TRƯỜNG THCS CHƯ Ê WI – CƯ KUIN – ĐĂK LĂK NĂM HỌC 2008-2009
Mục lục
Chương I: CĂN BẬC HAI, CĂN BẬC BA........................................................................................................................2
§1. Căn bậc hai........................................................................................................................................................2
§2. Căn thức bậc hai và hằng đẳng thức √A2 = |A|...............................................................................................3
Luyện tập................................................................................................................................................................4
§3. Liên hệ giữa phép nhân và phép khai phương.................................................................................................5
Luyện tập................................................................................................................................................................7
§3. Liên hệ giữa phép chia và phép khai phương..................................................................................................8
Luyện tập................................................................................................................................................................9
§5. Bảng căn bậc hai.............................................................................................................................................10
§6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai......................................................................................11
Luyện tập..............................................................................................................................................................13
§7 Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tt).................................................................................14
Luyện tập..............................................................................................................................................................15
§8. Rút gọn biểu thức chứa căn thức bậc hai......................................................................................................17
Luyện tập..............................................................................................................................................................18
§9. Căn bậc ba......................................................................................................................................................20
Ôn tập chương I (tiết 1)........................................................................................................................................22
Ôn tập chương I (tiết 2)........................................................................................................................................23
Kiểm tra chương I.................................................................................................................................................24
NGUYỄN TIẾN ĐẠT GIÁO ÁN ĐẠI SỐ 9 Trang 1
TRƯỜNG THCS CHƯ Ê WI – CƯ KUIN – ĐĂK LĂK NĂM HỌC 2008-2009
Chương I: CĂN BẬC HAI, CĂN BẬC BA
Tuần 1. Tiết 1. Ngày soạn 26/08/08. Ngày dạy 28/08/08 >>
§1. Căn bậc hai
I. Mục tiêu
Kiến thức: HS nắm được định nghĩa, kí hiệu về căn bậc hai số học của số không âm
Kĩ năng: Tính được căn bậc hai của một vài số. Biết được liên hệ của phép khai phương với quan
hệ thứ tự và dùng liên hệ này để so sánh các số.
Thái độ - Tư duy: Phát triển tư duy toán học nói chung.
II. Chuẩn bị
GV: Đồ dùng dạy học.
HS: SGK, đồ dùng học tập .
III. Tiến trình dạy học
Hoạt động của GV Hoạt động của HS
Kiểm tra (2’)
Tính CBH của 16; 81; 100 Đứng tại chỗ trả lời
16 4; 81 9; 100 10
= = =
1. Căn bậc hai số học (16’)
Nhắc lại khái niệm CBH như SGK
Cho HS làm ?1 SGK.
Lưu ý HS hai cách trả lời:
+ C1: Chỉ dùng định nghĩa CBH. Ví dụ: CBH
của 9 là 3 và –3 vì 3
2
= 9 và (-3)
2
= 9.
+ C2: Có dùng cả nhận xét về CBH. Ví dụ: 3
là CBH của 9 vì 3
2
= 9 . Mỗi số dương có hai
CBH là hai số đối nhau, nên –3 cũng là CBH
của 9 .
Dẫn dắt từ lưu ý trong lời giải ?1 để giới thiệu
định nghĩa CBHSH
Nghe và theo dõi SGK
1 HS lên bảng làm
+ CBH của 9 là 3 và –3
+ CBH của
4
9
là
2
3
và –
2
3
.
+ CBH của 0,25 là 0,5 và – 0,5.
+ CBH của 2 là
2
và –
2
.
Định nghĩa: Với số dương a, số
a
được gọi là CBHSH của a .
Số 0 cũng được gọi là CBHSH của 0.
- Giới thiệu Ví dụ 1
- Giới thiệu chú ý
- Từ chú ý ta có thể viết lại định nghĩa bằng công
thức như sau:
2
x 0
x a
x a
≥
= ⇔
=
Cho học sinh làm ?2 SGK
Giới thiệu thuật ngữ phép khai phương, lưu ý về
quan hệ giữa khái niệm CBH đã học từ lớp 7 với
khái niệm CBHSH vừa giới thiệu và yêu cầu HS
làm ?3 để củng cố về quan hệ đó .
Theo dõi SGK
Chú ý: Với a ≥ 0, ta có:
Nếu x =
a
thì x ≥ 0 và x
2
= a.
