AB

CS


4a

AT

AL = —
2

309


'2'

=^V=

1 3
xV3 X

- . _ ( 4 a - x ) - — =
3 4
4
2

Vs

o

—x^(4a-x)
32

(ycbt).

Sau day ta khao sat sif b ien th ien va ve do t h i cua V tr on g he true (OxV).
M ien xac d in h : D y = [0; 4].
"x = 0

=i> V = 0

Dao h a m: V = ^
(- 3x^ + S a x) = 0 <=>
32
27

3
V" — ( - 6 x + 8a ) = 0 «

=> V =


X =



4a^V3

Vay (C) la do t h i ciia V tr on g ycbt.
8V3a^

4^3
,
e/ D in h X de ; V = ~ ~ a^
27
Xet : V =

VS
<=>

27

'
(C )

4V3a^ ,

4^3

27

27

2,.

,

4V3

(4a - x) =^

— X

32
Rx) = x^ - 4ax^ +

De y thay : f

3

0

a
27
128
27 i

= 0

a^ = 0

4a


3
32

(4)
o

3

3

8a

4a

4a

x

(3)

- 4a

nen ta c6 :
4a

X =

(3)
O


9
8
x'^ - - a x
3

/

128ay
727
/

/ 0

8a

/
0

_

a"^ = 0
9

4a
X =



x = i(l±V^^
310



Vi X e [0; 4a] nen cdc n g h i ^m cua (3) la : x =
4 J3

Vay : V = ^ a ^ ^

t

«

4a

4a

4

x = ^

V X

=

- ( 1 + V3 )a

r-

v x = ^ ( 1 + Vs a) (ycbt).

Bai 400 ( D A I H O C K I N H T E T P . H C M -


1991)

Trong k h o n g g i a n cho doan OO' = h va h a i nijfa dtfdng t h ^n g O d , O'd' cung vuong goc v d i
00' va vuong goc v d i nhau. D i e m M chay t r e n Od, d i e m N chay t r e n O'd' sao cho ta luon c6:
OM^ + O'N^ = k^ (vdi k la m o t dp dai cho trifdc).
1/ Chijfng m i n h rSng do dai doan M N k h o n g doi.
2 1 Vdi v i t r i nao cua M t r e n Od va N t r e n O'd' t h i tuf d i e n O O ' M N c6 the t i c h I d n n h a t . T i n h
gia t r i do theo h va k.
3/ Muon M N tie'p xuc v d i mSt cau difdng k i n h OO' t h i h va k p h a i thoa m a n di4u k i e n gi ?
Neu each diTng M N t r o n g t r i f d n g hop do.
Goi P va Q t u a n g iJng la h a i d i e m nSm t r e n O d doan O'd'. G o i H l a h i n h chieu cua
diem giaa K cua doan OO' l e n PQ. H a y chufng m i n h r S n g k h i PQ t h a y d o i sao cho OP +
Q'Q = PQ t h i H n a m t r e n m o t d i f d n g c6' d i n h . H a y c h i r a dirdng c6' d i n h do.
Giai
1/ Chijfng m i n h doan M N k h o n g doi :

O'N l O O ' l
O'N l O M

ON

1 O O ' M => O N J. O M

Ta CO : tiT d i n h l y Pythagore

^

M N ' = O ' N ' + O'M'*


(1)

OM' = 0 0 ' + OM'

(2)

M N ' = O ' O ' + O ' N ' + O M ' =>

=> M N = Vh^

M N ' = h' + k'

= const (dpcm).

2/ Ta CO : O'N 1 (O'OM)
^ V = V, o o M N , = -dt(AOO'M) .OTSr = - O O ' . O M . O ' N = - O M . O ' N

^ V'= ii-.OM^.O'N" < —
36
36

36 v 2 .

(3)

144

Dau dang thufc t r o n g (3) xay ra <=> O M ' = O ' N '
o


OM' + O N ' = 20M' = k'

=> O M = O N =

kV2

Vay k h i chon M e d va N e d' sao cho ; O M = O ' N =
Ifa nhat : maxV = — O M ' =

6

kV2

t h i t i i d i $ n O O ' N M c6 the t i c h

(ycbt).

