1
MỞ ĐẦU
1. Lí do chọn đề tài
1.1 Hình thành và phát triển năng lực giải quyết vấn đề cho học sinh là một
mục tiêu quan trọng của môn toán
Mục tiêu giáo dục trong thời đại mới là không chỉ dừng lại ở việc truyền thụ
những kiến thức, kỹ năng có sẵn cho HS mà điều đặc biệt quan trọng là phải trang bị
cho HS cách học và bồi dưỡng cho HS năng lực sáng tạo, năng lực GQVĐ. Nghị quyết
Trung ương 8 khoá XI về đổi mới căn bản toàn diện giáo dục và đào tạo khẳng định:
“Chuyển mạnh quá trình giáo dục chủ yếu từ trang bị kiến thức kĩ năng sang phát
triển toàn diện năng lực và phẩm chất của người học. Tiếp tục đổi mới mạnh mẽ
phương pháp dạy và học theo hướng hiện đại; phát huy tính tích cực, chủ động, sáng
tạo và vận dụng kiến thức, kĩ năng của người học; khắc phục lối truyền thụ một chiều
ghi nhớ máy móc. Tập trung dạy cách học, cách nghĩ, khuyến khích tự học, tạo cơ sở
để người học tự cập nhật và đổi mới tri thức, kĩ năng, phát triển năng lực” [18].
Ở nhiều nước trên thế giới, các nhà giáo dục toán học đã nhấn mạnh rằng giáo
dục toán học phải lấy việc nâng cao năng lực GQVĐ làm trọng tâm và được thể hiện
rõ trong quan điểm trình bày kiến thức và phương pháp dạy học thông qua chương
trình và sách giáo khoa. Cụ thể:
Năm 1980, Hội đồng Quốc gia GV toán (DT [114]) ở Mỹ đã đề nghị trong
chương trình nghị sự của họ “hoạt động GQVĐ phải là trọng tâm của toán học trong
nhà trường”. Chương trình giảng dạy và đánh giá Toán của Hội đồng Quốc gia GV
Toán Mỹ yêu cầu HS THPT được dạy xây dựng kiến thức toán học mới thông qua
GQVĐ (DT [102]). Chuẩn môn Toán của Bang New Jersey - Mỹ khẳng định tất cả HS
sẽ phát triển khả năng đặt ra và GQVĐ trong toán học, trong ngành khác và trong cuộc
sống hàng ngày (DT [67]). Báo cáo Cockerroft (DT [114]) của Anh nhìn nhận khả
năng GQVĐ là một mục tiêu có tính trọng điểm của giáo dục toán học và là yếu tố
quan trọng trong việc dạy toán cho mọi lứa tuổi và mọi khả năng. Chương trình giảng
dạy lớp 11, 12 của Canada [120] coi GQVĐ là trung tâm của học tập Toán và nên trở
thành trụ cột chính của giảng dạy Toán. Năm 2001, Bộ Giáo dục Singapore (DT [102])
khẳng định, mục tiêu chính của chương trình giảng dạy toán học là giúp HS phát triển
khả năng GQVĐ Toán học (GQVĐ toán học bao gồm sử dụng và áp dụng toán học
2
vào các nhiệm vụ thực tế, các vấn đề thực tế cuộc sống và trong chính toán học) của
HS. Sách giáo khoa Singapore tập trung vào GQVĐ, từng chủ đề được đi sâu và đưa
ra những phương pháp rất hữu ích để hiểu khái niệm toán học.
GQVĐ được đề cập đến trong chương trình của nhiều nước, cụ thể: Chương
trình toán phổ thông của bang Quebec, Canada; Chương trình New Zealand (chú trọng
đến các phương pháp tiếp cận để giải quyết các vấn đề liên quan đến toán học, phát
triển khả năng tư duy, suy luận hợp lý); Chương trình toán của Pháp (nhấn mạnh tới
yếu tố GQVĐ trong học toán); Chương trình toán của Úc (đề cập tới: Sự hiểu biết về
kiến
thức, kĩ năng toán học; GQVĐ; Lập luận). (DT [39])
Vương Dương Minh [54] khẳng định phương pháp phát hiện và GQVĐ có giá trị to
lớn và có khả năng vận dụng rộng rãi trong nhà trường để trở thành một phương pháp chủ
đạo. Trần Luận [44] đã đề xuất: Nội dung toán ở nhà trường phổ thông phải là môi
trường rèn luyện năng lực GQVĐ và ứng dụng toán học trong cuộc sống hằng ngày.
Nghiên cứu về mối quan hệ giữa nội dung môn toán ở trường phổ thông Việt Nam và
các năng lực chung cần hình thành và phát triển cho HS, Trần Kiều [35] xác định năng
lực GQVĐ là một trong 6 năng lực đặc thù môn toán cần hình thành và phát triển cho
HS.
Như vậy, GQVĐ có ý nghĩa quan trọng trong giảng dạy toán và được đưa vào
chương trình giảng dạy toán của nhiều nước trên thế giới. Năng lực GQVĐ là một
năng lực quan trọng cần hình thành và phát triển cho HS trong dạy học toán. Do đó,
bồi dưỡng năng lực GQVĐ là một nhiệm vụ quan trọng trong dạy học toán ở nhà
trường phổ thông nước ta hiện nay.
1.2 Giải tích là một nội dung có nhiều tiềm năng để bồi dưỡng năng lực giải
quyết vấn đề
Giải tích là một ngành đóng vai trò chủ đạo trong toán học. Nguồn gốc ra đời
của giải tích là để giải quyết 4 bài toán lớn là tìm tiếp tuyến của một đường cong, tìm
độ dài của một đường cong, tìm giá trị lớn nhất, giá trị nhỏ nhất của một đại lượng, tìm
vận tốc và gia tốc của chuyển động theo thời gian. Giải tích ra đời trong quá trình tìm
tòi, phát hiện, xây dựng các công cụ để giải quyết những tình huống có vấn đề, những
bài toán đặt ra trong vật lí, trong khoa học kĩ thuật và trong nội bộ toán học.
Các kiến thức về giải tích có mối liên hệ chặt chẽ với nhau. Kiến thức giải tích
được xây dựng thông qua quá trình tìm tòi, phát hiện mối liên hệ giữa các kiến thức đã
3
có để biến đổi các đối tượng nhằm giải quyết tình huống có vấn đề được đặt ra. Chẳng
hạn, khái niệm đạo hàm được định nghĩa thông qua khái niệm giới hạn, đạo hàm là
công cụ để khám phá các tính chất của hàm số, nguyên hàm được xây dựng thông qua
tình huống tìm giải pháp của bài toán ngược tìm hàm số khi biết đạo hàm. Các tính
chất, định lí giải tích có thể được xây dựng thông qua giải quyết các tình huống có vấn
đề.
Như vậy, nội dung giải tích chứa đựng nhiều bối cảnh nảy sinh tình huống có
vấn đề và có thể khai thác để bồi dưỡng năng lực GQVĐ.
1.3 Thủ pháp hoạt động nhận thức có vai trò quan trọng đối với học sinh trong
lĩnh hội kiến thức toán học, cũng như giải quyết các vấn đề đặt ra trong học toán
Trong bài nói chuyện của Polya (DT [10]), ông cho rằng: Việc học kết thúc
bằng việc hình thành các thói quen suy nghĩ tích cực và mục đích chung cho giáo dục
toán học là phát triển càng nhiều càng tốt những thói quen suy nghĩ có giá trị trong
việc đương đầu với bất kì loại thử thách, vấn đề nào. Ông nhận định, cần phải có một
luật cơ bản các chiến thuật giải quyết mọi loại vấn đề khác nhau và điểm cốt yếu trong
giáo dục toán học là phải phát triển được những chiến thuật GQVĐ này. Như vậy, có
thể nói rằng Polya đã khẳng định dạy chiến thuật (gọi là TPHĐNT) thì phát triển được
khả năng GQVĐ cho HS.
Thực tế dạy học toán, những cách thức tìm hiểu, biến đổi đối tượng mang tính
độc đáo, khéo léo để tìm kiếm giải pháp đúng đắn, tìm kiếm giải pháp tối ưu giúp HS
cảm nhận được vẻ đẹp của toán học, hình thành cho HS cảm xúc thẩm mỹ, khơi dạy
niềm say mê và hứng thú học toán. Những cách thức này có vai trò như là phương tiện,
như là công cụ giúp HS chiếm lĩnh trọn vẹn tri thức toán học và giải quyết thành công
các vấn đề trong học toán. Và những cách thức này được xem là TPHĐNT. Nếu HS
được trang bị TPHĐNT thì có thể giải quyết các vấn đề tốt hơn, HS sẽ thành công
trong GQVĐ. Tuy nhiên, hiện nay GV chưa quan tâm đến trang bị TPHĐNT cho HS.
Trong dạy học toán, GV thường chú trọng cung cấp kiến thức cho HS mà chưa quan
tâm nhiều đến cung cấp cho HS cách thức hiệu quả để lĩnh hội và vận dụng các kiến
thức.
Vì vậy, trang bị TPHĐNT cho HS là việc làm cần thiết và có thể xem là một
trong những con đường góp phần hình thành và phát triển năng lực GQVĐ.
4
Xuất phát từ những vấn đề trên chúng tôi lựa chọn nghiên cứu đề tài: “Dạy học
Giải tích ở trường Trung học Phổ thông theo hướng bồi dưỡng năng lực giải quyết
vấn đề thông qua trang bị một số thủ pháp hoạt động nhận thức cho học sinh”.
