Tải bản đầy đủ (.pdf) (10 trang)

Tính ổn định của phương trình volterra vi tích phân tuyến tính trên không gian banach

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (261.27 KB, 10 trang )

BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH
______________________

Nguyễn Thành Trung

TÍNH ỔN ĐỊNH CỦA PHƯƠNG TRÌNH
VOLTERRA VI TÍCH PHÂN TUYẾN
TÍNH TRÊN KHÔNG GIAN BANACH

LUẬN VĂN THẠC SỸ TOÁN HỌC

Thành phố Hồ Chí Minh – 2009


BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH
______________________

Nguyễn Thành Trung

TÍNH ỔN ĐỊNH CỦA PHƯƠNG TRÌNH
VOLTERRA VI TÍCH PHÂN TUYẾN
TÍNH TRÊN KHÔNG GIAN BANACH
Chuyên ngành : Toán Giải tích
Mã số
: 60 46 01

LUẬN VĂN THẠC SỸ TOÁN HỌC

NGƯỜI HƯỚNG DẪN KHOA HỌC:


PGS. TS. LÊ HOÀN HOÁ

Thành phố Hồ Chí Minh - 2009


LỜI CẢM ƠN

Để thực hiện thành công luận văn này tôi xin chân thành cảm ơn Quý
thầy cô thuộc hai trường Đại học Sư phạm Thành phố Hồ Chí Minh, Đại học
Khoa học Tự Nhiên đã nhiệt tình giảng dạy cho tôi trong suốt khoá học, cảm
ơn phòng Khoa học Công nghệ Sau Đại học đã tạo điều kiện thuận lợi cho tôi
trong quá trình học tập và khi thực hiện luận văn.
Tôi xin chân thành cám ơn PGS. TS Lê Hoàn Hoá đã tận tình hướng
dẫn tôi trong suốt thời gian qua, cám ơn các anh chị học viên lớp Giải tích
K17 đã động viên giúp đỡ và cho nhiều ý kiến quý báu giúp tôi hoàn thiện
luận văn này.

Tác giả luận văn
Nguyễn Thành Trung


MỤC LỤC
Trang
Trang phụ bìa
Lời cảm ơn
Mục lục
Danh mục các ký hiệu, các chữ viết tắc
MỞ ĐẦU ...................................................................................................... 1
Chương 1 : CÁC ĐỊNH NGHĨA VÀ KẾT QUẢ CHUẨN BỊ .................... 4
Chương 2 : TÍNH ỔN ĐỊNH VÀ TÍNH KHẢ TÍCH CỦA ÁNH XẠ

GIẢI ............................................................................................ 10
2.1. Định lý 2.1....................................................................................... 10
2.2. Định lý 2.2....................................................................................... 13
Chương 3 : ỔN ĐỊNH TIỆM CẬN ĐỀU VÀ NGHIỆM

-BỊ CHẶN,

NGHIỆM HẦU TUẦN HOÀN TIỆM CẬN ............................ 19
3.1. Nghiệm

-bị chặn.......................................................................... 19

3.2. Nghiệm hầu tuần hoàn tiệm cận...................................................... 22
Chương 4 : ÁP DỤNG VÀO MỘT SỐ PHƯƠNG TRÌNH VOLTERRA
VI TÍCH PHÂN TỔNG QUÁT HƠN............................................. 30
4.1. Áp dụng vào phương trình Volterra tổng quát hơn ........................ 30
4.2. Ví dụ 4.2.......................................................................................... 31
KẾT LUẬN ................................................................................................ 35
TÀI LIỆU THAM KHẢO ........................................................................ 36


DANH MỤC CÁC KÍ HIỆU VÀ CHỮ VIẾT TẮT
Trong luận văn này, chúng tôi kí hiệu
- X,

X

 không gian Banach với chuẩn

- Với J 


X

.

kí hiệu:

+ C ( J ; X ) không gian các hàm liên tục trên J, nhận giá trị trên X.

+ BC ( J ; X ) không gian con của C ( J ; X ) gồm các hàm liên tục và bị
chặn trên J. Khi đó BC ( J ; X ) là không gian Banach với chuẩn sup
J

.

- L(X) không gian Banach các ánh xạ tuyến tính bị chặn trên X với chuẩn ánh
xạ tuyến tính
- AP(

.

;X) không gian các hàm f :

 X hầu tuần hoàn.