Nếu x ≥ 0 và x
2
= a thì x =
a
?2 HS làm miệng.
a)
49
= 7, vì 7 ≥ 0 và 7
2
= 49.
b)
64
= 8, vì 8 ≥ 0 và 8
2
= 64
......
?3
a) CBHSH của 64 là 8, nên các CBH của 64 là
8 và – 8 .
b) CBHSH của 81 là 9, nên các CBH của 81 là
9 và – 9 .
......
NGUYỄN TIẾN ĐẠT GIÁO ÁN ĐẠI SỐ 9 Trang 2
TRƯỜNG THCS CHƯ Ê WI – CƯ KUIN – ĐĂK LĂK NĂM HỌC 2008-2009
2. So sánh các căn bậc hai số học (15’)
Giới thiệu định lí
Trình bày ví dụ
Theo dõi trên bảng kết hợp SGK
Định lí: Với hai số a và b không âm, ta có a < b
a b
<
.
Hãy áp dụng định lí để so sánh các số trong ?4
Yêu cầu HS nghiên cứu VD3 để làm ?5
?4 hai HS lên bảng làm.
a) 16 > 15 nên
16 15
>
. Vậy 4 >
15
b) 11 > 9 nên
11 9
>
. Vậy
11
> 3
?5 Trao đổi theo nhóm nhỏ
a) 1 =
1
nên
x
> 1 có nghĩa
1x
>
.
Vì x
≥
0, nên
1x
>
x >1.Vậy x > 1
b) 3 =
9
nên
x
< 3 có nghĩa
9x <
.
Vì x
≥
0, nên
9x <
x < 9.
Vậy 0
≤
x < 9.
Củng cố (10’)
Gọi HS lên bảng làm bài tập 1; 2a; 4b,d.
Gọi HS đứng tại chỗ dùng máy tính bỏ túi giải bài tập 3 (SGK – 6,7)
Hướng dẫn học ở nhà (2’)
BTVN: bài 2(b,c); bài 4(a,c); bài 5 trang 6,7.
Học định nghĩa và định lí.
Tuần 1. Tiết 2. Ngày soạn 27/08/08. Ngày dạy 29/08/08 >> <<
§2. Căn thức bậc hai và hằng đẳng thức √A
2
= |A|
I. Mục tiêu
Kiến thức: Hiểu phép chứng minh hằng đẳng thức √A
2
= |A|.
Kĩ năng: Biết cách tìm điều kiện có nghĩa của CBH hai không phức tạp. Tính CBH của bình
phương các số hay các biểu thức đơn giản.
Thái độ - Tư duy: Phát triển tư duy toán học nói chung.
II. Chuẩn bị
GV: Đồ dùng dạy học.
HS: SGK, đồ dùng học tập .
III. Tiến trình dạy học
Hoạt động của GV Hoạt động của HS
Kiểm tra (5’)
- Hãy phát biểu định nghĩa CBHSH, và định lí so
sánh các CBHSH.
- Bài tập 2b; 4a,c (SGK – 6,7)
- 2 HS lên bảng trả lời câu hỏi và làm bài tập
1. Căn thức bậc hai (8’)
Cho HS làm ?1, sau đó giới thiệu thuật ngữ căn
thức bậc hai, biểu thức lấy căn .
A
có nghĩa khi nào ? Nêu ví dụ, có phân tích theo
giới thiệu trên.
?1
Xét tam giác ABC vuông tại B, theo định lí
Pi-ta-go, ta có:
AB
2
+ BC
2
= AC
2
⇒ AB
2
= 25 – x
2
Do đó: AB =
2
25 x−
.
Tổng Quát: (sgk)
- Cho HS làm ?2 để củng cố cách tìm điều kiện xác
định .
?2
5 2x
−
có nghĩa khi 5 – 2x ≥ 0 ⇔ x ≤ 2,5
2. Hằng đẳng thức √A
2
= |A| (20’)
NGUYỄN TIẾN ĐẠT GIÁO ÁN ĐẠI SỐ 9 Trang 3
TRƯỜNG THCS CHƯ Ê WI – CƯ KUIN – ĐĂK LĂK NĂM HỌC 2008-2009
- Cho HS làm bài tập ? 3
- Cho HS quan sát kết quả trong bảng và nhận xét
2
a
và a
- Giới thiệu định lí.
?3
A -2 -1 0 2 3
a
2
4 1 0 4 9
2
a
2 1 0 2 3
Định lí: Với mọi số a, ta có
2
a a
=
.
- Hướng dẫn chứng minh
Theo đ/n giá trị tuyệt đối thì |a|≥ o.