2. Tổng quan về vấn đề nghiên cứu
2.1 Một số nghiên cứu về thủ pháp và thủ pháp hoạt động nhận thức
*) Nghiên cứu ngoài nước
- Quan niệm về “tactic” trong tiếng Anh, về Pri-om trong tiếng Nga và một số
nghiên cứu khác về thủ pháp
Những nghiên cứu ngoài nước hiện nay, có nhiều quan điểm khác nhau về thủ
pháp, TPHĐNT, cụ thể:
Shufelt và Smart (DT [2]) cho rằng thủ pháp liên quan đến GQVĐ. Len
Frobisher, Backhouse, Robert Mills Gragne (DT [3]) cho rằng thủ pháp là một khái
niệm thuộc lĩnh vực phương pháp, đó chính là cách thức mà con người ta làm, xử lí và
sử dụng hiệu quả các thông tin. Việc xử lí và sử dụng hiệu quả thông tin đòi hỏi lối
suy nghĩ riêng biệt, linh hoạt, khéo léo, độc đáo. Thủ pháp được vận dụng trong
GQVĐ. Hầu hết các thủ pháp đều độc lập với nội dung toán học và đều bổ ích đối với
các vấn đề có liên quan đối với các lĩnh vực và các môn học.
D.N.Perkins (DT [2]) cho rằng thủ pháp thuộc lĩnh vực phương pháp và nó là
một trong các thành tố của trí thông minh và có thể được biểu diễn bằng sơ đồ như sau:
Trí thông minh = Năng lực + Thủ pháp + Trình độ chuyên môn. Thủ pháp được vận
dụng khi người ta cần giải quyết một nhiệm vụ nào đó. D.N. Perkins [105] khẳng định
thủ pháp (tactic) rất quan trọng nên cần phải xác định thuật ngữ này càng rõ càng tốt.
Và ông cho rằng thuật ngữ thủ pháp (tactic) thông thường được hiểu rất mơ hồ và có
nghĩa hẹp ở những phạm vi nhất định khuyến khích việc giới thiệu một suy nghĩ mới
và thuật ngữ này được cải thiện hơn, được định nghĩa là cách hướng dẫn quy trình tổ
chức và hỗ trợ quá trình suy nghĩ. Ông cho rằng các phương pháp để nâng cao tư duy
phụ thuộc phần lớn vào bài tập để nâng cao tư duy, tìm kiếm cách dạy các thủ pháp và
nội dung để nâng cao tư duy. Khi được dạy những thủ pháp, chiến lược để thực hiện
một nhiệm vụ, một người có trí tuệ phát triển chậm làm được gần như một người bình
thường. Việc hướng dẫn tỉ mỉ đối với những thủ pháp được lựa chọn kỹ lưỡng có thể
nâng cao đáng kể hiệu quả. Cơ hội tốt nhất đối với giáo dục là trang bị kiến thức có
5
tính thủ pháp cho HS. Như vậy, thủ pháp hỗ trợ, nâng cao hiệu quả tư duy va mang lại
lợi ích về sự phát triển trí tuệ.
TPHĐNT được các nhà Tâm lý học Xô viết nghiên cứu và phát triển, ứng dụng
trong Tâm lý học và được các nhà Sư phạm Liên bang Nga vận dụng và phát triển
trong giáo dục học các bộ môn trong đó bộ môn toán có Itova Irina. Itova Irina [118]
cho rằng trong hoạt động học tập của HS gồm: sự hình thành kiến thức và quá trình
hình thành thủ pháp làm việc với các tài liệu học tập. Itova Irina khẳng định rằng:
“TPHĐNT là những cách thức mà người học dùng để thực hiện (thủ pháp trừu tượng,
tổng hợp,…) và là những cái mà có thể được thể hiện trong một loạt hành động”.
TPHĐNT thường có tính hướng dẫn hoặc quy định, khuyến cáo chỉ ra cách làm thế
nào để tiến hành hoạt động nhận thức, quy trình nào cần có trong việc giải quyết một
số các nhiệm vụ cụ thể. Việc nắm vững một thủ pháp thể hiện ở chỗ sử dụng thủ pháp
một cách có ý thức khi giải quyết những nhiệm vụ mới. Trong nghiên cứu về những
yêu cầu của giáo dục trong việc phát triển hoạt động nhận thức, cũng như trong việc
phát triển trí tuệ của HS, bà cho rằng: Mục đích chính của hoạt động nhận thức của HS
là nắm bắt kiến thức; Để dạy trẻ em học một cách thông minh cần hình thành cách
thức suy nghĩ hợp lý hay các thủ pháp, nó trở thành “công cụ" độc lập chiếm lĩnh tài
liệu học tập. TPHĐNT nên được dạy cho HS bởi vì nó giúp HS tiếp thu đầy đủ được
nội dung học tập.
L.M.Phơritman, E.N.Turetxki, V.Ia.Xtetxencô (DT [46]) cho rằng khi tìm kiếm
lời giải các bài toán, nếu bài toán là không chuẩn thì hành động theo hai hướng: Tách
từ bài toán ra hoặc chia nhỏ nó ra thành những bài toán nhỏ dạng chuẩn (thủ pháp chia
nhỏ); Diễn đạt bài toán theo một cách khác, dẫn đến một bài toán dạng chuẩn (thủ
pháp mô hình hóa); Việc dẫn một bài toán dạng không chuẩn đến một bài toán dạng
chuẩn bằng các thủ pháp chia nhỏ hoặc mô hình hóa là một nghệ thuật, mà chỉ có thể
lĩnh hội được trong kết quả của sự phân tích sâu sắc thường xuyên các hành động giải
toán và thường xuyên luyện tập giải các bài toán khác nhau. Xét từ một phương diện
nào đó có thể xem thủ pháp có tính “nghệ thuật” nghĩa là nó đòi hỏi sự linh hoạt, sự tài
tình và sự khéo léo riêng của người sử dụng và kết quả đạt được mang tính đặc biệt,
độc đáo.
- Về đặc điểm của dạy học môn Toán
6
Toán học được hình thành là kết quả của sự suy diễn có hệ thống và là kết quả
của sự tìm tòi, sáng tạo thông qua thực nghiệm và quy nạp. Toán học trong quá trình
hình thành và phát triển, có quá trình tìm tòi phát minh, có cả thực nghiệm và quy nạp.
Phương pháp toán học là sự thống nhất giữa suy đoán và suy diễn. Descartes (DT [66])
đã thử tự mình tìm các phát minh tài tình mà không đọc công trình trình bày phát minh
đó và thấy các phát minh đều theo những quy tắc nhất định. Như vậy, nếu HS nắm
được các “quy tắc” tài tình của các phát minh các em có thể thực hiện hiệu quả hoạt
động nhận thức Toán học. Đặc điểm môn Toán ở trường THPT cũng không nằm ngoài
đặc điểm của Toán học. Khi dạy học các tình huống Toán học điển hình, GV cần chú ý
cho HS nhìn thấy các kiến thức trong quá trình hình thành phát triển và phát sinh.
Trong dạy học toán, cần trang bị cho HS các tri thức phương pháp, đặc biệt là các tri
thức phương pháp có tính chất tìm đoán. Tùy thuộc vào tình huống dạy học, mà GV có
thể trang bị cho HS các cách thức tìm hiểu, biến đổi linh hoạt phù hợp với từng tình
huống cụ thể để lĩnh hội khái niệm, định lý, tính chất và giải bài tập toán. Những cách
thức biến đổi linh hoạt, tài tình hay những “quy tắc” tài tình giúp cho hoạt động nhận
thức đạt hiệu quả cao gọi là các TPHĐNT.
- Về tư tưởng sư phạm của Pôlya
Shuard (DT [2]) khẳng định “mối quan tâm lớn nhất hiện nay về thủ pháp là
xuất phát từ công trình của Polya về GQVĐ toán học”. Công trình nghiên cứu của
Pôlya là một công trình nghiên cứu Ơritxtic, thể hiện mong muốn tìm cách lôi HS vào
giải toán, thôi thúc HS suy nghĩ về các phương pháp, cách thức sử dụng và dạy cho HS
cách suy nghĩ có tính chất cơ động, linh hoạt, không theo một khuôn mẫu cứng nhắc.
Pôlya cho rằng: nhà trường không chỉ cung cấp cho HS các kiến thức toán học mà còn
phải rèn luyện cho họ kĩ năng vận dụng, tính độc lập, sự độc đáo và khả năng sáng tạo
[64]. Cuốn sách “Giải một bài toán như thế nào” thể hiện phương pháp dạy học giải
toán thông qua bảng hệ thống các câu hỏi và lời khuyên để phát triển các kĩ năng
Ơritxtic cho HS. Pôlya khẳng định phương pháp đưa đến lời giải các bài toán nói
chung là phức tạp và có nhiều khía cạnh khác nhau. Khi giải một bài toán, ta lần lượt
xét các khía cạnh của nó, lật đi lật lại vấn đề trong trí óc, cần thiết phải biến đổi bài
toán. Biến đổi bài toán bằng cách phân chia hoặc tổ hợp lại các yếu tố của bài toán,
cũng có thể sử dụng các phương tiện của phép tổng quát hóa, phép tương tự, ... Để
phân chia, tổ hợp bài toán cần phải có sự khéo léo để đạt hiệu quả.