1

MỞ ĐẦU
Trong luận văn này, chúng tôi xem xét các phương trình Volterra vi tích phân

tuyến tính:
t

(E)

du (t )
 Au (t )   B  t , s  u  s  ds, t 
dt
0

(E  )

dv(t )
 Av (t )   B  t , s  v  s  ds, t  : (; ),
dt


(P)

du (t )
 Au (t )   B  t , s  u  s  ds  p (t ), t 
dt
0

(P )

dv(t )
 Av(t )   B  t , s  v  s  ds  p (t ), t  ,
dt





: [0; ),

t

t



,

t

trong đó:
- A là phần tử sinh của nửa nhóm compact C0 các ánh xạ tuyến tính bị chặn
trên không gian Banach X
- B(t,s) ánh xạ tuyến tính bị chặn trên X thoả mãn hầu tuần hoàn theo t đều
theo s
- Trong trường hợp X là hữu hạn chiều, các tác giả trong [1], [2] đã đánh
giá được mối liên hệ giữa tính ổn định của phương trình Volterra vi tích phân
và phương trình giới hạn. Trong đó, nổi bật là tính ổn định tiệm cận đều và sự
khả tích của ánh xạ giải (resolvent operator), ứng dụng để chỉ ra sự tồn tại của
nghiệm bị chặn của phương trình không thuần nhất.
- Trong khuôn khổ của luận văn này, chúng tôi mở rộng nhiều kết quả
trong [1], [2] cho trường hợp X là vô hạn chiều. Nếu theo con đường trong
[1], [2] khi X vô hạn chiều, chúng ta sẽ gặp nhiều khó khăn, ví dụ như đánh
giá tính khả tích của ánh xạ giải.



2

- Để giải quyết khó khăn trên, chúng tôi đưa ra những tính chất yếu hơn
cho ánh xạ giải (định lý 2.1). Thật vậy, khi (E) là phương trình chập, nghĩa là
B (t , s )  B(t  s ) , tính chất yếu cho ta tính khả tích của ánh xạ giải, kết quả là
chúng ta có thể đánh giá tính ổn đinh tiệm cận đều của (E) bằng tính khả tích
của ánh xạ giải, cũng như bằng tính khả nghịch của ánh xạ đặc trưng (định lý
2.2). Do vậy, định lý 2.2 là sự tổng quát hoá các kết quả cho trường hợp X vô
hạn chiều.
Cuối cùng, bằng cách sử dụng tiêu chuẩn yếu của ánh xạ giải, chúng tôi đi
đến những kết quả như sự tồn tại của nghiệm hầu tuần hoàn tiệm cận của
phương trình không thuần nhất với phần tuần hoàn tiệm cận (định lý 3.2.4),
và các kết quả về phổ Borh của phần hầu tuần hoàn của nghiệm hầu tuần hoàn
tiệm cận (định lý 3.2.7).
Các kết quả được trình bày trong luận văn này được tham khảo chủ yếu từ
các bài báo, các công trình nghiên cứu của Hino, Y. và Murakami.
Luận văn được chia làm các chương sau:
Chương 1: CÁC ĐỊNH NGHĨA VÀ KẾT QUẢ CHUẨN BỊ

Trong chương này, chúng tôi trình bày các định nghĩa, các kết quả sơ bộ:
mệnh đề và định lý phục vụ cho các chứng minh trong các chương sau.
Chương 2: TÍNH ỔN ĐỊNH VÀ TÍNH KHẢ TÍCH CỦA ÁNH XẠ
GIẢI

Chương này chúng tôi trình bày điều kiện cần và đủ để nghiệm không của
(E) là ổn định (định lý 2.1), liên hệ giữa tính ổn định của nghiệm không của
(E) và tính khả tích của ánh xạ giải R(t, s) (định lý 2.2)
Chương 3: ỔN ĐỊNH TIỆM CẬN ĐỀU VÀ NGHIỆM


-BỊ CHẶN,

NGHIỆM HẦU TUẦN HOÀN TIỆM CẬN

Trong chương này, với giả thiết (E) ổn định tiệm cận đều, chúng tôi đi đến
các kết quả như: Tính duy nhất của nghiệm

-bị chặn của (P ) (định lý


3

3.1.1), công thức nghiệm

-bị chặn của (P ) (định lý 3.1.2). Ngoài ra, khi

đưa ra khái niệm hầu tuần hoàn tiệm cận và khái niệm về phổ Borh, chúng tôi
đi đến kết quả về sự tồn tại duy nhất nghiệm