12
311


3/ Dieu k i e n de M N t i e p xuc vM N vdfi m a t cau diTcrng k i n h O'O. Theo t i n h chat t i e p t u y e n tiT 1 d i e m d ngoai m a t cau, ta c6:
O N

= IN

OM = IM

M N = O N + OM


« . M N ^ = O'N^ + OM^ + 2 0 ' N . 0 M
=> h ' + k^ = k^ + 2 0 ' N . 0 M

^

20M.0'N = h '

(4)

De y : ( O M - O'N)^ = O M ^ + O'N^ - 2 0 M . ON > 0
o

2 0 M . O N $ O M ^ + O'N ^ (Ap dung (4))

<=> h^ < k^ «


0 < h < k

(5) (ycbt).

Cach d u n g doan M N : Cho M e d m a O M = a. TiT (4) t a c6 : O'N =

T a t i m di/oc N e d ' difgc xac d i n h bdi O'N =

2a

2a


v6i dieu k i e n (5).

Chiitng m i n h H n k m t r e n m o t dUdng co d i n h :

Q

(d')

D a t OP = X, O'Q = y.
P Q = O P + O'Q = X + y

Ta

CO :

• [PQ = P H + H Q

PH + HQ = x + y

(6)

D i n h l y Pythagore :
KP2 = OK^ + 0P2 = H K ^ + HP2
KQ2 = O'K^ + 0 Q 2

= H K ^ + HQ2

Do O K = O'K ^ KP2 - KQ^ = OP^ - OQ^ = HP^ - HQ^ =
^


- y^

( H P - H Q K H P + H Q ) = (x - y)(x + y)

(8)

K e t hop (6) va (7) => H P = x va H Q = y

(7)

Tif (6) => H P - H Q = x - y

Qua O difng d i // d' => d' // (d'; d i ) va (d'; d i ) 1 (d; d i ) , nen goi Q' la h i n h chieu cua Q tren
(d; d i ) t h i Q' e d , va do (QQ'P) _L (d; d j ) nen goi H ' l a h i n h chieu cua H t r e n (d; di) t h i H' e
PQ'.
Tiir giac OO'QQ' la h i n h chif n h a t => OQ' = O'Q = y

Do H H ' // QQ' :

HQ

HQ'

H P

H P

Ma

X


"

'

(8)

OP

H P

OP

HQ'

OQ'

OQ'

O H ' la p h a n giac P O ^ ' =

(3^73^

Dieu nay chijfng to H n a m t r o n g m a t p h a n g co' d i n h (a) tao bdri OO' va p h a n giac Ot cua
goc hap bdi d va d i // d'.
Do : A O P K = A H P K ^ H K = O K =

- .

2


312


Vay H nftm t r e n diicrng t r o n co d i n h t a m K, ban k i n h — chufa t r o n g mSt p h ^ n g co d i n h

2
(a), xac d i n h n h u t r e n (ycbt).
Bai 401 ( D A I H O C SlJ P H A M T P . H C M -

1991)

Cho h i n h chop S.ABCD day A B C D , co A B D va CBD 1^ h a i t a m gi^c deu canh a. Canh SA = h
vuong goc v(Ji day. Goi O l a giao d i e m cua A C va B D , M 1^ d i e m d i dong t r e n A C , khdc A
va C; (Q) la m a t p h ^ n g qua M va vuong goc AC.
1/ Tuy theo M thuoc OC hay thugc OA hay chi ro each d i m g t h i e t dien m a (Q) c&t h i n h ch6p.
2/ Bat X = M C . T i n h dien t i c h t h i e t dien noi t r e n theo x, a, h . K h i nao d i e n t i c h ay lorn n h a t .
Giai
1/ Doc gia tU p h a n t i c h va chiifng m i n h va bien l u a n , d day t a x e t h a i k h a n a n g xay r a t u y
theo v i t r i cua M t r e n A C = A O ^ OC.
D C a c h dtfng t h i e t d i § n k h i M 6 A O
• Trong ( A B C D ) , qua M dUng di/cfng t h S n g song song
vdi cheo B D I a n lUOt gap A B , A D t a i N va G.
• Qua N , M , G d i i n g cac difdng t h S n g vuong goc v d i
(ABCD) Ian luot gap SB, SC, SD t a i L , E , F t a dUcfc
thiet dien muon t i m la ngu giac N L E F G gom h a i h i n h
thang vuong bSng nhau co chung day lorn M E (ycbt).
• Cach dUng thiet di$n k h i M e O C
• Trong ( A B C D ) qua M dUng diidng t h i n g
song song v d i B D I a n luat cSt C B , C D t a i N , G.