7
*) Nghiên cứu trong nước
- Về nghĩa của cụm từ “thủ pháp” và cách dùng trong tiếng Việt
Theo đại từ điển Tiếng Việt: “Thủ pháp là cách thức tiến hành việc gì, thực
hiện ý định nào. Thủ pháp làm việc phải kết hợp nhiều thủ pháp khác” [98]. Theo [119]
đặt khái niệm thủ pháp dạy học trong mối quan hệ với phương pháp dạy học: “Phương
pháp dạy học là những cách thức làm việc giữa thầy giáo và HS, nhờ đó mà HS nắm
vững được kiến thức, kĩ năng, kĩ xảo, hình thành được thế giới quan và năng lực. Thủ
pháp dạy học là cách thức giải quyết một vấn đề cụ thể nào đó thuộc một phương
pháp nhất định hay nói khác đi, thủ pháp chính là thao tác bộ phận của một phương
pháp”. Nếu phương pháp chú ý tới cả quá trình thì thủ pháp là việc chú ý chủ yếu tới
một thời điểm nhất định nào đấy trong quá trình đó. Trong văn học, các nhà văn
thường sử dụng các hình ảnh, từ ngữ, các lối ví von,… một cách khéo léo, tài tình để
đạt được dụng ý nghệ thuật, các cách thức sử dụng đó gọi chung là thủ pháp nghệ
thuật (như so sánh, ẩn dụ, hoán dụ, nhân hóa, thậm xưng, …). Việc sử dụng thủ pháp
nghệ thuật ghi dấu ấn cá nhân của từng nhà văn. Như vậy, từ nghĩa của từ “thủ pháp”
trong tiếng Việt và cách sử dụng từ “thủ pháp” trong các tình huống của tiếng Việt, có
thể thấy rằng thủ pháp là cách thức thực hiện có tính chất khéo léo, độc đáo và khác
biệt với cái thông thường để thực hiện một nhiệm vụ cụ thể.
- Về thủ pháp hoạt động nhận thức trong dạy học toán:
Có một số nghiên cứu đề cập đến TPHĐNT, trong đó đáng chú ý là kết quả
nghiên cứu của Trần Luận. Trần Luận [46] đưa ra một hướng dạy học sáng tạo thông
qua việc trang bị các TPHĐNT cho HS. Ông liệt kê ra tên gọi một số thủ pháp nhưng
không đưa ra khái niệm thủ pháp. Ông chỉ ra một số thủ pháp quan trọng như thủ pháp
phân chia các dấu hiệu cơ bản và không cơ bản của khái niệm, thủ pháp xem xét đối
tượng dưới nhiều góc độ khác nhau (cùng là một đoạn thẳng trong một tam giác cân có
thể được xem như là đường cao, như là đường phân giác hoặc trung tuyến), thủ pháp
tạo lập hình ảnh ghi nhớ hoặc tưởng tượng (khác với khái niệm các hình ảnh biểu thị
cái mà HS hình dung trong đầu). Ông cho rằng thông qua việc bồi dưỡng cho HS mà
phát triển năng lực trí tuệ của HS. Ông khẳng định “các thủ pháp cần thiết cho việc
độc lập giải quyết các nhiệm vụ và lĩnh hội các kiến thức”. Các thủ pháp đóng vai trò
chính yếu trong sự phát triển trí tuệ của HS. Tác giả nhận định rằng để HS lĩnh hội tốt
đẹp các tri thức, họ cần phải lĩnh hội các thủ pháp.
8
Như vậy, từ một số nghiên cứu về TPHĐNT cho thấy khi được trang bị
TPHĐNT thì việc nắm bắt vấn đề hiệu quả hơn; TPHĐNT được vận dụng trong quá
trình GQVĐ; TPHĐNT là một công cụ hiệu quả để đưa khái niệm, tri thức và kĩ năng
vào GQVĐ; HS không chỉ cần phải “học” về TPHĐNT mà cần có khả năng chọn xem
TPHĐNT nào là thích hợp nhất trong từng thời điểm của quá trình GQVĐ. Nghiên
cứu về trang bị TPHĐNT để bồi dưỡng năng lực GQVĐ là vấn đề cần thiết.
2.2 Một số nghiên cứu về bồi dưỡng năng lực giải quyết vấn đề và về dạy học
giải tích ở trường Trung học Phổ thông
- Trong những năm gần đây, ở nước ta có một số nghiên cứu [96], [91], [94], [99],
về dạy học toán theo hướng bồi dưỡng năng lực GQVĐ ở trường THPT, cụ thể:
Luận án tiến sĩ của Nguyễn Anh Tuấn (2002), với đề tài “Bồi dưỡng năng lực
phát hiện và GQVĐ cho HS THCS trong dạy học khái niệm toán học (thể hiện qua một
số khái niệm mở đầu đại số ở THCS)” [96], trên quan điểm hoạt động dạy học gồm hai
hoạt động phát hiện vấn đề và GQVĐ, có thể xem năng lực phát hiện và GQVĐ gồm nhóm
năng lực phát hiện vấn đề và nhóm năng lực GQVĐ, xác định quy trình dạy khái niệm mở
đầu đại số để bồi dưỡng năng lực phát hiện và GQVĐ.
Luận án tiến sĩ của Nguyễn Thị Hương Trang (2002), với đề tài “Rèn luyện năng
lực giải toán theo hướng phát hiện và GQVĐ một cách sáng tạo cho HS khá giỏi
trường Trung học phổ thông” [91], đã xây dựng một tiến trình giải toán, nhằm rèn luyện
năng lực giải toán cho HS khá giỏi theo hướng phát hiện và GQVĐ một cách sáng tạo.
Luận án tiến sĩ của Từ Đức Thảo (2012), với đề tài “Bồi dưỡng năng lực phát
hiện và GQVĐ cho HS Trung học phổ thông thông qua dạy học hình học” [94], xem
năng lực phát hiện và GQVĐ trong dạy học hình học gồm năng lực phát hiện vấn đề trong
học hình học và năng lực GQVĐ trong học hình học, đưa ra các biện pháp bồi dưỡng các
thành tố của năng lực phát hiện và GQVĐ.
Luận án tiến sĩ của Phan Anh Tài (2015), với đề tài“Đánh giá năng lực GQVĐ
của HS trong dạy học toán lớp 11 trung học phổ thông” [81], cho rằng năng lực
GQVĐ có bốn thành tố (năng lực hiểu vấn đề, năng lực phát hiện và triển khai giải
pháp GQVĐ, năng lực trình bày giải pháp GQVĐ, năng lực phát hiện giải pháp khác
GQVĐ, phát hiện vấn đề mới).
- Ở nước ta đã có một số nghiên cứu về dạy học giải tích, dạy học khái niệm
giải tích, dạy học hàm số liên tục, cụ thể:
9
Luận án tiến sĩ của Nguyễn Mạnh Chung (2001) với đề tài “Nâng cao hiệu quả
dạy học khái niệm toán học bằng các biện pháp sư phạm theo hướng tích cực hóa hoạt
động nhận thức của học sinh (thông qua dạy học các khái niệm “hàm số” và “giới
hạn” cho học sinh trường trung học phổ thông” [9], đã đưa ra quy trình dạy học khái
niệm “hàm số” và “giới hạn”.
Luận án tiến sĩ của Nguyễn Phú Lộc (2006) với đề tài “Nâng cao hiệu quả dạy
học môn Giải tích trong nhà trường trung học phổ thông theo hướng tiếp cận một số
vấn đề của phương pháp luận toán học” [42], nghiên cứu áp dụng cơ sở nguyên lí về
mối liên hệ phổ biến của phép biện chứng duy vật, phạm trù cái riêng - cái chung,
phương pháp phân tích và phép tương tự vào xây dựng các mô hình dạy học giải tích.
Luận án tiến sĩ của Phạm Sĩ Nam (2013), “Nâng cao hiệu quả dạy học một số
khái niệm giải tích cho học sinh trung học phổ thông chuyên Toán trên cơ sở vận dụng
lí thuyết kiến tạo” [55], đưa ra quy trình dạy học khái niệm giải tích cho học sinh
THPT chuyên toán trên cơ sở vận dụng lí thuyết kiến tạo.
Luận án tiến sĩ của Trần Anh Dũng (2013), “Dạy học hàm số liên tục ở trường
trung học phổ thông” [16], là một nghiên cứu chuyên biệt về hàm liên tục trên nền
tảng một số công cụ lý thuyết Didactic trong sự kết nối với quan điểm của lí thuyết
kiến tạo.
Nhìn chung, các công trình nghiên cứu: Về GQVĐ đã tập trung vào mô tả các
thành tố của năng lực phát hiện và GQVĐ nhằm bồi dưỡng cho HS; Về giải tích khai
thác về quy trình dạy học khái niệm giải tích, mô hình dạy học giải tích; Chưa có một
công trình nào đề cập đến dạy học giải tích theo hướng tiếp cận năng lực GQVĐ thông
qua trang bị TPHĐNT ở THPT.
