Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A
Email:
Facebook: />
Phần Tích Phân-Giải tích 12
Trang 1
Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A
Phần Tích Phân-Giải tích 12
ÁP DỤNG BẲNG NGUYÊN HÀM VÀ PHÂN TÍCH
A – LÝ THUYẾT TÓM TẮT
1. Khái niệm nguyên hàm
Cho hàm số f xác định trên K. Hàm số F được gọi là nguyên hàm của f trên K nếu:
F '(x) f (x) , x K
Nếu F(x) là một nguyên hàm của f(x) trên K thì họ nguyên hàm của f(x) trên K là:
f (x)dx F(x) C , C R.
Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K.
2. Tính chất
f '(x)dx f (x) C
f (x) g(x)dx f (x)dx g(x)dx
kf (x)dx k f (x)dx (k 0)
3. Nguyên hàm của một số hàm số thường gặp
1)
1
dx
3)
x
5)
(ax b)
7)
2)
k.dx k.x C
2
1
1
C
x
1
C;
a(n 1)(ax b)n 1
sin x.dx cos x C
n
dx
1
9)
sin(ax b)dx a cos(ax b) C
11)
cos
15)
e dx e
1
2
dx (1 tan 2 x)dx tan x C
x
1
1
13)
dx tan(ax b) C
2
cos (ax b)
a
17)
19)
21)
23)
25)
27)
x
x
C
1 (ax b)
(ax b)
e dx a e C
ax
x
a
dx
C
ln a
1
1 x 1
x 2 1 dx 2 ln x 1 C
1
1
x a
x 2 a 2 dx 2a ln x a C
1
x
a 2 x 2 dx arcsin a C
1
2
x a
2
dx ln x x 2 a 2 C
Email:
Facebook: />
4)
6)
8)
10)
x n 1
x dx n 1 C
1
x dx ln x C
1
1
(ax b) dx a ln ax b C
cos x.dx sin x C
n
1
cos(ax b)dx a sin(ax b) C
1
12)
sin
16)
e
2
dx (1 cot 2 x)dx cot x C
x
1
1
14)
dx cot(ax b) C
2
sin (ax b)
a
18)
20)
22)
24)
26)
28)
x
dx e x C
1 (ax b) n 1
n
(ax
b)
.dx
.
C (n 1)
a
n 1
1
x 2 1 dx arctan x C
1
x
x 2 a 2 dx arctan a C
1
1 x 2 dx arcsin x C
1
2
x 2 1 dx ln x x 1 C
x 2
a2
x
2
2
2
a
x
dx
a
x
arcsin C
2
2
a
Trang 2
Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A
29)
x 2 a 2 dx
Phần Tích Phân-Giải tích 12
x
a2
x 2 a 2 ln x x 2 a 2 C
2
2
B – BÀI TẬP
Câu 1: Nguyên hàm của 2x 1 3x 3 là:
A. x 2 x x 3 C
B. x 2 1 3x 2 C
Câu 2: Nguyên hàm của
A.
x4 x2 3
C
3x
1
1
x 2 là:
2
x
3
3
x 1 x
B. C
3 x 3
6x 3
D. x 2 1
C
5
C. 2x x x 3 C
C.
x 4 x 2 3
C
3x
D.
1 x3
C
x 3
Câu 3: Nguyên hàm của hàm số f x 3 x là:
33 x2
A. F x
C
4
B. F x
3x 3 x
C
4
là:
x x
2
C
B. F x
x
2
C
x
4x
C
33 x
C. F x
x
C
2
D. F x
4x
3
3 x2
C
1
Câu 4: Nguyên hàm của hàm số f x
A. F x
C. F x
D. F x
x
C
2
5
Câu 5: x 3 dx bằng:
x
2 5
2 5
2 5
2 5
A. 5ln x
x C
B. 5 ln x
x C C. 5 ln x
x C D. 5 ln x
x C
5
5
5
5
dx
Câu 6:
bằng:
2 3x
1
3
1
1
A.
B.
C. ln 2 3x C
D. ln 3x 2 C
C
C
2
2
3
3
2 3x
2 3x
Câu 7: Nguyên hàm của hàm số f x
A. F x
C. F x
2 x 1
x x x
là:
x2
C
B. F x
23 x
C
x
D. F x
x
Câu 8: Tìm nguyên hàm:
(
3
53 5
x 4 ln x C
3
3
C. 3 x 5 4 ln x C
5
B.
D.
(x
C
x 1
x2
1 2 x
C
x
4
x 2 )dx
x
A.
Câu 9: Tìm nguyên hàm:
2
2
33 5
x 4 ln x C
5
33 5
x 4 ln x C
5
3
2 x )dx
x
Email:
Facebook: />
Trang 3
Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A
x3
4 3
3ln x
x C
3
3
x3
4 3
C.
3ln x
x C
3
3
A.
5
Câu 10: Tìm nguyên hàm: ( x 3 )dx
x
2 5
2 5
A. 5ln x
x C
B. 5 ln x
x C
5
5
2
Câu 11: Tìm nguyên hàm: (x 3 x )dx
x
1 4
2 3
A. x 2 ln x
x C
4
3
1
2 3
C. x 4 2 ln x
x C
4
3
dx
Câu 12: Tính
, kết quả là:
1 x
C
A.
B. 2 1 x C
1 x
Phần Tích Phân-Giải tích 12
x3
4 3
3ln X
x
3
3
x3
4 3
D.
3ln x
x C
3
3
B.
C. 5 ln x
2 5
2 5
x C D. 5 ln x
x C
5
5
1 4
2 3
x 2 ln x
x C
4
3
1
2 3
D. x 4 2 ln x
x C
4
3
B.
2
C
1 x
C.