Ta thấy:
Nếu a ≥ 0 thì |a| = a, nên (|a|)
2
= a
2
Nếu a < 0 thì |a| = – a, nên (|a|)
2
= (–a)
2
= a
2
Do đó (|a|)
2
= a
2
với mọi số a.
Vậy |a| chính là CBHSH của a
2
, tức là
2
a
=
|a|.
- Trình bày ví dụ 2 và nêu ý nghĩa. Không cần tính
CBH mà vẫn tìm được giá trị của CBH.
- Trình bày câu a) ví dụ 3 hướng dẫn HS làm câu
còn lại .
Theo dõi kết hợp SGK.
- Theo dõi GV thực hiện rồi lên bảng làm.
b)
( )
2
2 5 2 5 5 2
− = − = −
(vì
5 2>
)
Chú ý : Một cách tổng quát, với A là một biểu thức ta có:
2
A A
=
, có nghĩa là:
A
2
= A nếu A ≥ 0 (tức là A lấy giá trị không âm);
A
2
= –A nếu A ≤ 0 (tức là A lấy giá trị âm).
- Giới thiệu câu a) và yêu cầu HS làm câu b) VD4 . - HS chú ý theo dõi rồi lên bảng làm phần b)
Củng cố (10’)
- Cho học sinh làm bài tập 7; 8 (SGK – 10).
Hướng dẫn về nhà (2’)
- Học các khái niệm, định lí đã học .
- BTVN: Các bài tập 6, 9, 10 trang 10 và 11 sgk
Tuần 1. Tiết 3. Ngày soạn 27/08/08. Ngày dạy 29/08/08 >> <<
Luyện tập
I. Mục tiêu
Kiến thức: Củng cố các kiến thức đã học về căn bậc hai.
Kĩ năng: Rèn luyện kĩ năng làm toán đối với các căn thức.
Thái độ - Tư duy:
II. Chuẩn bị
GV: Phiếu học tập, đồ dùng dạy học.
HS: Xem trước bài tập về nhà, đồ dùng học tập.
III. Tiến trình dạy học
Hoạt động của GV Hoạt động của HS
Kiểm tra (7’)
- Nêu khái niệm căn thức bậc hai ? và hằng đẳng
thức đã học ?
- BT10: Chứng minh
( )
2
3 1 4 2 3
− = −
- Một HS lên bảng trả lời và làm bài tập
( ) ( )
2 2
2
VT 3 1 3 2. 3.1 1
3 2 3 1 4 2 3 VP
= − = − +
= − + = − =
Luyện tập (27’)
NGUYỄN TIẾN ĐẠT GIÁO ÁN ĐẠI SỐ 9 Trang 4
TRƯỜNG THCS CHƯ Ê WI – CƯ KUIN – ĐĂK LĂK NĂM HỌC 2008-2009
BT9. Làm mẫu câu a).
a)
2
x
= 7 ⇒
x
= 7
Do đó x = 7 hoặc x = –7
BT10. Hướng dẫn rồi gọi học sinh lên bảng giải
Hướng dẫn học sinh làm các bài tập 11,12 và 13
(Mỗi bài làm 2 câu tại lớp, 2 câu còn lại cho HS
làm ở nhà) bằng cách chia lớp thành nhóm cùng
thảo luận trong ít phút rồi cử đại diện lên giải .
- Chú ý học sinh thứ tự thực hiện các phép toán:
khai phương, nhân hay chia, tiếp đó cộng hay trừ,
từ trái sang phải
- Cho HS làm các câu a) và d) bài tập 14, trước
khi giải yêu cầu HS nhắc lại các hằng đẳng thức
có liên quan .
BT9.
b)
2
x
=
8
−
⇒
x
= 8 ⇒ x = ±8
c)
2
4x
= 6 ⇒
2x
= 6 ⇒ x = ±3
d)
2
9x
= |12| ⇒
3x
= 12 ⇒ x = ±4
BT10. Một HS lên bảng làm
( )
2
3 1 3 1
4 2 3 3 3 1 3
− − = −
− − = − − =
=
BT11.
a)
16 25 196 49
. :
+
= 4.5 + 14: 7 = 22
d)
2 2
4 25
3 9 16 5
+
= + = =
BT12.
b)
3x 4
− +
có nghĩa khi – 3x + 4 ≥ 0 ⇒ x ≤
4
3
d)
2
1 x
+
luôn có nghĩa vì 1 + x
2
≥ 0 với mọi x .