• Trong (SAC), qua M d u n g diTdng t h a n g song song
vdi SA cat SC t a i E. T a m giac E N G can t a i E l a t h i e t
dien muon diTng (ycbt).
21 De xac d i n h x = C M de dien t i c h S ciia t h i e t d i e n Idn n h a t t a x6t h a i k h a n a n g sau
• THi : M

NO // B D

ME // AS

N L // AS

6

OA : 0 < A M < A O «

0 < aVs - X

NM

AM

2(aV3 - x )

BO

AO

iV3


ME _ CM

ME

AS ~ CA

NL

BN

OM

< X

NM =

< a V 3 (1)

3a - xVs

xhV3
3a

X - •

A S ~ B A ~ OA

NL =

2x-a>^


NL =

aV3
Do do

<

S, =

2xV3h

3a

2xV3 - 3a
3a

.
x h V 3 Y 3a - x V 3
- h +

3a

A

313





Si = — ( x V 3 - a) ( 3a - x V 3 )

3a
S, = - ^ ( - S x ^ + 4 a V 3 x - 3 a ^ )
3a
S' l = — ( - 6 x + 4aV3) = 0 «
3a

1V3
2

X=

<

CM
CO

BO

3

< a

(2)

(3)

< aV3 - x <


2x

NM

N G // B D :

S2 =

X

2 a A/ 3
2

TH2 : M e C O : A O ^ A M < A C
NM
.

CM

ME

2xV3 a

3a

aVs

a V s <=> 0 < x <
xV3


2

X A / 3,

M E // A S :

ME =

AS " CA " aV3
xVs x V s,

Luc do :

( 0 < x < ^ )
2

3a

= 0

h
3a

x ^h

ih = : i ^

3a

2hx


S'2 =

<=>

X =

(4)
(5)

0

3a
De y den (3) va (5) va hai bieu thiifc S ] , S2 d (2) va (4), ta se lap difgc bang bien thien kep
nhu sau :
0

a

S'2

Si
S2
Si

S2

^

,


ah

Tu do, ta CO :

,

ma x fa = — , tifcrng iTng voi x =
0< x < a V3

2aV2

3

,

, ^

(ycbt).

3

B a i 402 ( T T D A O T A O va B O I D U O N G C A N B O Y T E T P . H C M

1993)

Cho hai diem A , B doi xilng nhau qua mat phang ( P ) , I la giao diem cua A B vdi ( P ) , 0 la
mot diem nam ngoai ( P ) , co hinh chieu vuong goc xuong ( P ) la H , con M la mot diem chay
tren dudng tron dUcmg kinh I H ve trong ( P ) .
1/ Chufng minh rang I M la diidng vuong goc chung cua A B va O M .

2/ Chufng minh rkng hai diem A, B luon each deu dudng O M .
3/ Cho A B = 2a, M H = x, M I = y. Tinh the tich tuf dien O M A B . Xac dinh vi tr i M de the tich
do Idtn nhat.
Gi a i
l/ Ta c6: AB l( P)

=^ AB I . I M (1)

M thuoc dudng tron difdng kinh I H
^

(2)

I M _ LM H

314


Mat khac : O H 1 (P)
=> I M 1 O H

(3)

TO (2) va (3)

I M 1 (OMH)

=> I M 1 O M

(4)


TO (1) va (4) => I M l a dudng vuong
goc chung cua A B va O M (dpcm).
21 Difng AR 1 O M ; B F 1 O M
JAE = d [ A ; ( O M ) |
^