-bị chặn hầu tuần hoà tiệm cận

và quan hệ phổ Borh của phần hầu tuần hoàn của nghiệm (định lý 3.2.7)
Chương 4: ÁP DỤNG VÀO MỘT SỐ PHƯƠNG TRÌNH VOLTERRA
VI TÍCH PHÂN TỔNG QUÁT HƠN

Trong chương này, chúng tôi xét thêm một phương trình Volterra vi tích
phân tuyến tính để thấy rõ các kết quả đã có vẫn áp dụng được vào phương
trình này. Ngoài ra, chúng tôi còn nghiên cứu thêm một ví dụ về phương trình
vi tích phân với điều kiện biên Neumann để thấy rỏ tính áp dụng của lý thuyết
vừa nêu.



4

Chương 1
CÁC ĐỊNH NGHĨA VÀ KẾT QUẢ CHUẨN BỊ
Equation Chapter 1 Section 1
Xét các phương trình Volterra vi tích phân tuyến tính:
t

(E)

du (t )
 Au (t )   B  t , s  u  s  ds, t 
dt
0

(E  )

dv(t )
 Av (t )   B  t , s  v  s  ds, t  : (; ),
dt


(P)

du (t )
 Au (t )   B  t , s  u  s  ds  p (t ), t 
dt
0


(P )

dv(t )
 Av(t )   B  t , s  v  s  ds  p (t ), t  ,
dt




: [0; ),

t

t



,

t

Với A là phần tử sinh của nửa nhóm C0 compact T (t )t  0 các ánh xạ
tuyến tính trên không gian Banach X, B(t,s) là ánh xạ tuyến tính liên tục bị
với   s  t   và hầu tuần hoàn.

chặn, liên tục theo chuẩn ánh xạ
1.1 Định nghĩa 1.1.

B(t, s) được gọi là hầu tuần hoàn biến t đều theo s nếu với mọi   0 và

bất kỳ tập compact J 0 
khoảng

mở



: (;0] , tồn tại số dương l ( , J 0 ) sao cho mọi

độ

dài

l ( , J 0 )

chứa



thì

B(t , t  s )  B (t   , t    s )   , t  , s  J 0 .
1.2 Định nghĩa 1.2.

Với bất kỳ ( , ) 
duy nhất hàm

u:




u ( )   ( ),   [0, ] và



 BC [0; ]; X  và p  BC [ ; ); X  tồn tại

X

thoả mãn u liên tục trên

[ , ) ,


5

 s

u (t )  T (t   ) ( )   T (t  s )   B( s, )u ( )d  p ( s )  ds, t  

 0

t

(1.1)

Hàm u được gọi là nghiệm yếu của (P) theo ( , ) trên [ ; ) và kí hiệu là
u (, , , p )
Tương tự, với bất kỳ ( , )   BC  (-; ]; X  và p  BC [ ; ); X  tồn
 X thoả mãn v liên tục trên [ , ) ,


tại duy nhất hàm v :

v( )   ( ),   (, ] và
 s

v(t )  T (t   ) ( )   T (t  s )   B ( s, )v( )d  p ( s )  ds, t   .

 

t

(1.2)

Hàm v được gọi là nghiệm yếu của (P ) theo ( , ) trên [ ; ) và kí hiệu là
v(, , , p )
1.3 Định nghĩa 1.3.

Nghiệm không của (E) được gọi là ổn định nếu với bất kỳ   0 , tồn tại

 ( )  0

thoả

mãn

p  BC [ ; ); X 

nếu


với



( , ) 

mọi
[0, ]

  ( )

u (t , , , p ) X   với t   , trong đó 

[0, ]



 BC ([0, ], X )



  ( )

thì



p

[ , )


 sup  ( x) X
s[0; ]

1.4 Định nghĩa 1.4.

Nghiệm không của (E  ) được gọi là ổn định nếu với bất kỳ   0 , tồn
tại

 ( )  0

thoả

p  BC [ ; ); X 

mãn

với

nếu



mọi

(  , ]

( , )   BC ((, ], X )

  ( )


v(t , , , p ) X   ) với t   , trong đó 

[- , ]



p

[ , )

 sup  ( x ) X
s[  ; ]

  ( )


thì



×