D. C 1 x
2
x2 1
Câu 13: Nguyên hàm F(x) của hàm số f (x)
là hàm số nào trong các hàm số sau?
x
x3 1
x3 1
A. F(x) 2x C
B. F(x) 2x C
3 x
3 x
3
x3
x
C. F(x) 3 2 C
x
2
x3
x
D. F(x) 3 2 C
x
2
x(2 x)
Câu 14: Hàm số nào dưới đây không là nguyên hàm của hàm số f (x)
(x 1) 2
x2 x 1
x2 x 1
B.
x 1
x 1
Câu 15: Kết quả nào sai trong các kết quả sao?
A.
2x 1 5x 1
1
2
10x dx 5.2x.ln 2 5x.ln 5 C
x2
1 x 1
C.
dx ln
xC
2
1 x
2 x 1
A.
x 2 2x 3
Câu 16:
dx bằng:
x 1
x2
A.
x 2ln x 1 C
2
x2
C.
x 2ln x 1 C
2
Email:
Facebook: />
C.
x2 x 1
x 1
D.
x2
x 1
x 4 x 4 2
1
dx ln x 4 C
3
x
4x
B.
D.
tan
B.
x2
x ln x 1 C
2
2
xdx tan x x C
D. x 2 ln x 1 C
Trang 4
Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A
Câu 17:
x2 x 3
dx bằng:
x 1
A. x 5ln x 1 C
C.
Phần Tích Phân-Giải tích 12
B.
x2
2x 5ln x 1 C
2
x2
2x 5ln x 1 C
2
D. 2x 5ln x 1 C
20x 2 30x 7
3
; F x ax 2 bx x 2x 3 với x . Để hàm
2
2x 3
số F x là một nguyên hàm của hàm số f (x) thì giá trị của a, b, c là:
A. a 4; b 2;c 1
B. a 4; b 2; c 1 C. a 4; b 2;c 1 . D. a 4; b 2; c 1
Câu 18: Cho các hàm số: f (x)
Câu 19: Nguyên hàm của hàm số f x x 2 – 3x
1
là
x
x 3 3x 2
A. F(x) =
ln x C
3
2
x 3 3x 2
C. F(x) =
ln x C
3
2
2x
Câu 20: Cho f x 2
. Khi đó:
x 1
A. f x dx 2 ln 1 x 2 C
x 3 3x 2
B. F(x) =
ln x C
3
2
x 3 3x 2
D. F(x) =
ln x C
3
2
C. f x dx 4 ln 1 x 2 C
D. f x dx ln 1 x 2 C
B. f x dx 3ln 1 x 2 C
x 3 3x 2 3x 1
1
biết F(1)
2
x 2x 1
3
2
2
13
A. F(x) x 2 x
6
B. F(x) x 2 x
x 1
x 1 6
2
2
x
2
13
x
2
C. F(x)
x
D. F(x)
x
6
2
x 1 6
2
x 1
1
Câu 22: Nguyên hàm của hàm số y 3x 1 trên ; là:
3
Câu 21: Tìm một nguyên hàm F(x) của hàm số f (x)
3 2
2
2
3
3
x x C
B.
C.
D.
3x 1 C
3x 1 C
2
9
9
Câu 23: Tìm hàm số F(x) biết rằng F’(x) = 4x3 – 3x2 + 2 và F(-1) = 3
A. F(x) = x4 – x3 - 2x -3
B. F(x) = x4 – x3 - 2x + 3
C. F(x) = x4 – x3 + 2x + 3
D. F(x) = x4 + x3 + 2x + 3
A.
x ln x x 2 1
Câu 24: Một nguyên hàm của f (x)
x2 1
là:
A. x ln x x 2 1 x C
B. ln x x 2 1 x C
C. x ln x 2 1 x C
D.
Câu 25: Nguyên hàm của hàm số y
3 2
x x C
2
x 2 1 ln x x 2 1 x C
2x 4 3
là:
x2
Email:
Facebook: />
Trang 5
Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A
A.
2x 3 3
C
3 x
B. 3x 3
3
C
x
C.
Phần Tích Phân-Giải tích 12
2x 3 3
C
3
x
D.
x3 3
C
3 x
Câu 26: Cho f (x)dx F(x) C. Khi đó với a 0, ta có f (a x b)dx bằng:
A.
1
F(a x b) C
2a
B. F(a x b) C
C.
1
C
x2
C. F(x)
B. Đáp số khác
Câu 28: Họ nguyên hàm F(x) của hàm số f (x)
D. F(a x b) C
1
là:
(x 2)2
Câu 27: Họ nguyên hàm F(x) của hàm số f (x)
A. F(x)
1
F(a x b) C
a
1
C
x2
D. F(x)
1
C
(x 2)3
x2 x 1
là
x 1
x2
ln | x 1| C
2
1
C. F(x) x
C
x 1
B. F(x) x 2 ln | x 1| C
A. F(x)
D. Đáp số khác
Câu 29: Nguyên hàm F x của hàm số f x 2x 2 x 3 4 thỏa mãn điều kiện F 0 0 là
B. 2x 3 4x 4
A. 4
C.
2 3 x4
x 4x
3
4
D. x 3 x 4 2x
Câu 30: Nguyên hàm của hàm số f x x 3 trên là
A.
x4
xC
4
Câu 31: Tính
B. 3x 2 C
C. 3x 2 x C
D.
x4
C
4
D.
x3
1
2 C
3 2x
x5 1
x 3 dx ta được kết quả nào sau đây?
3
A. Một kết quả khác
B.