[ B F = d[B; ( 0 M ) |

Trong m a t phang ( O M H ) t a diftig:
Ex 1 OF; F y 1 O F
f(AEx) ± O F
^

|(BFy) ± O F •

=> A E ; I M ; B F n a m t r e n ba m a t p h a n g song song
Theo d i n h l y Thales :
Nhung : A A M B can

3/ De' y tha'y :
Ma : \

ME

lA

M F

I B


=

=>

A M = M B

O H // ( A B M ) ^

M H

1

M I

' M H

1

A B

V = V o A i i M = V|| AMB =

1 => M E = M F

=> A A E M =

VQ.ABM =

1


M H

B

A E = B F (dpcm).

ABFM

^UMIM

( A B M )

— -MH.SAAMB

o
(ycbt)

(5)

+ y^ = I I I ^ = const

(6)

V = - M H . A B . I M = - axy

6

3


Xet : A I M H vuong
2

(1)

BDT Cauchy =>

2

= —.xly^ < —
9
9

Dau dang thufc t r o n g (6) xay r a

^

«
Luc do : maxV^ = ^
Vay

VoABM

36

X

+y
36


x2

= y'

(6)

X = y

A I M H vuong can t a i H .

<=> m a x V = — . I H
6

l
Biii 403 ( D A I H O C SLf P H A M T P . H C M - 1993)
Cho tuf dien SABC c6 goc p h i n g d d i n h S vuong.
V Chiing m i n h r a n g : Vs S A D Q ^ Sggc + SogA + S' S A C 2/ Biet rang SA = a; SB + SC = k k h o n g doi. D a t SB = x. Ti'nh the t i c h tuf dien SABC theo a, k ,
jva xac d i n h SB, SC de t h e t i c h tuf dien SABC \6n nhat.
3/ Cho A CO d i n h B v a C t h a y d o i sao cho SB + SC = k ( k h o n g ddi). T i m quy t i c h giao d i e m O
cua cac dUcmg cheo h i n h hop c6 ba canh l a SA, S B , SC.
315


1/

Giai
D i f n g : S I 1 BC va n o i A I , t a c6 :
sue


RBA ^

SAC

"

= -(BC^SI^ +SA^SB^
4

+SA2.SC2)

= - [ B C ^ S I ^ + S A ^ I S B ^ + SC^)]
4
= i(BC2.Sl2
4^
I S

+SA^BC2)
'

= - [ B C ^ . C S I ^ + S A 2 ) ] = -(BC2.Al2) = SiBc
4
4

(1)

Ap d u n g B D T S c h w a r t z :
( S S_l i C + S , S„B .A

+SsAc)


'SBC + ^I B A + S|AC )

2/ Goi t h e t i c h tiir d i e n S A B C l a V :
V = - AS.S„„,, = - S A . S B . S C = - a x ( k - x) ^
3

-

X

+ k -

X

(2)

24
Dau d a n g thijfc t r o n g (2) x a y r a

•»

x = k - x

« •

k
X =




.

2
Vay m a x V =

ak^

y

; t u a n g ufng : •

24

C

SB = SC = — (ycbt).
2
3/

c , / /

Goi O' l a h i n h chieu cua O xuong

(SBC).

T r o n g m a t p h a n g toa do (Sxy) = (SBC), t a c6 :
X

SB

x =

s

O' :

B

\

SC

S B + SC
^

X

+

y

=

V i SB + SC = k ^

= —=>
2

y = -x + —
2


A

0 < SC < k

316
\


0 < X < k
Quy tich O' la khoang (BC) :

De y thay : OO' = - SA = SG ; VB; C
2
0 < X < k
Vay quy tich diem O la khoang (B|Ci) : •

k

la hinh tinh tien cua (BC) theo

y = -X + •

vecto : u = — S A
2

(ycbt).