BT13.
a)
2
2 a 5a a 5a 2a 5a 7a
2
− − = − − = −
=
(Vì a ≤ 0)
c)
4 2
9a 3a
+
= 3a
2
+ 3a
2
= 6a
2
BT14.
a) x
2
– 3 =
( ) ( )
3 3
x x
− +
d)
( )
2
2
2 5x 5 x 5
x
− + = −
củng cố (8’)
- Đặt câu hỏi với nội dung liên quan đến các kiến
thức căn bậc hai đã học
- Chú ý một số sai sót khi thực hiện các phép toán
có chứa căn.
- HS chú ý theo dõi và trả lời câu hỏi của GV
Hướng dẫn về nhà (2’)
- Xem lại các định nghĩa, khái niệm, định lí.
- Làm các bài tập 11(b,c); 12(a,c); 13(b,d); 14(b,c); 15 trang 11
- Xem bài kế tiếp
Tuần 2. Tiết 4. Ngày soạn 27/08/08. Ngày dạy 29/08/08 >> <<
§3. Liên hệ giữa phép nhân và phép khai phương
I. Mục tiêu
Kiến thức: Nắm được nội dung và cách chứng minh định lí về liên hệ giữa phép nhân và phép khai
phương.
Kĩ năng: Có kĩ năng dùng các quy tắc khai phương một tích và nhân các căn bậc hai trong tính toán
và biến đổi biểu thức.
Thái độ:
II. Chuẩn bị
GV: Giáo án, đồ dùng dạy học
NGUYỄN TIẾN ĐẠT GIÁO ÁN ĐẠI SỐ 9 Trang 5
TRƯỜNG THCS CHƯ Ê WI – CƯ KUIN – ĐĂK LĂK NĂM HỌC 2008-2009
HS: SGK, xem trước bài ở nhà
III. Tiến trình dạy học
Hoạt động của giáo viên Hoạt động của học sinh
Kiểm tra (5’)
- Phát biểu khái niệm căn thức bậc hai ?
- BT15 (tr11 SGK)
- Nhận xét và cho điểm.
- Một HS lên bảng trả lời và làm bài tập
BT15.
a) x
1
=
5
; x
2
=
5
−
b) x =
11
Một HS khác nhận xét bài làm của bạn.
1. Định lí (10’)
- GV giao cho HS làm bài tập ?1 SGK
- Sau khi thực hiện xong ?1 GV yêu cầu HS khái
quát kết quả về liên hệ giữa phép nhân và phép
khai phương
- HS lên bảng thực hiện ?1. Ta có:
2
a) 16 25 20 20;
b) 16 25 4 5 20
× = =
× = × =
Vậy:
16 25 16 25
× = ×
- HS phát biểu khái quát
Định lí: Với hai số a và b không âm, ta có
a.b
=
a
.
b
- Hướng dẫn HS chứng minh định lí
- Nêu chú ý: Định lí có thể mở rộng cho tích của
nhiều số không âm
- HS lên bảng chứng minh định lí dưới sự hướng
dẫn của GV
2. Áp dụng (20’)
a) Quy tắc khai phương một tích
- Sau khi giới thiệu quy tắc khai phương một tích
GV hướng dẫn HS tìm hiểu ví dụ 1.
- Chia lớp thành các nhóm nhỏ cùng trao đổi
trong ít phút sau đó cử đại diện lên bảng trình bày
?2 .
- Đọc theo SGK
?2
a)
0,16.0,64.225
= 0,4 .0,8 . 15 = 4,8
b)
250.360 25 36 100 5 6 10 300
= × × = × × =
b) Quy tắc nhân các căn bậc hai
Giới thiệu chú ý : Với hai biểu thức A và B
không âm ta có
A.B
=
A
.
B
.
* Đặc biệt, với biểu thức A không âm ta có
( )
2
A
=
2
A
= A
- Giới thiệu ví dụ 3
- Yêu cầu làm ?4
- Xem kĩ ví dụ 2 rồi làm ?3
?3.
a) 3 75 3 75 225 15
b) 20 72 4,9 2 2 36 49 84
× = × = =
× × = × × × =
- HS theo dõi GV thực hiện mẫu.
?4.
3 3 4 2
2 2 2
a) 3a 12a 3a 12a 36a 6a
b) 2a 32ab 64a b 8 ab 8ab
= × = =
× = = =
(do a, b không âm nên a.b ≥ 0)
Củng cố (8’)
- Vài HS nhắc lại định lí và các quy tắc.