Như vậy, dạy học theo định hướng hình thành và phát triển năng lực là xu
hướng trong giáo dục Việt Nam hiện nay. Đã có các nghiên cứu thực sự ý nghĩa về dạy
học toán nói chung, dạy học đại số, dạy học hình học nói riêng theo hướng bồi dưỡng
năng lực GQVĐ ở trường THPT. Giải tích là một môn học khó đối với HS, quan trọng
và có nhiều ứng dụng, cũng đã có các công trình nghiên cứu dạy học giải tích ở trường
THPT, nhưng chưa có nghiên cứu về dạy học giải tích theo định hướng phát triển năng
lực GQVĐ. TPHĐNT được sử dụng trong GQVĐ. Vấn đề nghiên cứu về dạy học giải
tích theo hướng tiếp cận năng lực giải quyết vấn đề thông qua trang bị một số
10
TPHĐNT vẫn còn bỏ ngỏ, chưa có một công trình nào đề cập đến, vì vậy luận án sẽ đi
nghiên cứu vấn đề này.
3. Mục đích nghiên cứu
Nghiên cứu đề xuất các biện pháp trang bị một số TPHĐNT cho HS trong dạy
học cho HS nhằm bồi dưỡng năng lực GQVĐ và góp phần nâng cao hiệu quả dạy học
môn Giải tích trong nhà trường THPT.
4. Khách thể, đối tượng nghiên cứu, phạm vi nghiên cứu
3.1 Khách thể nghiên cứu: Hoạt động dạy học môn giải tích ở trường THPT.
3.2 Đối tượng nghiên cứu: Một số TPHĐNT trong dạy học toán giải tích để
bồi dưỡng năng lực GQVĐ cho HS THPT.
3.3 Phạm vi nghiên cứu: Nội dung giải tích trong chương trình và sách giáo
khoa THPT.
5. Giả thuyết khoa học
Nếu xác định và trang bị được một số TPHĐNT phù hợp cho HS trong dạy học
giải tích thì sẽ bồi dưỡng được năng lực GQVĐ và góp phần nâng cao chất lượng học
tập môn giải tích cho HS
6. Nhiệm vụ nghiên cứu
Luận án có nhiệm vụ nghiên cứu các vấn đề sau:
- Làm rõ hoạt động giải quyết vấn đề trong toán học; Làm rõ khái niệm năng
lực GQVĐ; Các thành tố của năng lực GQVĐ; Mối quan hệ giữa hoạt động giải quyết
vấn đề và năng lực giải quyết vấn đề.
- Tổng hợp một số nghiên cứu liên quan đến thủ pháp; Đề xuất quan niệm về
TPHĐNT toán học; Đề xuất một số TPHĐNT toán học cụ thể cần trang bị cho HS.
- Nghiên cứu về nội dung và chương trình môn toán nói chung và giải tích nói
riêng ở THPT.
- Nghiên cứu về thực trạng dạy học giải tích theo hướng trang bị một số
TPHĐNT cho HS ở THPT.
- Đề xuất các biện pháp sư phạm dạy học giải tích theo hướng bồi dưỡng năng
lực GQVĐ cho HS thông qua trang bị một số TPHĐNT.
- Thực nghiệm sư phạm để bước đầu kiểm tra tính khả thi và tính hiệu quả của
các biện pháp sư phạm luận án đề xuất.
11
7. Phương pháp nghiên cứu
6.1. Phương pháp nghiên cứu lý luận:
Nghiên cứu các tài liệu về tâm lí học, giáo dục học và lí luận dạy học bộ môn
toán có liên quan đến đề tài; Nghiên cứu chương trình, sách giáo khoa môn toán ở
trường THPT; Nghiên cứu các tài liệu tham khảo về nội dung toán ở trường THPT.
6.2. Phương pháp điều tra và quan sát:
Sử dụng phiếu điều tra để tìm hiểu về mức độ hiểu biết và sự quan tâm của GV
THPT tới việc trang bị một số TPHĐNT cho HS. Trao đổi với các chuyên gia, GV phổ
thông và dự một số giờ dạy ở trường THPT để tìm hiểu thực tế về việc dạy học giải
tích theo hướng trang bị TPHĐNT cho HS THPT.
6.3. Phương pháp thực nghiệm sư phạm:
Tổ chức thực nghiệm sư phạm để xem xét tính khả thi và tính hiệu quả của các
biện pháp sư phạm được đề xuất. Đánh giá kết quả bằng phương pháp thống kê toán
học trong khoa học giáo dục.
6.4. Phương pháp thống kê toán học trong khoa học giáo dục
Phân tích định lượng các kết quả thực nghiệm, làm cơ sở để minh chứng cho
tính hiệu quả của đề tài.
6.5. Phương pháp chuyên gia
Xin ý kiến chuyên gia nhằm làm sáng tỏ về mục đích trang bị TPHĐNT và tính
đúng đắn của các biện pháp sư phạm dạy học giải tích theo hướng bồi dưỡng năng lực
GQVĐ thông qua trang bị một số TPHĐNT.
8. Những đóng góp mới của luận án
8.1. Về mặt lí luận
- Làm rõ những vấn đề về năng lực GQVĐ và các thành tố của năng lực GQVĐ.
- Góp phần làm sáng tỏ quan niệm về TPHĐNT toán học, một số TPHĐNT cụ
thể trong giải tích. Làm rõ ý tưởng trang bị TPHĐNT và những tình huống sử dụng
TPHĐNT.
- Làm rõ đặc điểm của nội dung giải tích ở THPT, cơ hội hình thành và phát
triển năng lực GQVĐ qua dạy học giải tích, mối quan hệ giữa trang bị TPHĐNT và
năng lực GQVĐ trong dạy học giải tích.
- Đề xuất các biện pháp sư phạm làm sáng tỏ cách dạy học nội dung giải tích
theo hướng bồi dưỡng năng lực GQVĐ thông qua trang bị một số TPHĐNT.
12
8.2. Về mặt thực tiễn
- Chỉ ra một số hạn chế trong dạy học giải tích do GV chưa chú ý đến trang bị
một số TPHĐNT.
- Đưa ra các hướng dẫn sư phạm cụ thể cho việc trang bị một số TPHĐNT
trong dạy học nội dung Giải tích. Cung cấp tài liệu tham khảo cho GV, góp phần nâng
cao hiệu quả dạy học môn Toán ở trường THPT.
- Góp phần đổi mới phương pháp dạy học môn Toán, chứng minh cho tính khả
thi của dạy học Giải tích theo hướng bồi dưỡng năng lực GQVĐ thông qua trang bị
một số TPHĐNT.
9. Nội dung đưa ra bảo vệ
- Quan niệm về TPHĐNT, ý nghĩa của TPHĐNT, vai trò của TPHĐNT, tình
huống sử dụng TPHĐNT, một số TPHĐNT cụ thể.
- Trang bị TPHĐNT toán học có vai trò quan trọng trong dạy học giải tích ở
trường THPT. Cơ hội hình thành và phát triển năng lực GQVĐ qua dạy học giải tích,
mối quan hệ giữa trang bị TPHĐNT và năng lực GQVĐ trong dạy học giải tích.
- Quá trình trang bị TPHĐNT đã bồi dưỡng được các thành tố của năng lực
GQVĐ thông qua các tình huống cụ thể như học khái niệm, học định lý, học quy tắc,
học phương pháp và vận dụng kiến thức giải tích, đồng thời quan tâm hợp lí đến việc
nâng cao hiệu quả dạy học giải tích.
- Các biện pháp sư phạm dạy học giải tích theo hướng bồi dưỡng năng lực
GQVĐ thông qua trang bị một số TPHĐNT là khả thi và hiệu quả.
10. Cấu trúc của luận án
Luận án gồm phần Mở đầu, Kết luận và 3 chương:
Chương 1. Cơ sở lý luận và thực tiễn
Chương 2. Một số biện pháp dạy học Giải tích ở trường THPT theo hướng bồi
dưỡng năng lực giải quyết vấn đề thông qua trang bị một số thủ pháp hoạt động nhận
thức
Chương 3. Thực nghiệm sư phạm
13
Chương 1. CƠ SỞ LÝ LUẬN VÀ THỰC TIỄN
1.1 Về năng lực giải quyết vấn đề
1.1.1 Dạy học giải quyết vấn đề
Ở Việt Nam, có nhiều công trình nghiên cứu về dạy học GQVĐ, như của Nguyễn
Bá Kim - Vũ Dương Thụy [37], Nguyễn Hữu Châu [6], Bùi Văn Nghị [58], Nguyễn Văn
Cường [11], … Nguyễn Bá Kim, Vũ Dương Thụy [37] cho rằng trong dạy học GQVĐ,
thầy giáo tạo ra những tình huống gợi vấn đề, điều khiển HS phát hiện vấn đề, hoạt động tự
giác và tích cực để GQVĐ và thông qua đó mà lĩnh hội tri thức, rèn luyện kĩ năng và đạt
được những mục đích học tập khác. Trong dạy học GQVĐ cần phải làm rõ các khái niệm:
Vấn đề, tình huống gợi vấn đề và dạy học GQVĐ.
1.1.1.1. Vấn đề trong dạy học toán
Các nhà nghiên cứu Polya [109], Schoenfeld (DT [102]), Reys (DT [2]),
Fanghaenel (DT [91]), Stoliar (DT [91]), Nguyễn Bá Kim [36], Nguyễn Văn Cường
[11], Phan Anh Tài [81],... đã đề cập đến các thuật ngữ “vấn đề”, “bài toán” và có
nhiều định nghĩa khác nhau.