Bai 404 ( D A I H O C T O N G H d P H A N O I - K H O I A -


1993)

Cho tuf dien ABCD c6 A B = x va CD = b, cac canh con lai bang nhau va bSng a. Goi E, F
n luat la trung diem ciia A B va CD.
1/ Chiifng minh rSng : A B 1 CD va EF la ducfng vuong goc chung cua A B va CD. Tinh EF
theo X, a, b.
2/ Tim X de hai mat phang (ACD) va (BCD) vuong goc vdi nhau. Chiifng minh rang khi do tiif
dien ABCD c6 the tich \6n nha't.
G iai
1/ Ti/ gia thiet :
ma

x/

BC = BD => BF 1 CD

E

/

\

[CD 1 AB

Vay CD 1 (ABF)
Do BC = AC

A

AC ± A D => A F _L CD


\

B.

[CD 1 E F

•D

CE I A B ma A B 1 CD
a\

=> AB ± (CDE) => A B X EF
Vay EF vuong goc chung cua A B va CD (dpcm).
A F2 = A C ^ - C F ^

Ta CO

A F^ =

-

=> EF^ = a^ -

b^

x^

(= A F' - A E')


A E^ = i i EF

4a' - b-^ -

2/ Theo tren CD 1 (ABF)
EF =

(0 < X < V4a^ - b ^ ) (ycbt).

A FS =

. Goc nhi dien do vuong khi va chi khi

4a'-h'

AB

x

=



<=> X =

Khi do : VABCD = VcAiif• + VDAHF = - CF.SA RF + 1
*ABCD = - SA I)F(CF + D F ) = - SA BK.CD = -

D F. S'ABF
SABF

3

317


D o FA

VABCI) I d n n h a t k h i SABF I d n n h a t .

= FB= i Vi l ^

n e n VAHCD Id n n h a t

<=> SAUK = i F A . F B s i n X p ^ = - ( 4 a ^ - b 2 ) s i n A F B
(1)

3ma xi( 4a ^ - b ^ ) s i n A F B =

8

»

s i n A F f e = 1 <=> A f f e

(1)

i ^ ! — ^

8


= 90" ( yc b t) .
1994)

Ba i 405 ( D A I H O C B A C H K H O A T P . H C M -

Tr o n g m a t p h S n g ( P ) c h o ta r n g i a c A B C vu o n g go c t a i A , A B = c; A C = b. T r e n diJdng
t h a n g vu o n g go c v d i ( P ) t a i A , l a y m o t d i e m S s a o ch o S A = h ( h > 0). M l a m gt d i e m d i dpng
tr o n c a n h S B . Gp i I , J I a n lu o t l a t r u n g d i e m c i i a B C v a A B .
1/ T i n h do d a i d o a n vu o n g go c c h u n g c i i a h a i d u d n g S I v a A B .
2/ T i n h ty s6 ' giOTa t h e t i c h c^ c h i n h c h o p B M I J v a B S C A k h i do d a i d o a n vu o n g go c chung
c iia h a i dUcfng A C v a M J d a t g i a t r i Id n n h a t .

Giai
1/ D e y t h a y A B 1 ( S A C ) v a S I c6 h i n h c h i e u x u o n g
( S A C) l a S K .
Lu c do :

J l K 1 A C => I K 1 ( S A C)
' AN ± S K; N e S K

J AN 1 I K

K h i do

' AN ± S K

AN 1 ( S I K )

N E / / AB , E e S I


Dung :

E F / / AN . F e

EF 1 ( S I K )

AB

=> EF 1 S I

A B 1 ( S A C ) => A B 1 A N => A B 1 EF

Do :

=> EF l a d o a n vu o n g go c c h u n g c u a A B v a S I .
N h i fn g : EF = A N , n e n t a t i n h do d a i A N .

I

A S A K vu o n g

l

AN ^

l
AS^

1


1

1

4

+ •

AN ^

AK^

b^_ +4h^

«

bh

AN =

AN ^

Vb ^ + 4 h 2

D o d ^ i d o a n vu o n g go c c h u n g c u a A B v ^ S I l a :
S
EF =
2/

,

Vb ^ + 4 h 2

( yc b t) .

D e y A C ± ( S A B ) 3 M J , t r o n g m a t p h l n g ( S A B ) , d ito g A H 1 M J

=> A H l a d o a n v u o n g go c c h u n g c i i a A C v a M J .
T a CO : A H < A J =

M.