2
x x
C
3 2
x6
x
C. 6 4 C
x
4
Câu 32: Một nguyên hàm F(x) của f (x) 3x 2 1 thỏa F(1) = 0 là:
A. x 3 1
B. x 3 x 2
C. x 3 4
D. 2x 3 2
Câu 33: Hàm số f x có nguyên hàm trên K nếu
A. f x xác định trên K
B. f x có giá trị lớn nhất trên K
C. f x có giá trị nhỏ nhất trên K
D. f x liên tục trên K
Câu 34: Tìm họ nguyên hàm của hàm số f (x) x 3 x 4 x ?
2 32 3 43 4 54
x x x C
3
4
5
2
4
2
4
5 5
C. F(x) x 3 x 3 x 4 C
3
3
4
A. F(x)
2 23 3 43 4 54
x x x C
3
4
5
3
1
2
1
4 5
D. F(x) x 2 x 3 x 4 C
3
3
5
B. F(x)
Câu 35: Cho hàm số f (x) x 3 x 2 2x 1 . Gọi F(x) là một nguyên hàm của f(x), biết rằng F(1) = 4 thì
A. F(x)
x 4 x3
49
x2 x
4 3
12
Email:
Facebook: />
B. F(x)
x 4 x3
x2 x 1
4 3
Trang 6
Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A
C. F(x)
x 4 x3
x2 x 2
4 3
D. F(x)
Phần Tích Phân-Giải tích 12
x 4 x3
x2 x
4 3
Câu 36: Họ nguyên hàm của hàm số y (2x 1)5 là:
1
1
1
A.
(2x 1) 6 C
B. (2x 1) 6 C
C. (2x 1) 6 C .
D. 10(2x 1)4 C
12
6
2
1
Câu 37: Tìm nguyên hàm của hàm số f(x) biết f (x)
x 9 x
2
3
A.
B. Đáp án khác
x 9 x3 C
27
2
2
3
C.
D.
x 9 x3 C
C
3
27
3( x 9 x 3 )
Câu 38: Mệnh đề nào sau đây sai?
A. Nếu F(x) là một nguyên hàm của f (x) trên a; b và C là hằng số thì f (x)dx F(x) C .
B. Mọi hàm số liên tục trên a;b đều có nguyên hàm trên a;b .
C. F(x) là một nguyên hàm của f (x) trên a; b F(x) f (x), x a;b .
D.
f (x)dx f (x)
Câu 39: Tìm một nguyên hàm F x của hàm số f x 2 x 2 biết F 2
7
3
x3 1
x3
x3
19
B. F x 2x x 3
C. F x 2x 1
D. F x 2x 3
3 3
3
3
3
Câu 40: Cho hai hàm số f (x), g(x) là hàm số liên tục,có F(x), G(x) lần lượt là nguyên hàm của
f (x), g(x) . Xét các mệnh đề sau:
(I): F(x) G(x) là một nguyên hàm của f (x) g(x)
A. F x 2x
(II): k.F x là một nguyên hàm của kf x k R
(III): F(x).G(x) là một nguyên hàm của f (x).g(x)
Mệnh đề nào là mệnh đề đúng ?
A. I
B. I và II
C. I,II,III
2
:
(x 1) 2
2
C.
x 1
D. II
Câu 41: Hàm nào không phải nguyên hàm của hàm số y
x 1
2x
B.
x 1
x 1
Câu 42: Tìm công thức sai:
A.
A. e x dx e x C
C. cos xdx sin x C
D.
x 1
x 1
ax
C 0 a 1
ln a
D. sin xdx cos x C
B. a x dx
Câu 43: Trong các mệnh đề sau, mệnh đề nào sai?
sin 3 x
(I) : sin 2 x dx
C
3
4x 2
(II) : 2
dx 2 ln x 2 x 3 C
x x 3
Email:
Facebook: />
Trang 7
Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A
(III) : 3x 2x 3 x dx
A. (III)
6x
xC
ln 6
B. (I)
C. Cả 3 đều sai.
Câu 44: Nếu F(x) là một nguyên hàm của hàm số y
Phần Tích Phân-Giải tích 12
D. (II)
1
và F(2) 1 thì F(3) bằng
x 1
1
3
B. ln
C. ln 2
D. ln 2 1
2
2
Câu 45: Công thức nguyên hàm nào sau đây không đúng?
x 1
dx
A.
ln x C
B. x dx
C 1
x
1
ax
dx
x
C. a dx
C 0 a 1
D.
tan x C
ln a
cos x
Câu 46: Trong các khẳng định sau, khẳng định nào sai?
F x 1 tan x
f x 1 tan 2 x
A.
là một nguyên hàm của hàm số
A.
B. Nêu F(x) là một nguyên hàm của hàm số f(x) thì mọi nguyên hàm của f(x) đều có dạng
F x C
(C là hằng số)
u ' x
u x dx lg u x C
C.
F x 5 cos x
f x sin x
D.
là một nguyên hàm của
Câu 47: Trong các mệnh đề sau, mệnh đề nào sai:
x4 x2
1
A. x 3 x dx
C
B. e 2x dx e x C
4
2
2
2
dx
4
C. sin xdx cos x C
D. 2
ln
3
1 x x
Câu 48: Trong các khẳng định sau, khăng định nào sai?
f x f 2 x dx f1 x dx f 2 x dx
A. 1
Fx
G x đều là nguyên hàm cùa hàm số f x thì F x G x C là hằng số
B. Nếu
và
F x x là một nguyên hàm của f x 2 x
C.
Fx x2
f x 2x
D.
là một nguyên hàm của
Câu 49: Trong các khẳng định sau khẳng định nào sai?