Nguyễn Bá Kim [36] cho rằng: “Một bài toán được gọi là một vấn đề nếu chủ
thể chưa biết một thuật giải nào có thể áp dụng để tìm ra phần tử chưa biết của bài
toán”. Polya [64] cho rằng: “Bài toán đặt ra sự cần thiết phải tìm kiếm một cách ý thức
phương tiện thích hợp để đạt tới một mục đích trông thấy rõ ràng nhưng không thể đạt
được ngay” và giải bài toán tức là tìm ra phương tiện đó. Từ những quan niệm này cho
thấy, bài toán là: Một yêu cầu đặt ra cho chủ thể; Chủ thể chưa có trong tay cách giải;
Chủ thể nhận thức được sự cần thiết, ý nghĩa của nó và mong muốn tìm ra cách giải
quyết; Chủ thể tích cực suy nghĩ tìm kiếm phương tiện giải quyết nó.
Nguyễn Văn Cường [11] khẳng định: “Vấn đề là những câu hỏi hay nhiệm vụ
đặt ra mà việc giải quyết chúng chưa có quy luật sẵn cũng như những tri thức, kỹ năng
sẵn có chưa đủ giải quyết mà còn khó khăn, cản trở cần vượt qua” và ông nêu ra ba
thành phần đặc trưng một vấn đề là “Trạng thái xuất phát: không mong muốn; Trạng
thái đích: trạng thái mong muốn; Sự cản trở”. Ông phân biệt vấn đề khác với nhiệm vụ
thông thường ở chỗ khi giải quyết một nhiệm vụ thì đã có sẵn trình tự và cách thức
giải quyết, cũng như những kiến thức kỹ năng đã có đủ để giải quyết nhiệm vụ đó.
Một số nhà nghiên cứu [2] cho rằng: Một vấn đề có liên quan đến một tình
huống, trong đó người ta muốn đạt một cái gì đó và ngay lúc đó không biết cần phải
14
làm gì để có được nó. Điều này có nghĩa, vấn đề được đặt vào một “tình huống” mà
người GQVĐ “không biết phải làm gì” nghĩa là với những kiến thức hiện có chưa thể
giải quyết được hay chưa có sẵn câu trả lời, nhưng người GQVĐ lại “muốn” nghĩa là
vấn đề thực sự thu hút, lôi cuốn và người GQVĐ thực sự có nguyện vọng, có tham
vọng “đạt một cái gì” nghĩa là tìm được một giải pháp. Như vậy, vấn đề được đề cập
đến ở đây có đặc điểm: Chưa có sẵn câu trả lời; Có mong muốn tìm giải pháp.
Phan Anh Tài [81] quan niệm: “Vấn đề trong dạy học toán THPT là bài toán
(theo nghĩa rộng) đặt ra cho người học, mà tại thời điểm đó người học chưa biết
lời giải và thỏa mãn các điều kiện: i) Bài toán chưa có một thuật giải đã biết để giải
nó. ii) Người học có sẵn những kiến thức, kĩ năng sử dụng thích hợp và có nhu cầu
giải quyết”. Quan niệm này chỉ ra vấn đề có 3 đặc điểm: Bài toán chưa có thuật giải,
HS có đủ kiến thức kĩ năng cần thiết để giải và có mong muốn giải quyết. Như vậy,
một bài toán đặt ra nếu đã có thuật giải, đã biết cách giải thì không được gọi là vấn đề;
một bài toán đặt ra nếu HS chưa có sẵn một cách giải quyết và các kiến thức kĩ năng
hiện có của HS không đủ để giải quyết bài toán này thì cũng không gọi là vấn đề; một
bài toán đặt ra mà HS chưa có thuật giải và có đủ kiến thức kĩ năng để giải nhưng bản
thân HS không muốn giải quyết thì cũng không phải là vấn đề.
Như vậy, vấn đề mang tính chất tương đối, cùng một bài toán có thể đối với HS
này là vấn đề nhưng HS khác lại không là vấn đề và trong tình huống này là vấn đề
trong tình huống khác lại không là vấn đề. Vấn đề trong toán học, gồm: Vấn đề thuần
túy toán học; Vấn đề ứng dụng. Các vấn đề khác nhau được giải quyết theo nhiều cách
khác nhau. Ở nội dung toán THPT, vấn đề xuất hiện trong tất cả các tình huống dạy
học điển hình: dạy học khái niệm, dạy học định lý, dạy học quy tắc phương pháp, dạy
học giải bài tập dưới dạng những câu hỏi xây dựng khái niệm, câu hỏi chỉ ra thuộc tính
đặc trưng của khái niệm, yêu cầu thực hiện thao tác để phát hiện ra định lý và tính chất,
bài toán có thuật toán, bài toán chưa có thuật giải, bài toán tìm tòi, bài toán chứng
minh...
Từ phân tích các quan niệm về “bài toán” và “vấn đề”, trong luận án quan niệm:
Bài toán trong dạy học toán THPT là một yêu cầu đặt ra, HS nhận thức được
sự cần thiết, mong muốn và tích cực suy nghĩ tìm cách thức để giải quyết.
Vấn đề trong dạy học toán THPT là một bài toán mà HS chưa biết cách giải
quyết nhưng có đủ kiến thức và kĩ năng cần thiết để giải quyết.
15
1.1.1.2 Tình huống gợi vấn đề
Trong dạy học GQVĐ ta quan tâm đến tình huống có vấn đề (tình huống vấn đề),
theo Nguyễn Bá Kim [36]: “Tình huống gợi vấn đề là một tình huống gợi ra cho HS
những khó khăn về lí luận hay thực tiễn mà họ thấy cần thiết và có khả năng vượt qua,
nhưng không phải ngay tức khắc nhờ một quy tắc có tính chất thuật toán, mà phải trải qua
một quá trình tích cực suy nghĩ, hoạt động để biến đổi đối tượng hoạt động hoặc điều chỉnh
kiến thức sẵn có” .
Trần Kiều [34] cho rằng: Tình huống có vấn đề là những lúng túng về lý thuyết và
thực hành để GQVĐ, tức là vào thời điểm đó vào tình huống đó thì những kiến thức và kĩ
năng vốn có chưa đủ để tìm ra ngay lời giải; Tình huống có vấn đề luôn luôn chứa đựng
một nội dung cần xác định, một nhiệm vụ cần giải quyết, một vướng mắc cần tháo gỡ, và
kết quả của việc nghiên cứu và giải quyết sẽ là những tri thức mới, nhận thức mới, hoặc
phương thức hành động mới đối với chủ thể; Tình huống có vấn đề được cấu thành bởi ba
thành phần (Nhu cầu nhận thức hoặc hành động của người học; Sự tìm kiếm những tri thức
và phương thức hành động chưa biết; Khả năng trí tuệ của chủ thể, thể hiện ở năng lực và
kinh nghiệm).
Nguyễn Bá Kim [36] cho rằng tình huống gợi vấn đề phải thỏa mãn ba điều kiện:
Tồn tại một vấn đề, Gợi nhu cầu nhận thức, Gây niềm tin ở khả năng.
Từ những quan điểm trên, luận án quan niệm: Tình huống gợi vấn đề là tồn tại một
vấn đề, HS mong muốn giải quyết và HS có niềm tin là sẽ giải quyết được. Tình huống vấn
đề trong dạy học toán THPT có thể là tình huống xuất phát từ quá trình học tập của cá
nhân HS, có thể xuất phát đời sống thường ngày của HS, gia đình, cộng đồng, tình huống
khoa học mà ta dùng kiến thức toán THPT để giải quyết; việc hiểu và giải quyết các tình
huống này sẽ đạt được kiến thức, kĩ năng và phương pháp.
1.1.1.3 Dạy học giải quyết vấn đề
Dạy học GQVĐ là một quan điểm dạy học tích cực được đặc biệt chú ý. Quan
điểm dạy học này được hình thành dựa trên cơ sở nghiên cứu lý thuyết nhận thức vận
dụng vào quá trình dạy học nhằm phát triển khả năng nhận thức của HS, đặc biệt là
khả năng tư duy và năng lực GQVĐ.
Quá trình dạy học GQVĐ được tổ chức theo cấu trúc của quá trình GQVĐ và
sự tham gia của HS ở những mức độ tự lực khác nhau, ở mức độ cao nhất là tự lực
16
nhận biết và GQVĐ [11]. Dạy học GQVĐ có thể được vận dụng trong dạy học các
tình huống điển hình như: dạy học khái niệm, dạy học định lí, dạy học giải bài tập.
Nghiên cứu [36] chỉ ra ba đặc trưng của dạy học GQVĐ: HS được đặt vào một tình
huống gợi vấn đề; HS hoạt động tích cực, tận lực huy động tri thức và khả năng của mình
để GQVĐ; Mục đích dạy học không phải chỉ là làm cho HS lĩnh hội kết quả của quá trình
GQVĐ, mà còn ở chỗ làm cho họ phát triển khả năng tiến hành những quá trình như vậy,
nghĩa là HS không chỉ học kết quả của việc học mà trước hết là học bản thân việc học.
Theo Bernd Meier và Nguyễn Văn Cường [11] trong dạy học GQVĐ: HS được
đặt trong một tình huống có vấn đề, đó là tình huống chứa đựng mâu thuẫn nhận thức,
thông qua việc GQVĐ, giúp HS lĩnh hội tri thức, kỹ năng và phương pháp nhận thức.
Nguyễn Bá Kim [36] cho rằng: Trong dạy học GQVĐ, thầy giáo tạo ra những
tình huống gợi vấn đề, điều khiển HS phát hiện vấn đề, hoạt động tự giác, tích cực, chủ
động, sáng tạo để GQVĐ, thông qua đó mà kiến tạo tri thức, rèn luyện kĩ năng và đạt được
những mục tiêu học tập khác.