B

318


maxAH = - k h i va chi k h i H = J
2
<=> M la trung diem cua SB.
Luc do ti/ang ufng : —m i.

=

(ycbt).

8

^BSCA

Bai 406 (DAI HOC K I E N TRUC TP.HCM - 1995)

Trong mat phfing (P) cho tarn giac OAB vdi OA = OB, AB = 2a v^ difcfng cao OH = h. Tren
dudng thang (d) vuong goc vdi (?) tai O, lay diem M vdi OM = x. Goi E va F Ian luat la hinh
chieu vuong goc cua A len MB va OB; N la giao diem cua EF va (d).
1/ Chijfng minh MB 1 NA v^ MA 1 NB.
21 Tinh BE, BF, EF, AF va the tich tuf dien ABEF theo a,h v^ x.
3/ Tim vi t r i cua M tren (d) sao cho t i l dien MNAB c6 the tich nho nhat vk t i n h gia t r i nho
nhat nay.
Giai
M O l AF

1/ De y :
Ma :
Ta

CO

1

AF

[ B O l AF

(MOB) ^ A F 1 MB

AE 1 MB => MB 1 (AEF) --

M B 1 A N (dpcm).

: AF 1 (MOB) => AF _L NB


Mat khac, F la trUc tarn cua AMNB

M F J_ NB

Vay : N B 1 ( A F M ) => N B 1 A M (dpcm).
2/ Ta CO : A H K B co A H A O

HK

HB

HA

HO

HK.h = a^

HK =

OK = h

n

u2

h

„2

- a

h

Trong tiJ giac noi tiep B F K H ta c6 :
I ^

= FtHF

A O F H CO A O K B

OF

OH

OK

OB

OF.OB = O H . O K
OF.OB = h' -

OF =

a'

(vdi : B 0 = V h 2

)

Khi do : B F = O B - O F = V h ^ + a ^ V h ^ + a^


319


3/

Vay :

B F =

2a^
,

(ycbt).

T u a n g t i f , t r o n g tur giac n o i t i e p M O F E t a c6 : E S J F ' = E l O ^
ABEO

ABFM

=>

=
B F

to

,

EF


AOMB

BE.BM = BO.BF
B M

BE =

T a CO : A E F B

2a^

=

(ycbt).

B F

O M

B M

EF =

2a2x

,

V(a2 + h 2 ) ( a 2

(ycbt).

+x2)

2ah
T u a n g t a , t a c6 : A F . O B = O H . A B

AF =

,

(ycbt).

The t i c h tut d i e n A B E F :
VABEF = ^ A F . S B E F = - A F . E F . B E

=

„,



,

+ n )(a + n

^

+ "

(ycbt).


'

S^ ^ j , =- |^ A F . M N . O B
The" t i c h tiJ d i e n M N A B l a : V M N A B = ^^ - A
A FF. S
Nen : 3 min(V^J^AB '

3niin(MN)

N h U n g : A N O F co A B O M = > —

=

OB

A p dung B D T Cauchy :
^

= > O M . O N = O F . O B = h^ - a^
O M

M N = M O + ON > 2 V h ^ - a^

3 m i n ( M N ) = 2 V h ^ - a^

OM = ON

2ah-\/h^ - a ^

I

Vay : 3 m i n V M N A B <=> O M = V h ^ - a^ va minVMNAis =

(ycbt).
3

B a i 407 ( D A I H O C T O N G H O P T P . H C M - 1995)
Cho tarn giac deu O A B c6 c a n h bSng a > 0. T r e n difdng t h i n g (d) d i qua O vuong goc vdi
m a t p h i n g (OAB) l a y d i e m M v d i O M = x. Goi E,F I a n l u g t l a cac h i n h chieu vuong goc cua A
len M B , O B . D i f d n g t h i n g E F cSt d t a i N .
1/

Chtifng m i n h r S n g A N 1 B M .