- Gọi 2 HS lên bảng làm BT17 và BT18 (tr14 SGK)
Hướng dẫn học ở nhà (2’)
- Học kĩ định lí và các quy tắc.
- Làm các bài tập còn lại và các bài phần Luyện tập.
NGUYỄN TIẾN ĐẠT GIÁO ÁN ĐẠI SỐ 9 Trang 6
TRƯỜNG THCS CHƯ Ê WI – CƯ KUIN – ĐĂK LĂK NĂM HỌC 2008-2009
Tuần 2. Tiết 5. Ngày soạn 27/08/08. Ngày dạy 29/08/08 >> <<
Luyện tập
I. Mục tiêu
Kiến thức: Củng cố các kiến thức đã học về liên hệ giữa phép nhân và phép khai phương.
Kĩ năng: Rèn luyện kĩ năng làm toán đối với phép khai phương.
Thái độ:
II. Chuẩn bị
GV: Giáo án, đồ dùng dạy học
HS: SGK, xem trước bài ở nhà
III. Tiến trình dạy học
Hoạt động của giáo viên Hoạt động của học sinh
Kiểm tra (8’)
HS1: Phát biểu quy tắc khai phương một tích.
Làm bài tập 17(c,d)
HS2: Phát biểu quy tắc nhân các căn bậc hai.
Làm bài tập 18(b,c)
2 HS lên bảng trả lời và làm bài tập.
Luyện tập (35’)
BT21. Cho HS chữa để HS làm quen với dạng bài
tập trắc nghiệm. Có thể cho 1 HS lên bảng làm để
tránh sai lầm.
BT22(a,b). Cho 2 HS lên bảng làm các bài tập
22a,b dựa vào hằng đẳng thức hiệu hai bình
phương:
( ) ( )
2 2
a b a b . a b
− = + −
BT24. Hướng dẫn rồi gọi HS lên bảng làm và
chia cả lớp thành 2 nhóm cùng làm để so sánh kết
quả.
BT25 (a,d) Tìm.
Sửa chữa bài của HS làm trên bảng
1 HS lên bảng làm.
12.30.40 36.400 6.20 120= = =
KQ: Chọn (B)
BT22. 2 HS lên bảng làm.
( ) ( )
( ) ( )
− = − +
= =
− = − +
= × =
2 2
2 2
a) 13 12 13 12 13 12
25 5
b) 17 8 17 8 17 8
9 25 15
BT24
( ) ( )
( )
2
2 2
4 1 6x 9x 2 1 6x 9x
2 1 6 2 18 38 12 2 21,0294
+ + = + +
= − + = − ≈
BT25. 2 HS lên bảng làm.
a)
16x 8 16x 64 x 4
= ⇔ = ⇔ =
cách khác:
16x 8 4 x 8 x 2 x 4= ⇔ = ⇔ = ⇔ =
d)
( )
2
4. 1 x 6 0 2 1 x 6
1 x 3 x 2
1 x 3
1 x 3 x 4
− − = ⇔ − =
− = ⇒ = −
⇔ − = ⇔
− = − ⇒ =
Hướng dẫn học ở nhà (2’)
- Học kĩ định lí và các quy tắc.
- Làm các bài tập: 22 (c,d); 23; 24b; 25(b,c); 26; 27.
- Xem trước bài §3 Liên hệ giữa phép chia và phép khai phương
NGUYỄN TIẾN ĐẠT GIÁO ÁN ĐẠI SỐ 9 Trang 7
TRƯỜNG THCS CHƯ Ê WI – CƯ KUIN – ĐĂK LĂK NĂM HỌC 2008-2009
Tuần 2. Tiết 6. Ngày soạn 27/08/08. Ngày dạy 29/08/08 >> <<
§3. Liên hệ giữa phép chia và phép khai phương
I. Mục tiêu
Kiến thức: Nắm được nội dung và cách chứng minh định lí về liên hệ giữa phép chia và phép khai
phương.
Kĩ năng: Có kĩ năng dùng các quy tắc khai phương một thương và chia hai căn bậc hai trong tính
toán và biến đổi biểu thức.
Thái độ:
II. Chuẩn bị
GV: Giáo án, đồ dùng dạy học
HS: SGK, xem trước bài ở nhà
III. Tiến trình dạy học
Hoạt động của giáo viên Hoạt động của học sinh
Kiểm tra (5’)
- Phát biểu định lí và các quy tắc về mối liên hệ
giữa phép nhân và phép khai phương
- Làm BT27 (tr16 SGK)
BT27
> ⇒ = × >
> = ⇒ − < −
a) 2 3 4 2 2 2 3
b) 5 4 2 5 2
Định lí (10’)
- Cho HS làm bài tập ?1 SGK
- Khái quát và phát biểu thành định lí.