Như vậy, trong dạy học GQVĐ điều quan trọng nhất không phải là việc tìm
kiếm câu trả lời đúng, mà là việc làm thế nào một người đi đến được câu trả lời đúng.
GQVĐ tập trung vào quá trình chứ không phải là sản phẩm. Dạy học GQVĐ có một
mục tiêu là hình thành năng lực GQVĐ, một năng lực có vị trí quan trọng để con
người có thể thích ứng với sự phát triển của xã hội tương lai.
1.1.2 Quá trình giải quyết vấn đề
Nghiên cứu về quá trình GQVĐ có các tác giả nước ngoài như Polya [109],
Schoenfeld (DT [112]), Krulik (DT [112]), Rudnick (DT [112]), Marshall (DT [112]),
Carla Amoirudder [102], Johnson (DT [102]), Herr (DT [102]), Kysh (DT [102]),…
Trong nước có các tác giả Trần Kiều [35], Nguyễn Văn Cường [11], Nguyễn Bá Kim,
Vũ Dương Thụy [37], ….
Polya [110, tr. ix] khẳng định: “GQVĐ có nghĩa là tìm một cách thoát ra khỏi
một khó khăn, một con đường xung quanh trở ngại, đạt được mục tiêu mà không phải
là ngay lập tức có thể đạt được”. Quan niệm đầy đủ hơn có thể chấp nhận được là của
Carla Amoirudder [102] cho rằng: GQVĐ là thông qua điều tra phát hiện ra cách để
tìm một giải pháp khi không có giải pháp rõ ràng có sẵn.
Trần Kiều [34] chia quá trình GQVĐ thành ba giai đoạn: Sự xuất hiện của chính
vấn đề và những kích thích đầu tiên thúc đẩy chủ thể GQVĐ; Chủ thể nhận thức sâu
17
sắc và chấp nhận vấn đề để giải quyết; Quá trình tìm kiếm lời giải cho vấn đề đã được
chấp nhận giải quyết, lý giải, chứng minh, kiểm tra.
Nguyễn Bá Kim, Vũ Dương Thụy [37], chia quá trình GQVĐ thành ba bước:
Bước 1. Tri giác vấn đề: Tạo tình huống gợi vấn đề; Giải thích và chính xác hóa để
hiểu đúng tình huống có vấn đề; Phát biểu vấn đề và đặt mục đích GQVĐ đó.
Bước 2. GQVĐ: Phân tích vấn đề, làm rõ những mối liên hệ giữa cái đã biết và cái
phải tìm; Đề xuất và thực hiện hướng giải quyết, có thể điều chỉnh, thậm chí bác bỏ và
chuyển hướng khi cần thiết. Trình bày cách GQVĐ.
Bước 3. Kiểm tra và nghiên cứu lời giải: Kiểm tra sự đúng đắn và phù hợp thực tế
của lời giải; Kiểm tra tính hợp lí hoặc tối ưu của lời giải; Tìm hiểu những khả năng ứng
dụng kết quả; Đề xuất những vấn đề mới có liên quan nhờ xét tương tự, khái quát hóa, lật
ngược vấn đề, ... và giải quyết nếu có thể.
Nguyễn Văn Cường [11] mô tả cấu trúc của quá trình GQVĐ gồm ba bước sau:
Bước 1: Nhận biết vấn đề: Phân tích tình huống đặt ra, nhận biết được vấn đề.
Bước 2: Tìm các phương án giải quyết: Tìm các phương án khác nhau để GQVĐ, so
sánh, liên hệ với những cách GQVĐ tương tự đã biết cũng như tìm các phương án giải
quyết mới. Khi có khó khăn hoặc không tìm ra phương án giải quyết thì cần trở lại việc
nhận biết vấn đề để kiểm tra lại việc nhận biết và hiểu vấn đề.
Bước 3: Quyết định phương án giải quyết: Các phương án giải quyết đã được tìm ra
cần được phân tích, so sánh và đánh giá xem có thể thực hiện được việc GQVĐ hay không.
Nếu có nhiều phương án có thể giải quyết thì cần so sánh để xác định phương án tối ưu.
Nếu việc kiểm tra các phương án đã đề xuất đưa đến kết quả là không giải quyết được vấn
đề thì cần trở lại giai đoạn tìm kiếm phương án giải quyết. Khi đã quyết định được phương
án thích hợp, giải quyết được vấn đề tức là đã kết thúc việc GQVĐ.
Theo Bùi Văn Nghị [58], quá trình dạy học phát hiện và GQVĐ có bốn bước sau:
- Phát hiện vấn đề: Tạo tình huống có vấn đề, phát hiện những dạng nảy sinh, phát
hiện vấn đề cần giải quyết.
- Tìm giải pháp: Đề xuất các giả thuyết, lập kế hoạch GQVĐ, thực hiện kế hoạch
GQVĐ.
- Trình bày giải pháp: Khẳng định hay bác bỏ giả thuyết đã nêu.
- Nghiên cứu sâu giải pháp: Tìm hiểu những khả năng ứng dụng kết quả, đề xuất
những vấn đề mới có liên quan.
18
Có nhiều cách phân chia song cách phân chia của Pôlya là chung nhất. Pôlya
[109, tr. 5] cho rằng quá trình GQVĐ bốn giai đoạn không thể tách rời là: 1. Hiểu vấn
đề; 2. Xây dựng kế hoạch; 3. Thực hiện kế hoạch; 4. Rà soát và kiểm tra. GQVĐ
không đơn giản là thực hiện thứ tự bốn giai đoạn, ta có thể chuyển qua các giai đoạn
nếu thích hợp. Giai đoạn 1 và 2 được lặp đi lặp lại trong quá trình GQVĐ. Khi thực
hiện kế hoạch đưa ra, phải liên tục kiểm tra sự tiến triển của nó, để xác định xem việc
thực hiện kế hoạch có hướng tới giải pháp đúng không. Nếu kế hoạch đặt ra không
thành công thì phải quyết định làm gì tiếp theo.
Từ các cách phân chia trên, trong luận án quan niệm: Quá trình GQVĐ gồm
bốn bước sau:
Bước 1. Tìm hiểu và nhận biết vấn đề. Trong bước này HS tìm hiểu tổng thể
vấn đề, xác định rõ thông tin đã cho và thông tin cần tìm. Huy động các kiến thức và
thông tin mình có liên quan đến vấn đề, sử dụng các cách thăm dò để biến đổi thông
tin tìm ra các thông tin mới cần thiết.
Bước 2. Tìm giải pháp. Tổ chức và sử dụng các thông tin có được, đó chính là
sự tích hợp thông tin và các kiến thức đã có, đưa ra phán xét và quyết định sử dụng
thông tin nào, đưa ra giả thuyết về cách GQVĐ dựa trên các thông tin này.
Bước 3. Thực hiện giải pháp. Quá trình này bao gồm xác định mục tiêu của vấn
đề, lập kế hoạch cho các mục tiêu và các bước cụ thể theo giả thuyết đã đưa ra từ trước
để đưa ra được một giải pháp.
Bước 4. Nghiên cứu sâu giải pháp. Rà soát lại giải pháp đã được thực hiện và
xem xét đánh giá liệu một cách tiếp cận khác có thể phù hợp hơn, hay liệu giải pháp
như thế có đúng hay không, hay có nên xem xét lại các giả thuyết ban đầu, hay có thể
đưa ra các vấn đề mới.
Hai bước đầu là quá trình hấp thụ kiến thức và hai bước sau là quá trình ứng
dụng kiến thức.
1.1.3 Năng lực giải quyết vấn đề
1.1.3.1 Năng lực
Năng lực được nhiều nhà tâm lý học, nhà triết học, nhà giáo dục học trong và
ngoài nước quan tâm nghiên cứu. Chương trình giáo dục phổ thông ở Việt Nam sau
năm 2015 theo định hướng hình thành và phát triển năng lực. Khái niệm năng lực
được hiểu theo nhiều nghĩa khác nhau:
19
Theo quan điểm di truyền học, năng lực phụ thuộc vào yếu tố bẩm sinh của di
truyền và yếu tố môi trường sống của con người và xem nhẹ yếu tố giáo dục. Các nhà
tâm lí học Mác xit không tuyệt đối hoá vai trò của yếu tố bẩm sinh di truyền đối với
năng lực mà nhấn mạnh đến yếu tố hoạt động và học tập trong việc hình thành năng
lực. Có thể hiểu, năng lực là những đặc trưng tâm lí của cá nhân thích hợp để hoàn
thành có kết quả tốt hoạt động nào đó.
Nhấn mạnh đến tính mục đích của năng lực, Phạm Minh Hạc định nghĩa: “Năng
lực chính là một tổ hợp các đặc điểm tâm lý của một con người (còn gọi là tổ hợp
thuộc tính tâm lý của một nhân cách), tổ hợp đặc điểm này vận hành theo một mục
đích nhất định tạo ra kết quả của một hoạt động nào đấy” [22].
Xavier Roegiers nghiên cứu năng lực theo hướng tích hợp [79]: “Năng lực là sự
tích hợp các kỹ năng tác động một cách tự nhiên lên các nội dung trong một loạt tình
huống cho trước để giải quyết những vấn đề do tình huống này đặt ra”. Định nghĩa
này nêu nên ba thành phần nổi bật của năng lực: kĩ năng, nội dung và tình huống.