2/ Xac d i n h x de t h e t i c h t i l d i e n A B M N l a nho n h a t .
Giai
1/

T a CO :
Ma :

A F I B O

[AF

I d

AE 1 M B

=> A F 1 ( M O B )
^


=> A F 1 M B

M B ± (ANE)

2/ De y : A F X ( M B O ) s ( M N B )

^

^ M B ± N A (ycbt).

A F l a chieu cao h i n h chop A . B M N

320


=> V

=~AF.S

ABMN

2

=-AF.BO.MN
MNB

Q

iV3


AF =
Trong do : BO=a
MN =MO+ON= +ON
X

Do do : 3m
in(V
.„„„) o 3min(x +ON)
AnMN

Mat khac, ta c6 : ANOF w ABOM NO OF

BO OM

« OM.ON = BO.OF « x.ON = — = const
2

Apdung BDT Cauchy, ta c6 : x + ON ^ 2 J — = aV2
Dau dang thutc trong (*) xay ra <=> x = ON =
3rain(x +0N) = aV2

(*)

1V2

x = ON = ^

Vay the tich tut dien ABMN nho nhat khi va chi khi x =
'


(ycbt).
2

1 Bai 408 (DAI HOC XAY Dl/NG HA NOI - 1995)
Trong mat phang (P) cho hinh vuong ABCD vdi AB = 2a. Tren mat phang chuTa BC va
JTuong goc vdi (P) lay diem E sao cho AEBC la tarn giac deu; diem I nkm tren doan BC, dat :
|B1 = X. Kla hinh chieu vuong g6c cua diem E tren dUdng thang AI; O la trung diem cua AE.
1/ Timquy tich ciia diem K khi I chay tren doan BC.
2/ Tinh do dai 0 1 theo a va X.
13/ TimX de do dai OI Idn nhat, be nhat.

Giaima [(P); (EBC)] = 90"
11/ AEBC_deujien trung tuyen cua no EF _L BC
:=> EF 1 (P)

EK : dudng xien
FK : hinh chieu

ma EK 1 AK => FK 1 AI (dinh ly 3 difdng vuong goc)
luon vuong, AF co dinh nen K di chuyen tren tron (C) dUdng kinh AF.

321


GicJi han khoang chay:

I

s


C => K ^ H; H e AC; FH // BD

Dao lai K e

BH c

(C)

^ EK ± A I

Vay quy tich K la cung BH c (C) (ycbt).
2/ Dinh ly dirdng trung tuye'n cho :
_ 2AI^ + 2 E I ^

- AE^

4

U F ^ =5a2

AE^ = AF^ + EF^ = 8 a ^ AI^ = 4a^ +
=> 01 = V x ^ - a x + 2a^

(ycbt).

3/ Ta Viet : OI^ = fix) = x^ - ax + 2a^; Va e [0; 2a]
=> f (x) = (2x - a) = 0 <=> X = 2
Difa v^o bang bien thien, ta c6 :
m a x f ( x ) = f(2a) = (2a)^

0
2a

+00

f'(x)

min f(x) = f

^a^

0
m a x 01 = S(2a) = 2a
0« x< 2a

min OI = S

^a^

0< x« 2a

B a i 409 (DAI HOC D A I CUONG - 1996)
Cho id dien ABCD c6 AB = CD = 2x va 4 canh con lai deu c6 do dai bkng 1.
1/ Tinh dien tich toan phan (tdng dien tich. cua 4 mSt) cua tur dien theo x.
2/ Xac dinh x d6 dien tich toan phan dat gia t r i Idn nhat.
Giai
1/ Nhan thay, cac mat cua tijf dien la cac tam gidc bkng nhau.
Suy ra, dien tich toan phan ciia til dien la :


= 4.8^^^ =

2.AI.CD

(1)

Vdri A I la dudng cao cua ACAD can tai A; ta c6 :
AI = V l - x^ ;

(0
322


^

= 2.2x.Vl -

2/ N h a n t h a y :

= 4 x V l - x ^ ; (0 < X < 1) (ycbt).