F x 7 sin 2 x
A.
f x sin 2x
là một nguyên hàm của hàm số
Fx
G x
F x G x dx có dạng
B. Nếu
và
đều là nguyên hàm của hàm số f(x) thì
h x Cx D (C,D là các hằng số, C 0 )
u ' x
C.
u x
D. Nếu
u x C
f t dt F t C thì f u x dt F u x C
Email:
Facebook: />
Trang 8
Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A
Câu 50: Cho hàm số f (x)
Phần Tích Phân-Giải tích 12
5 2x 4
. Khi đó:
x2
2x 3 5
C
3
x
3
2x
5
C. f (x)dx
C
3
x
B. f (x)dx 2x 3
A. f (x)dx
D. f (x)dx
5
C
x
2x 3
5lnx 2 C
.
3
4
Câu 51: Cho hàm số f x x x 2 1 . Biết F(x) là một nguyên hàm của f(x); đồ thị hàm số y F x đi qua
điểm M 1;6 . Nguyên hàm F(x) là.
A. F x
C. F x
x
x
2
1
4
2
5
4
2
1
5
B. F x
x
D. F x
x
5
2
5
2
1
5
5
2
1
4
2
5
2
5
4
3
x 1
biết F(1) = 0
x2
x2 1 3
x2 1 1
B. F(x)
C. F(x)
2 x 2
2 x 2
Câu 52: Tìm 1 nguyên hàm F(x) của f (x)
A. F(x)
x2 1 1
2 x 2
D. F(x)
Câu 53: Một nguyên hàm của hàm số f (x) 1 2x là:
3
3
3
A. (2x 1) 1 2x
B. (2x 1) 1 2x
C. (1 2x) 1 2x
4
2
2
D.
x2 1 3
2 x 2
3
(1 2x) 1 2x
4
1
Câu 54: Cho f (x) là hàm số lẻ và liên tục trên . Khi đó giá trị tích phân
f (x)dx
là:
1
A. 2
B. 0
C. 1
D. -2
Câu 55: Cho hàm số y f x thỏa mãn y ' x 2 .y và f(-1)=1 thì f(2) bằng bao nhiêu:
A. e3
B. e2
C. 2e
Câu 56: Biết F(x) là nguyên hàm của hàm số
A. ln 2 1
B.
1
2
Câu 57: Nguyên hàm của hàm số
A.
1
C
2 4x
B.
1
2x 1
1
3
2x 1
2
D. e 1
1
và F(2)=1. Khi đó F(3) bằng bao nhiêu:
x 1
3
C. ln
D. ln 2
2
là
C
C.
1
C
4x 2
D.
1
C
2x 1
Câu 58: Nguyên hàm F(x) của hàm số f (x) 4x 3 3x 2 2x 2 thỏa mãn F(1) 9 là:
A. F(x) x 4 x 3 x 2 2
B. F(x) x 4 x 3 x 2 10
C. F(x) x 4 x 3 x 2 2x
D. F(x) x 4 x 3 x 2 2x 10
Câu 59: Trong các khẳng định sau khẳng định nào sai?
A. 0dx C ( C là hằng số)
C.
x
dx
1 1
x C ( C là hằng số)
1
Email:
Facebook: />
B.
1
x dx ln x C ( C là hằng số)
D. dx x C ( C là hằng số)
Trang 9
Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A
Câu 60: Một nguyên hàm của f x
Phần Tích Phân-Giải tích 12
x 2 2x 3
là
x 1
x2
x2
x2
3x 6ln x 1 B.
3x-6ln x 1
C.
3x+6ln x 1
2
2
2
Câu 61: Cho f (x)dx x 2 x C . Vậy f (x 2 )dx ?
A.
x5 x3
A.
C
5 3
B. x 4 x 2 C
C.
2 3
x xC
3
D.
x2
3x+6ln x 1
2
D. Không được tính
Câu 62: Hãy xác định hàm số f(x) từ đẳng thức: x 2 xy C f (y)dy
A. 2x
B. x
C. 2x + 1
u
D. Không tính được
v
Câu 63: Hãy xác định hàm số f từ đẳng thức sau: e e C f (v)dv
A. ev
B. eu
C. e v
4 1
Câu 64: Hãy xác định hàm số f từ đẳng thức sau: 3 2 C f (y)dy
x y
1
3
2
A. 3
B. 3
C. 3
y
y
y
D. e u
D. Một kết quả khác.
Câu 65: Hãy xác định hàm số f từ đẳng thức: sin u.cos v C f (u)du
A. 2cosucosv
B. -cosucosv
C. cosu + cosv
D. cosucosv
x 3 3x 2 3x 7
với F(0) = 8 là:
(x 1) 2
x2
8
x2
8
x2
8
A.
x
B.
x
C.
x
D. Một kết quả khác
2
x 1
2
x 1
2
x 1
Câu 67: Tìm nguyên hàm của: y sin x.sin 7x với F 0 là:
2
sin 6x sin 8x
sin 6x sin 8x
sin 6x sin 8x
sin 6x sin 8x
A.
B.
C.
D.
12
16
12
16
12
16
16
12
2x 3
Câu 68: Cho hai hàm số F(x) ln(x 2 2mx 4) vaø f (x) 2
. Định m để F(x) là một nguyên
x 3x 4
hàm của f(x)
3
3
2
2
A.
B.
C.
D.
2
2
3
3
1
Câu 69: 2
dx bằng:
sin x.cos 2 x
A. 2 tan 2x C
B. -2 cot 2x C
C. 4 cot 2x C
D. 2 cot 2x C
Câu 66: Tìm nguyên hàm của hàm số f (x)
2
Câu 70: sin 2x cos2x dx bằng:
A.
sin 2x cos2x
3
3
2
C
1
C. x sin 2x C
2
2x
Câu 71: cos 2
dx bằng:
3
Email:
Facebook: />
1
1
B. cos2x sin 2x C
2
2
1
D. x cos4x C
4
Trang 10
Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A
x 3
4x
x 4
4x
sin
C
D. cos
C
2 8
3
2 3
3
1
Câu 72: Cho F x là một nguyên hàm của hàm số y
và F 0 1 . Khi đó, ta có F x là:
cos 2 x
A. tan x
B. tan x 1
C. tan x 1
D. tan x 1
A.