Bernd Meier và Nguyễn Văn Cường [11] cho rằng: “Năng lực là khả năng thực
hiện có trách nhiệm và hiệu quả các hành động, giải quyết các nhiệm vụ, vấn đề trong
những tình huống khác nhau thuộc các lĩnh vực nghề nghiệp, xã hội hay cá nhân trên
cơ sở hiểu biết, kỹ năng, kỹ xảo và kinh nghiệm cũng như sự sẵn sàng hành động”.
Theo quan niệm này năng lực là khả năng kết hợp của các yếu tố tri thức, kĩ năng, kĩ
xảo, kinh nghiệm, thái độ tích cực, tinh thần trách nhiệm để thực hiện hoàn thành các
nhiệm vụ, vấn đề trong các tình huống thuộc các lĩnh vực nghề nghiệp, xã hội và cá
nhân.
Theo OECD (DT [53]), năng lực là khả năng cá nhân đáp ứng yêu cầu phức
hợp và thực hiện thành công nhiệm vụ trong bối cảnh cụ thể. Khái niệm này hiện nay
đang được dùng để đánh giá năng lực HS của gần 70 nước trên thế giới, trong đó có
Việt Nam.
Theo Dự thảo Chương trình giáo dục tổng thể của Bộ Giáo dục và Đào tạo [4]:
“Năng lực là khả năng thực hiện thành công hoạt động trong một bối cảnh nhất định
nhờ sự huy động tổng hợp các kiến thức, kỹ năng và các thuộc tính cá nhân khác như
hứng thú, niềm tin, ý chí,...”
Từ những nghiên cứu về năng lực, luận án quan niệm năng lực của HS trong
học toán như sau: Năng lực của HS trong học toán là khả năng huy động kiến thức, kĩ
20
năng, kinh nghiệm và các phẩm chất cá nhân khác như ý chí, niềm tin… của HS đáp
ứng các yêu cầu phức hợp và thực hiện thành công các nhiệm vụ trong hoạt động học
tập toán.
Như vậy, năng lực có các đặc điểm sau:
- Năng lực là khả năng của mỗi HS, nên đặc thù tâm lí, sinh lí, yếu tố bẩm sinh
của mỗi HS và yếu tố xã hội sẽ ảnh hưởng đến năng lực của HS. Năng lực của mỗi HS
được hình thành và phát triển sẽ có sự khác biệt nhất định và phụ thuộc vào chương
trình, phương pháp, hình thức dạy học, ...
- Năng lực gắn liền với hoạt động cụ thể. Ví dụ trong lĩnh vực học tập năng lực
của HS được thể hiện thông qua việc vận dụng kiến thức, kĩ năng, kinh nghiệm, thái
độ để giải quyết các nhiệm vụ. Năng lực của mỗi HS được bộc lộ thông qua các hoạt
động nên để chứng minh năng lực của một HS trong một lĩnh vực nào đó phải xem xét
các hoạt động của HS trong lĩnh vực đó.
1.1.3.2 Năng lực toán học
Năng lực toán học là một vấn đề mà ở nhiều nước trên thế giới đều có sự quan tâm
đặc biệt cả trong lĩnh vực nghiên cứu và thực hiện, trong đó đặc biệt chú ý đến việc phát
hiện và bồi dưỡng HS có năng khiếu về Toán. Đến nay vẫn chưa có được định nghĩa
thống nhất về năng lực Toán. Theo nghiên cứu của Trần Luận [45] về cấu trúc năng lực,
khái niệm năng lực toán học được giải thích trên hai phương diện:
+ Như là năng lực sáng tạo (khoa học) - năng lực hoạt động khoa học toán học mà
hoạt động này tạo ra được những kết quả, thành tựu mới có ý nghĩa khách quan đối với
loài người, sản phẩm quý giá trong quan hệ xã hội.
+ Như là năng lực học tập - năng lực nghiên cứu (học tập, lĩnh hội) toán học (trong
trường hợp này là giáo trình toán phổ thông), lĩnh hội nhanh chóng và có kết quả cao các
kiến thức, kỹ năng tương ứng.
Trần Luận [45] đề xuất sơ đồ cấu trúc năng lực toán học của HS gồm hai nhóm:
Năng lực trí tuệ chung và năng lực toán học đặc thù. Theo ông, sơ đồ cấu trúc năng lực
toán học vừa nêu chỉ mới dừng ở nghĩa hẹp của năng lực. Trên thực tế, năng lực cần
được hiểu theo nghĩa rộng là có thể bao gồm cả nhóm thành phần trí tuệ, cảm xúc, ý
chí và thể chất.
Từ những nghiên cứu về năng lực toán học, có thể thấy:
21
- Năng lực toán học là những đặc điểm tâm lí về hoạt động trí tuệ của HS, giúp
họ nắm vững và vận dụng tương đối nhanh, dễ dàng, sâu sắc, những kiến thức, kĩ
năng, kĩ xảo trong môn Toán.
- Năng lực Toán học được hình thành, phát triển, thể hiện thông qua (và gắn
liền với) các hoạt động của HS nhằm giải quyết những nhiệm vụ học tập trong môn
Toán: xây dựng và vận dụng khái niệm, chứng minh và vận dụng định lí, giải bài
toán,…
1.1.3.3 Năng lực giải quyết vấn đề
Tiếp cận GQVĐ từ góc độ năng lực GQVĐ ở nước ngoài có Polya, Schoenfeld,
Tổ chức Pisa, Marshall… Ở trong nước Nguyễn Thị Lan Phương [63], Nguyễn Thị
Hương Trang [91], Nguyễn Anh Tuấn [96], Từ Đức Thảo [94], Phan Anh Tài [81], …
nghiên cứu dạy học phát hiện và GQVĐ được xem như là một cách tiếp cận, mà mục
tiêu của nó là hình thành cho HS năng lực GQVĐ.
Nguyễn Anh Tuấn [96], đưa ra quan niệm: “Năng lực phát hiện và GQVĐ của HS
trong học toán là một tổ hợp năng lực bao gồm các kĩ năng (thao tác tư duy và hành động)
trong hoạt động học tập nhằm phát hiện và giải quyết những nhiệm vụ của môn toán”. Và
chỉ ra hai nhóm năng lực thành tố là: Nhóm năng lực phát hiện vấn đề trong toán học và
Nhóm năng lực GQVĐ trong toán học.
Nguyễn Thị Hương Trang [91], nghiên cứu năng lực giải toán theo hướng phát hiện
và GQVĐ một cách sáng tạo, đưa ra quan niệm về năng lực phát hiện và GQVĐ: “Đó là
năng lực tập trung vào việc tìm kiếm và áp dụng chiến lược GQVĐ bằng con đường có mục
tiêu, đòi hỏi tư duy phê phán và cách tiếp cận sáng tạo để đạt kết quả”.
Từ Đức Thảo [94], nghiên cứu về năng lực phát hiện và GQVĐ, vận dụng vào
thực tiễn dạy học Hình học ở trường THPT, cho rằng: “Năng lực phát hiện và GQVĐ
của HS trong Hình học là một tổ hợp các năng lực thể hiện ở kĩ năng (thao tác tư duy
và hành động) trong hoạt động học tập nhằm giải quyết có hiệu quả những nhiệm vụ
của Hình học”
Phan Anh Tài [81], cho rằng: “Năng lực GQVĐ của HS trong học toán là tổ hợp
các năng lực được bộc lộ qua các hoạt động trong quá trình GQVĐ”.
Chương trình Đánh giá HS Quốc tế của Tổ chức Hợp tác và Phát triển Kinh tế
đưa ra khái niệm [98, tr. 22]: Năng lực GQVĐ là năng lực của một cá nhân để sử dụng
các quá trình nhận thức để đối mặt và giải quyết các bối cảnh thực tế xuyên suốt các
22
môn học ở đó còn đường tìm ra lời giải là không rõ ràng ngay tức thì và ở đó các lĩnh
vực hiểu biết hay chương trình có thể áp dụng được không chỉ nằm trong một lĩnh vực
toán, khoa học hay đọc.
Trong luận án này chúng tôi quan niệm năng lực GQVĐ trong học toán của HS
như sau: Năng lực GQVĐ của HS là khả năng huy động kiến thức, kĩ năng, kinh
nghiệm và các phẩm chất cá nhân khác của HS để thực hiện hoạt động GQVĐ khi
phải đối mặt với các vấn đề trong học toán mà ở đó con đường tìm ra lời giải không
rõ ràng ngay lập tức.
1.1.3.4 Các thành tố của năng lực giải quyết vấn đề
Tiếp cận quá trình GQVĐ trong dạy học toán, Phan Anh Tài [81] cho rằng năng
lực GQVĐ c a HS trong d y h c toán THPT đƠᏡc c u thành b i các thành t sau: Năng
l c hi u VĐ, năng l c phát hi n và tri n khai gi i pháp GQVĐ, năng l c trình bày gi i
pháp GQVĐ, năng l c phát hi n gi i pháp khác đ GQVĐ và năng l c phát hi n v n đీ
m i.
Tiếp cận theo quá trình GQVĐ, luận án quan niệm năng lực GQVĐ gồm có 4
thành tố sau:
*) Năng lực hiểu vấn đề: Là khả năng của cá nhân xác định và hiểu được vai trò
của các thông tin đưa ra, đưa ra các phán xét có cơ sở, gắn kết các thông tin và các
kiến thức đã biết. Năng lực hiểu vấn đề gồm các thành phần: năng lực nhận dạng và
phát biểu vấn đề, Năng lực xác định và giải tích thông tin (bao gồm hiểu ngôn ngữ
diễn đạt của vấn đề và toán học hóa vấn đề).