3max(Stp)
2x/
3 max x V l - x 2
^

<=>


J

2ri

..2

B'

3 max(16x^[l - x'^)]

sD

Ap dung B D T Cauchy :
2x
Stp = 1 6 x ^ ( 1 - x ^ X

16

= 4

Dau d^ng thuTc trong (2) xay ra <=>

Vay v d i x = —

= 1 - x^

(2)

x =


t h i dien tich toan phan cua tif dien dat gi£i t r i Idn n h a t la

maxStp = 2 (ycbt).
Bai 410 (DAI H O C Q U O C GIA T P . H C M -

1996)

Cho tuT dien SABC c6 goc p h i n g d dinh S vuong.
1/ Chufng minh rSng VS.SABC ^ SSAB + SSBC + ^SAC
2/ Biet rftng SA = a; SB + BC = k. Dat SB = x. Tinh the tich tuf dien SABC theo a; k; x va
xac dinh SB; SC de the tich tiif dien SABC Idn nhat.
Giai
(Xem

D A I H O C SU P H A M T P . H C M -

1993)

Bai 411 ( D A I H O C Q U O C G I A T P . H C M - K H O I D -

1997)

Cho tiJ dien deu ABCD canh a. Goi H la hinh chieu vuong goc cua A xuong mat phSng
(BCD) va O la trung diem cua A H .
1/ Tinh the tich V cua tuf dien theo a.
2/ ChOfng minh rang AB 1 CD. Tinh khoang each gifla hai difdng th^ng AB, CD theo a.
3/ ChOfng minh rang cac dudng th^ng OB, OC, OD ti^ng doi mot vuong goc nhau.
4/ Xac dinh diem M trong khong gian sao cho MA^ + MB^ + MC^ + MD^ dat gia t r i nho nhat.
Giai
1/ Do ABCD la tuf dien deu canh a va H la hinh chieu vuong goc ciia A xuong (BCD)

H la trong tarn ABCD
=>BH=2.aV^
3
2
A H

aV^

= V A B ^ - B H ^

Vay: VABCD = -

=

\ ^ ^ ~

.AH.S„CD

323


2/ T a

1 aVe

V,„c n = 3

-

y


a^Vs
-

^

=

a^V2 ,

-^( y c bt ) .

CO :

B H l a h i n h c hi e u c ua B A l e n ( B C D )
BH

i C D

=> A B 1 C D

(dpc m ).

Do A B C D l a tiJ di e n deu, ne n B H se c&t C D t ai
t rung di e m I v a B I = A I .
Go i J l a t rung di e m c ua A B , t h i t a c6 : I J 1 A B.
T uan g t i f : J D = J C => J I 1 C D .
=> I J l a do an v uo ng goc c hung cua A B v a C D.

a^


3a2
I J =V BI 2

3/ T a

CO :

A H

- B J 2

=

V

aV2

(y cbt ).

4

= V A B^ - B H ^

l^/6

= ja^ ^ ^
3

3


O e A H (t rue dudng t ro n) => O B = O C = OD
2

2

Ma: OB^ = OH ^ + H B^ = - A H ^ + H B^ = — +
4
6
OB = OC = OD =


3

i V2

N h a n t h ay : OB^ + OC^ = a^ = BC ^ => A BO C v uong t ai O.
T i f ang tU, A BO D v a A C O D v uo ng t ai O.
V ay O B; O C ; O D t ifng doi mot v uong goc nhau (dpcm).
4/ Go i G l a t ro ng t a m t i l di e n A B C D => G A + G B + G C + G D = O
f

Xet :

I

= MA^ + MB^ + MC^ + MD^ =

2


^

f ~> \ 2

+

MA

MB

1-

+

> N, 2

MC
^

—> ^ 2

f ^

=> S

=

2

+


MG+GA

2

+

MG+GB

(

+

MG+GC

+
J

MD
V

/

2

_>

MG+GD
V


>

= 4 . M G2 + G A ^ + G B ^ + G C ^ + G D ^

S

+ 2MG GA +GB + GC+GD

= 4 .MG2 + G A ^ + G B ^ + G C ^ + G D ^

I = 4 .MG2 + G A ^ + G B ^ + G C ^ + G D ^

324


×