3
2x
cos 4
C
2
3
B.
1
2x
cos 4
C
2
3
Phần Tích Phân-Giải tích 12
C.
Câu 73: Hàm số F(x) ln sin x 3cos x là một nguyên hàm của hàm số nào trong các hàm số sau đây:
cos x 3sin x
sin x 3cos x
cos x 3sin x
C. f (x)
sin x 3cos x
A. f (x)
Câu 74: Tìm nguyên hàm:
B. f (x) cos x 3sin x
D. f (x)
sin x 3cos x
cos x 3sin x
2
(1 sin x) dx
2
1
2
1
x 2 cos x sin 2x C ;
B. x 2 cos x sin 2x C ;
3
4
3
4
2
1
2
1
C. x 2 cos 2x sin 2x C ;
D. x 2 cos x sin 2x C ;
3
4
3
4
4m
Câu 75: Cho f (x)
sin 2 x . Tìm m để nguyên hàm F(x) của f(x) thỏa mãn F(0) = 1 và F
4 8
4
3
3
4
m
m
m
m
3
4
4
3
A.
B.
C.
D.
A.
Câu 76: Cho hàm f x sin 4 2x . Khi đó:
1
1
A. f x dx 3x sin 4x sin 8x C
8
8
1
1
C. f x dx 3x cos 4x sin 8x C
8
8
1
1
B. f x dx 3x cos 4x sin 8x C
8
8
1
1
D. f x dx 3x sin 4x sin 8x C
8
8
Câu 77: Một nguyên hàm của hàm số y sin 3x
1
1
A. cos3x
B. 3cos3x
C. 3cos3x
D. cos3x
3
3
1
Câu 78: Cho hàm y 2 . Nếu F x là nguyên hàm của hàm số và đồ thị hàm số y F x đi qua
sin x
điểm M ; 0 thì F x là:
6
3
3
cot x
A.
C. 3 cot x
cot x
3
B.
D. 3 cot x
3
Câu 79: Nguyên hàm của hàm số f (x) tan 3 x là:
A. Đáp án khác
tan 4 x
C.
C
4
B. tan 2 x 1
1
D. tan 2 x ln cos x C
2
Câu 80: Họ nguyên hàm F(x) của hàm số f (x) sin 2 x là
1
A. F(x) (2x sin 2x) C
B. Cả (A), (B) và (C) đều đúng
4
1
1
sin 2x
C. F(x) (x sinx .cosx) C
D. F(x) (x
)C
2
2
2
Email:
Facebook: />
Trang 11
Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A
Phần Tích Phân-Giải tích 12
Câu 81: Cặp hàm số nào sau đây có tính chất: Có một hàm số là nguyên hàm của hàm số còn lại?
1
A. sin 2x và cos 2 x
B. tan x 2 và
C. ex và e x
D. sin 2 x và sin 2 x
2 2
cos x
Câu 82: Gọi F1(x) là nguyên hàm của hàm số f1 (x) sin 2 x thỏa mãn F1(0) =0 và F2(x) là nguyên hàm
của hàm số f 2 (x) cos 2 x thỏa mãn F2(0)=0.
Khi đó phương trình F1(x) = F2(x) có nghiệm là:
k
2
3
Câu 83: Nguyên hàm F x của hàm số f x sin 4 2x thỏa mãn điều kiện F 0 là
8
3
1
1
3
3
1
1
A. x sin 2x sin 4x
B. x sin 4x sin 8x
8
8
64
8
8
8
64
3
1
1
3
C. x 1 sin 4x sin 8x
D. x sin 4x sin 6 x
8
8
64
8
4
Câu 84: Một nguyên hàm của hàm số f (x)
là:
cos 2 x
4x
4
A.
B. 4 tan x
C. 4 tan x
D. 4x tan 3 x
2
sin x
3
A. x k2
B. x k
C. x
k
2
D. x
Câu 85: Biểu thức nào sau đây bằng với sin 2 3xdx ?
1
1
(x sin 3x) C
2
3
14
Câu 86: Cho hàm số F(x) là một nguyên hàm của hàm số f(x) = cos3x và F ( ) thì
2
3
1
13
1
A. F ( x) sin 3x
B. F ( x) sin 3x 5
3
3
3
1
1
13
C. F ( x) sin 3x 5
D. F ( x) sin 3x
3
3
3
Câu 87: Một nguyên hàm của f (x) cos 3x cos 2x bằng
1
1
1
1
1
1
1
A. sin x sin 5x
B. sin x sin 5x
C. cos x cos 5c
D. sin 3x sin 2x
2
2
2
10
2
10
6
A.
1
1
(x sin 6x) C
2
6
B.
1
1
(x sin 6x) C
2
6
C.
1
1
(x sin 3x) C
2
3
D.
Câu 88: Tính cos 3 xdx ta được kết quả là:
cos4 x
C
x
cos4 x.sin x
C.
C
4
1
3sin x
sin 3x
C
12
4
1 sin 3x
D.
3sin x C
4 3
A.
B.