*) Năng lực tìm ra giải pháp: Là khả năng của cá nhân sử dụng các thông tin và
kiến thức đã biết để rút ra những kết luận và đưa ra những quyết định đi đến giải pháp.
Năng lực tìm giải pháp gồm các thành phần: năng lực thu thập và đánh giá thông tin
(là khả năng phân tích mối liên hệ giữa các đối tượng), năng lực xác định cách thức
GQVĐ (là khả năng định hướng kết nối các kiến thức, kĩ năng đã có với cái cần tìm).
*) Năng lực thực hiện giải pháp: Là khả năng của cá nhân sắp xếp các thông tin
và các kiến thức đã biết để triển khai giải pháp; năng lực này gồm hai thành phần là
năng lực xây dựng kế hoạch và năng lực trình bày giải pháp và điều chỉnh.
*) Năng lực nghiên cứu sâu giải pháp: Là khả năng của cá nhân xem xét, kiểm
nghiệm để đưa ra giải pháp mới và vấn đề mới trên cơ sở các thông tin có được từ
GQVĐ. Năng lực nghiên cứu sâu giải pháp gồm các thành phần: năng lực đề xuất giải
23
pháp mới, năng lực xây dựng vấn đề mới, năng lực vận dụng giải pháp vào tình huống
mới, năng lực phát triển giải pháp.
Sơ đồ sau đây mô tả các thành tố của năng lực GQVĐ:
Quá trình GQVĐ
Thành tố năng lực GQVĐ
Tìm hiểu và nhận biết vấn đề
Năng lực hiểu vấn đề
Tìm giải pháp
Năng lực tìm ra giải pháp
Thực hiện giải pháp
Năng lực thực hiện giải pháp
Nghiên cứu sâu giải pháp
Năng lực nghiên cứu sâu giải pháp
Hình 1.1 Các thành tố của năng lực GQVĐ
1.1.3.5 Mối quan hệ giữa hoạt động giải quyết vấn đề và năng lực giải quyết
vấn đề
Năng lực không mang tính chung chung, khi nói về năng lực là gắn với một
hoạt động cụ thể nào đó, chẳng hạn năng lực Toán học của hoạt động học tập hay
nghiên cứu Toán học, năng lực giảng dạy của hoạt động giảng dạy, năng lực GQVĐ
trong dạy học Toán của hoạt động GQVĐ trong dạy học Toán,... Giữa hoạt động
GQVĐ và năng lực GQVĐ có mối liên hệ chặt chẽ với nhau, năng lực GQVĐ được
thể hiện thông qua kết quả của hoạt động GQVĐ và hoạt động GQVĐ làm bộc lộ năng
lực GQVĐ. Như vậy, để hình thành và phát triển năng lực GQVĐ cần phải cho HS
được thực hiện các hoạt động GQVĐ.
1.2 Thủ pháp hoạt động nhận thức
1.2.1 Quan điểm hoạt động
Nhà tâm lý học Leonchiev (DT [61]) cho rằng: “hoạt động là một quá trình
thực hiện sự chuyển hóa lẫn nhau giữa hai cực chủ thể và khách thể”. Phạm Minh
Hạc [23] chỉ ra ba đặc điểm của hoạt động: Hoạt động có đối tượng là hoạt động luôn
nhằm tác động vào cái gì đấy, để thay đổi nó hoặc để tiếp nhận nó chuyển vào đầu óc
mình; Hoạt động có chủ thể là con người có ý thức tác động vào khách thể - đối tượng
của hoạt động, chủ thể hoạt động có thể do một hay nhiều người thực hiện; Hoạt động
có tính mục đích là tạo ra sản phẩm có liên quan trực tiếp hay gián tiếp với việc thỏa
24
mãn nhu cầu của con người và xã hội. Tính mục đích là quy luật điều khiển mọi hoạt
động.
Leonchiev (DT [61]) cho rằng đặc trưng cơ bản cấu thành hoạt động là tính đối
tượng của nó. Ông đã xác định và mô hình hóa được cấu trúc chung của một hoạt động
bất kì, gồm 6 thành tố và có mối quan hệ biện chứng với nhau.
Chủ thể
Đối tượng
Hoạt động
Động cơ
Hành động
Mục đích
Thao tác
Phương tiện
Hình 1.2 Sơ đồ cấu trúc chung của hoạt động
Cấu trúc của hoạt động là cấu trúc chức năng và sự chuyển hóa chức năng của
các thành tố của hoạt động. Đối tượng hoạt động là khách thể có đặc tính chức năng
kích thích, hướng dẫn hoạt động của chủ thể trong quá trình chiếm lĩnh nó. Về phía đối
tượng có thể là động cơ (có chức năng kích thích hoạt động của chủ thể), là mục đích
(chức năng hướng dẫn chủ thể tới đối tượng thỏa mãn nhu cầu) hoặc phương tiện
(chức năng là cơ cấu kĩ thuật của hành động, là phương thức triển khai hành động). Về
phía chủ thể, các động tác cá nhân có thể trở thành hoạt động, hành động hoặc thao
tác. Việc phát hiện ra cấu trúc chung của hoạt động và mối liên hệ biện chứng giữa các
thành tố của nó có ý nghĩa rất lớn về lý luận và thực tiễn.
1.2.2 Hoạt động nhận thức
Lênin (DT [30]) cho rằng nhận thức phát triển là do sự tác động của ba yếu tố:
trực quan sinh động, tư duy trừu tượng và thực tiễn; Mỗi yếu tố đều cần thiết và mang
lại cái mà yếu tố khác không thể đem lại được; Sự tác động lẫn nhau đó quán xuyến
toàn bộ quá trình nhận thức, trong đó yếu tố thực tiễn là cơ sở và là yếu tố quyết định;
nhận thức diễn ra theo con đường “Từ trực quan sinh động đến tư duy trừu tượng, rồi
từ tư duy trừu tượng đến thực tiễn, đó là con đường biện chứng của sự nhận thức hiện
thực khách quan”.
Tư duy là một hình thức nhận thức điển hình của con người. Theo tâm lý học
[97], tư duy là một quá trình tâm lí phản ánh những thuộc tính bản chất, những mối
liên hệ và quan hệ bên trong, có tính quy luật của sự vật và hiện tượng trong hiện thực
25
khách quan, mà trước đó ta chưa biết. Trần Thúc Trình [92] cho rằng có ba loại hình tư
duy: tư duy trực quan, tư duy trừu tượng, tư duy trực giác.
Nhận thức là hiểu được điều gì đó, tiếp thu được những kiến thức về điều nào
đó, hiểu biết những quy luật về những hiện tượng, quá trình nào đó. Con người phải
nhận thức, thông qua hoạt động nhận thức. Hoạt động học tập là một hoạt động nhận
thức đặc biệt của con người. Mà chủ thể là HS và đối tượng là tri thức, kĩ năng, kĩ xảo.
Trong học tập Toán, HS phải thực hiện các hoạt động nhận thức Toán học. Đào Tam Trần Trung [84] cho rằng: “hoạt động nhận thức toán học là quá trình tư duy dẫn tới
lĩnh hội các tri thức toán học, nắm được ý nghĩa của các tri thức đó: Xác định được
các mối liên hệ nhân quả và các mối liên hệ khác của các đối tượng toán học được
nghiên cứu (khái niệm; quan hệ; quy luật toán học…); từ đó vận dụng được tri thức
toán học giải quyết các vấn đề thực tiễn”.
Như vậy, hoạt động nhận thức toán học có đối tượng là tri thức toán học. Mục
đích là tư duy để lĩnh hội tri thức toán học, nắm được ý nghĩa của các tri thức Toán
học và vận dụng các tri thức toán học. Để nhận thức đầy đủ và sâu sắc một tri thức
Toán học nào đó, cần phải xem xét đặc điểm của tri thức đó, phải có lối tư duy phù
hợp và cách thức suy nghĩ khéo léo.
1.2.3 Tri thức phương pháp theo quan điểm hoạt động
Nguyễn Bá Kim [36] cho rằng tri thức phương pháp liên hệ với hai loại phương
pháp khác nhau về bản chất: những phương pháp về thuật giải và những phương pháp
có tính chất tìm tòi. Ông cũng khẳng định tri thức phương pháp định hướng trực tiếp
cho hoạt động và ảnh hưởng quan trọng tới việc rèn luyện kĩ năng. Ông đã chỉ ra một
số tri thức phương pháp thường gặp là:
- Những tri thức về phương pháp thực hiện những hoạt động tương ứng với
những nội dung cụ thể như cộng, trừ, nhân, chia, các số hữu tỉ, giải phương trình trùng
phương, dựng tam giác biết độ dài ba cạnh của nó,…
- Những tri thức về phương pháp thực hiện những hoạt động toán học phức hợp
như định nghĩa, chứng minh,…
- Những tri thức về phương pháp thực hiện những hoạt động trí tuệ phổ biến
trong môn Toán như hoạt động tư duy hàm, phân chia trường hợp,..
- Những tri thức về phương pháp thực hiện những hoạt động trí tuệ chung như
so sánh, khái quát hóa, trừ tượng hóa, …