- HS lên bảng làm
Định lí: Với số a không âm và số b dương, ta có
a
b
=
a
b
.
Hướng dẫn HS cách c/m định lí như sgk - HS theo dõi
Áp dụng (20’)
a) Quy tắc khai phương một thương: (SGK)
- Giới thiệu và giải thích quy tắc
- HS theo dõi và ghi chép
- Yêu cầu HS nghiên cứu VD1 rồi làm ?2 - 2 HS lên bảng thực hiện
b) Quy tắc chia hai căn bậc hai (SGK).
- Yêu cầu HS nghiên cứu VD1 rồi làm ?3
- Tổng quát tính chất trên với A, B là những biểu
thức.
- HS lên bảng làm
Chú ý: Một cách tổng quát, với biểu thức A không âm và biểu thức B dương ta có
A
B
=
A
B
- GV thực hiện ví dụ 3 sau đó gọi HS lên bảng
làm ?4 .
Rút gọn:
2 4 2
2a b 2ab
a) ; b)
50
162
với
a 0
≥
- HS theo dõi GV thực hiện sau đó lên bảng làm
bài tập ?4
Củng cố (8’)
- Gọi HS nhắc lại định lí và các quy tắc
- Cho hs làm bt28 và bt29 (sgk)
HS nhắc lại định lí và các quy tắc
2 HS lên bảng làm
Hướng dẫn học ở nhà (2’)
- Học kĩ định lí và các quy tắc.
- Làm các bài tập còn lại
NGUYỄN TIẾN ĐẠT GIÁO ÁN ĐẠI SỐ 9 Trang 8
TRƯỜNG THCS CHƯ Ê WI – CƯ KUIN – ĐĂK LĂK NĂM HỌC 2008-2009
Tuần 3. Tiết 7. Ngày soạn 27/08/08. Ngày dạy 29/08/08 >> <<
Luyện tập
I. Mục tiêu
Kiến thức: Củng cố các kiến thức đã học về liên hệ giữa phép chia và phép khai phương.
Kĩ năng: Rèn luyện kĩ năng làm toán đối với phép khai phương.
Thái độ:
II. Chuẩn bị
GV: Giáo án, đồ dùng dạy học
HS: SGK, xem trước bài ở nhà
III. Tiến trình dạy học
Hoạt động của giáo viên Hoạt động của học sinh
Kiểm tra bài cũ (7’)
- Phát biểu định lí và các quy tắc về mối liên hệ
giữa phép chia và phép khai phương
- BT28ab.
- BT29bc.
- HS lên bảng trả lời và làm bài tập
BT28
289 289 17
a)
225 15
225
= =
14 64 64 8
b) 2
25 25 5
25
= = =
BT29
15 15 1 1
b)
735 49 7
735
12500 12500
c) 25 5
500
500
= = =
= = =
Luyện tập (33’)
BT31. Cho HS lên làm, sau đó lưu ý kết quả: Căn
bậc hai của hiệu hai số không âm a và b khác hiệu
của hai căn bậc hai của hai số a và b.
BT32: HS lên bảng làm theo hướng dẫn của GV.
BT33: Hướng dẫn rồi gọi 2 HS lên bảng làm và
1 HS lên bảng làm
( )
a) 25 16 9 3;
25 16 5 4 1
25 16 25 16
b) Có a b b a b b
a a b b a b a b
− = =
− = − =
⇒ − = −
− + < − +
⇔ < − + ⇔ − < −
2 HS lên bảng làm, các HS khác làm nháp.
( )
2 2
2 2
2 2
9 4 25 49 1
a) 1 5 0,01
16 9 16 9 100
5 7 1 7
4 3 10 24
b) 1,44 1,21 1,44 0,4 1,44 1, 21 0,4
1,44 0,81 1,2 0,9 1,08
165 124 41 289 289 17
c)
164 41 4 2
4
149 76 73 225 225 15
d)
73 841 29
457 384
841
× × = × × =
× ×
= =
× ×
× − × = −
= × = × =
− ×
= = =
×
− ×
= = =
×
−
NGUYỄN TIẾN ĐẠT GIÁO ÁN ĐẠI SỐ 9 Trang 9