Câu 89: Tìm nguyên hàm của hàm số f(x) biết f (x) tan 2 x
A.
tan 3 x
C
3
B. Đáp án khác
Câu 90: Hàm số nào là nguyên hàm của f(x) =
C. tanx-1+C
D.
sin x x cos x
C
cos x
1
:
1 sin x
x
A. F(x) = 1 + cot
2 4
Email:
Facebook: />
B. F(x) =
2
1 tan
x
2
Trang 12
Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A
C. F(x) = ln(1 + sinx)
D. F(x) = 2tan
Phần Tích Phân-Giải tích 12
x
2
Câu 91: Họ nguyên hàm của f(x) = sin 3 x
cos3 x
cos3 x
1
A. cos x
C
B. cos x
C C. cos x
c
3
3
cos x
x
Câu 92: Cho hàm số f x 2 sin 2 Khi đó f (x)dx bằng ?
2
A. x sin x C
B. x sin x C
C. x cos x C
Câu 93: Nguyên hàm của hàm số f x 2sin x cos x là:
A. 2cos x s inx C
B. 2cos x s inx C
C. 2cos x s inx C
D.
sin 4 x
C
4
D. x cos x C
D. 2cos x s inx C
2
Câu 94: Họ nguyên hàm của sin x là:
1
1
sin 2x
A. x 2 cos 2x C B. x
2
2
2
C.
x sin 2x
C
2
4
D.
1
x 2 cos 2x C
2
Câu 95: Họ nguyên hàm của hàm số f x sin 2x là
1
A. F x cos 2x C
B. F x cos 2x C
2
1
C. F x cos 2x C
D. F x cos 2x C
2
Câu 96: Một nguyên hàm của hàm số: y = cos5x. cosx là:
A. F(x) = cos6x
B. F(x) = sin6x
1 sin 6x sin 4x
11
1
C.
D. sin 6x sin 4x
2 6
4
26
4
Câu 97: Tính cos 5x.cos 3xdx
1
1
sin 8x sin 2x C
8
2
1
1
C.
sin 8x sin 2x
16
4
A.
1
1
sin 8x sin 2x
2
2
1
1
D.
sin 8x sin 2x
16
4
B.
Câu 98: Họ nguyên hàm của hàm số f x cos2 x là:
x cos 2x
x cos 2x
x sin 2x
x sin 2x
C
B.
C
C.
C
D.
C
2
4
2
4
2
4
2
4
dx
Câu 99: Tính:
1 cos x
x
x
1
x
1
x
A. 2 tan C
B. tan C
C. tan C
D. tan C
2
2
2
2
4
2
Câu 100: Cho f (x) 3 5sin x và f (0) 10 . Trong các khẳng định sau khẳng định nào đúng?
3
A. f (x) 3x 5 cos x 2
B. f
2 2
C. f 3
D. f x 3x 5cos x
A.
Câu 101: cos4x.cos x sin 4x.sin x dx bằng:
A.
1
sin 5x C
5
Email:
Facebook: />
B.
1
sin 3x C
3
Trang 13
Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A
C.
1
1
sin 4x cos4x C
4
4
D.
Phần Tích Phân-Giải tích 12
1
sin 4x cos4x C
4
Câu 102: cos8x.sin xdx bằng:
1
sin 8x.cosx C
8
1
1
C.
cos7x cos9x C
14
18
1
B. sin 8x.cosx C
8
1
1
D.
cos9x cos7x C
18
14
A.
Câu 103: sin 2 2xdx bằng:
1
1
1
1
1
1
1
x sin 4x C
B. sin 3 2x C
C. x sin 4x C
D. x sin 4x C
2
8
3
2
8
2
4
Câu 104: Nguyên hàm F(x) của hàm số f (x) x sin x thỏa mãn F(0) 19 là:
A.
x2
A. F(x) cosx
2
2
x
C. F(x) cosx 20
2
x2
B. F(x) cosx 2
2
x2
D. F(x) cosx 20
2
Câu 105: Tìm nguyên hàm của hàm số f x thỏa mãn điều kiện: f x 2x 3cos x, F 3
2
2
2
A. F(x) x 2 3sin x 6
B. F(x) x 2 3sin x
4
4
2
2
C. F(x) x 2 3sin x
D. F(x) x 2 3sin x 6
4
4
1
Câu 106: Nguyên hàm F(x) của hàm số f (x) 2x 2 thỏa mãn F( ) 1 là:
sin x
4
2
2
A. F(x) cotx x 2
B. F(x) cotx x 2
4
16
2
C. F(x) cotx x 2
D. F(x) cotx x 2
16
Câu 107: Cho hàm số f x cos 3x.cos x . Nguyên hàm của hàm số f x bằng 0 khi x 0 là hàm số
nào trong các hàm số sau ?
sin 4x sin 2x
sin 4x sin 2x
cos 4x cos 2x
A. 3sin 3x sin x
B.
C.
D.
8
4
2
4
8
4
Câu 108: Họ nguyên hàm F x của hàm số f x cot 2 x là:
A. cot x x C
B. cot x x C
Câu 109: Tính nguyên hàm I
a 2 b là:
A. 8
B. 4
C. 0
Câu 110: Nguyên hàm của hàm số f x e
3
13x
e
B. F x
e
3
C
Email:
Facebook: />
D. 2
là:
1 3x
C
D. tan x x C
dx
x
được kết quả I ln tan 2 C với a; b; c . Giá trị của
cosx
a b
1 3x
A. F x
C. cot x x C
C. F x
3e
C
e3x
D. F x
e
C
3e3x
Trang 14
Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A
1
Câu 111: Nguyên hàm của hàm số f x
A. F x
5
e 25x
C
B. F x
e
5
là:
2 5x
e 25x
Phần Tích Phân-Giải tích 12
C
C. F x
e 25x
C
5
D. F x
e5x
C
5e2
Câu 112: 3x 4 x dx bằng:
A.
3x
4x
C
ln 3 ln 4
B.
3x
4x
C
ln 4 ln 3
C.
4x
3x
C
ln 3 ln 4
D.
3x
4x
C
ln 3 ln 4
C.
2x
2 3
x C
3.ln 2 3
D. 3.
Câu 113: 3.2x x dx bằng:
A.
2x 2 3
x C
ln 2 3
B. 3.
2x 2 3
x C
ln 2 3
2x
x3 C
ln 2
Câu 114: Nguyên hàm của hàm số f x 23x.32x là:
23x 32x
.
C
3ln 2 2ln 3
23x.32x
C. F x
C
ln 6
72
C
ln 72
ln 72
D. F x
C
72
A. F x
B. F x
Câu 115: Nguyên hàm của hàm số f x
x
4
3
A. F x 3 C
3
ln
4
3x 1
là:
4x
x
x
3
4
B. F x C
3
ln
4
C. F x
22x.3x.7 x
C
ln 4.ln 3.ln 7
C. 84 x C
x
C
2
3
4
D. F x 3 C
3
ln
4
Câu 116: 22x.3x.7 x dx là
A.
84x
C
ln 84
B.
D. 84 x ln 84 C
Câu 117: Hàm số F(x) e x e x x là nguyên hàm của hàm số
1
B. f (x) e x e x x 2
2
1
D. f (x) e x e x x 2
2
A. f (x) e x e x 1
C. f (x) e x e x 1
Câu 118: Nguyên hàm của hàm số f x
A. ln e x e x C
B.
e x e x
ex ex
1
C
e ex
C. ln e x e x C
x
D.
1
C
e e x
x
1
Câu 119: Một nguyên hàm của f x 2x 1 e x là
1
A. x.e x
1
B. x 2 1 e x
1
1
C. x 2 e x
D. e x
Câu 120: Xác định a,b,c để hàm số F(x) (ax 2 bx c)e x là một nguyên hàm của hàm số
f (x) (x 2 3x 2)e x
A. a 1, b 1,c 1
B. a 1, b 1, c 1
Email:
Facebook: />
C. a 1, b 1,c 1
D. a 1, b 1, c 1
Trang 15
Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A
Phần Tích Phân-Giải tích 12
2x 1 5x 1
. Khi đó:
10x
2
1
2
1
A. f (x).dx x
C.
B. f (x).dx x
C
x
x
5 .ln 5 5.2 .ln 2
5 ln 5 5.2 .ln 2
5x
5.2x
5x
5.2 x
C. f (x).dx
C
D. f (x).dx
C
2 ln 5 ln 2
2 ln 5 ln 2
Cho hàm số f (x)
Câu 121:
Câu 122: Nếu f (x) dx e x sin 2 x C thì f (x) bằng:
A. e x 2 sin x
B. e x sin 2x
C. e x cos 2 x
D. e x 2 sin x
Câu 123: Nếu f (x)dx e x sin 2 x C thì f (x) là hàm nào ?
A. e x cos 2 x
B. e x sin 2x
C. e x cos 2x
D. e x 2 sin x
1
x
Câu 124: Một nguyên hàm của f (x) (2x 1).e là:
1
1
1
1
A. F(x) x.e x
B. F(x) e x
C. F(x) x 2 .e x
D. F(x) x 2 1 .e x
Câu 125: Nếu F x là một nguyên hàm của f (x) e x (1 e x ) và F(0) 3 thì F(x) là ?
A. e x x
B. e x x 2
Câu 126: Một nguyên hàm của f (x)
C. e x x C
D. e x x 1
e3x 1
là:
ex 1
1 2x
e ex x
2
1
C. F(x) e2x e x
2
1
B. F(x) e2x ex
2
1
D. F(x) e2x e x 1
2
A. F(x)
Câu 127: Nguyên hàm của hàm số f x
A. F x 2e x tanx
e x
e (2
) là:
cos2 x
B. F x 2e x - tanx C
x
C. F x 2e x tanx C
D. Đáp án khác
Câu 128: Tìm nguyên hàm: (2 e3x ) 2 dx
4
1
A. 3x e3x e6x C
3
6
4 3x 1 6x
C. 4x e e C
3
6
ln 2
dx , kết quả sai là:
Câu 129: Tính 2 x
x
A. 2 2
x
1 C
B. 2
x
4
5
B. 4x e3x e6x C
3
6
4 3x 1 6x
D. 4x e e C
3
6
C. 2
C
x 1
D. 2 2
C
x
1 C
2
Câu 130: Hàm số F(x) e x là nguyên hàm của hàm số
2
A. f (x) 2xe
x2
B. f (x) e
2x
ex
C. f (x)
2x
2
D. f (x) x 2e x 1
Câu 131: 2x 1 dx bằng
A.
2 x 1
ln 2
B. 2 x 1 C
Email:
Facebook: />
C.
2 x 1
C
ln 2
D. 2 x 1.ln 2 C
Trang 16
Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A
Phần Tích Phân-Giải tích 12
Câu 132: Nguyên hàm của hàm số f x 312x.23x là:
x
8
9
A. F x C
8
ln
9
x
9
8
B. F x 3 C
8
ln
9
x
8
9
C. F x 3 C
8
ln
9
x
8
9
D. F x 3 C
9
ln
8
Câu 133: Nguyên hàm của hàm số f x e3x .3x là:
3 x
3.e C
A. F x
ln 3.e
B. F x 3.
3
C. F x
3.e
e3x
C
ln 3.e3
3 x
x
ln 3.e3
D. F x
C
3.e
ln 3
C
2
1
Câu 134: 3x x dx bằng:
3
2
3
3x ln 3
A.
x C
ln 3 3
9x
1
C.
2x C
x
2 ln 3 2.9 ln 3
1 3x
1
B.
x
C
3 ln 3 3 ln 3
D.
1 x 1
9 x 2x C
2 ln 3
9
Câu 135: Gọi 2008x dx F x C , với C là hằng số. Khi đó hàm số F x bằng
A. 2008 x ln 2008
B. 2008 x 1
Câu 136: Họ nguyên hàm của hàm số f x
C. 2008 x
D.
2008x
ln 2008
1
là
1 8x
1
8x
ln
C
ln12 1 8x
1
8x
C. F x
ln
C
ln 8 1 8x
A. F x
1
8x
ln
C
12 1 8x
8x
D. F x ln
C
1 8x
B. F x
Câu 137: Nguyên hàm của hàm số f (x) e x (1 3e2x ) bằng:
A. F(x) e x 3e x C
C. F(x) e x 3e2x C
B. F(x) e x 3e 3x C
D. F(x) e x 3e x C
Câu 138: Hàm số F(x) e x tan x C là nguyên hàm của hàm số f(x) nào
1
A. f (x) e x 2
B. Đáp án khác
sin x
1
ex
x
x
C. f (x) e 2
D. f (x) e 1
2
sin x
cos x
cosxesinx ; x 0
Câu 139: Cho f x 1
. Nhận xét nào sau đây đúng?
; x 0
1 x
cosx
e
; x 0
A. F x
là một nguyên hàm của f x
2 1 x 1 ; x 0
Email:
Facebook: />
Trang 17
Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A
Phần Tích Phân-Giải tích 12
sinx
; x 0
e
B. F x
là một nguyên hàm của f x
2 1 x ; x 0
cosx
; x 0
e
C. F x
là một nguyên hàm của f x
2 1 x ; x 0
sinx
; x 0
e
D. F x
là một nguyên hàm của f x
2 1 x 1 ; x 0
Câu 140:
3
dx bằng:
2x 5
A. 2ln 2x 5 C
Câu 141:
A.
1
5x 3
2
B.
3
ln 2x 5 C
2
C. 3ln 2x 5 C
1
C
5 5x 3
C.
D.
3
ln 2x 5 C
2
dx bằng:
1
C
5 5x 3
B.
3x 1
dx bằng:
x2
A. 3x 7 ln x 2 C
B. 3x ln x 2 C
1
C
5x 3
D.
1
C
5 5x 3
Câu 142:
Câu 143:
1
x 1 x 2
C. 3x ln x 2 C
D. 3x 7 ln x 2 C
dx bằng:
x 1
C
x2
A. ln x 1 ln x 2 C
B. ln
C. ln x 1 C
D. ln x 2 C
x 1
dx bằng:
x 3x 2
A. 3ln x 2 2ln x 1 C
B. 3ln x 2 2ln x 1 C
C. 2ln x 2 3ln x 1 C
D. 2ln x 2 3ln x 1 C
Câu 144:
2
1
dx bằng:
x 4x 5
x 5
x 5
A. ln
C
B. 6 ln
C
x 1
x 1
Câu 145:
2
Câu 146: Tìm nguyên hàm:
A.
1
x
ln
C
3 x 3
Câu 147:
1 x 5
ln
C
6 x 1
1 x 5
D. ln
C
6 x 1
C.
1
x
ln
C
3 x 3
D.
1 x 3
ln
C
3
x
1
C
x 3
D.
1
C
3 x
1
x(x 3)dx .
B.
1 x 3
ln
C
3
x
1
dx bằng:
x 6x 9
2
1
C
x 3
1
Câu 148: Cho hàm f x 2
. Khi đó:
x 3x 2
A.
C.
1
C
x 3
B.
Email:
Facebook: />
C.
Trang 18
Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A
x 1
C
x2
x2
C. f x dx ln
C
x 1
Phần Tích Phân-Giải tích 12
x 1
C
x 2
x 2
D. f x dx ln
C
x 1
A. f x dx ln
B. f x dx ln
1
là
x 4x 3
1
x 3
1
x 1
A. F(x) ln |
| C
B. F(x) ln |
| C
2
x 1
2
x 3
x 3
C. F(x) ln | x 2 4x 3 | C
D. F(x) ln |
| C
x 1
1
Câu 150: Gọi F(x) là nguyên hàm của hàm số f (x) 2
thỏa mãn F(3/2) =0. Khi đó F(3) bằng:
x 3x 2
A. 2ln2
B. ln2
C. -2ln2
D. –ln2
2x 3
Câu 151: Tìm nguyên hàm của hàm số f(x) biết f (x) 2
x 4x 3
2
x 3x
A.
B. (2x 3) ln x 2 4x 3 C
C
2
2
x 4x 3
Câu 149: Họ nguyên hàm F(x) của hàm số f (x)
C.
x 2 3x
C
x 2 4x 3
Câu 152: Tính
A.
x
2
2
D.
1
ln x 1 3ln x 3 C
2
C.
1 x 3
ln
C
4 x 1
dx
2x 3
1 x 1
ln
C
4
x 3
B.
1 x 3
ln
C
4
x 1
Câu 153: Họ nguyên hàm của f(x) =
x 1
C
x
1
x
C. F(x) = ln
C
2 x 1
B. F(x) = ln
x
C
x 1
D. F(x) = ln x(x 1) C
x 3
, F(0) 0 thì hằng số C bằng
x 2x 3
2
3
C. ln 3
D. ln 3
3
2
Câu 154: Nếu F(x) là một nguyên hàm của hàm f (x)
B.
3
ln 3
2
Câu 155: Nguyên hàm của hàm số: y =
a
2
2
dx
là:
x2
1
ax
1 xa
1 xa
ln
+C
C. ln
+C
D. ln
+C
2a a x
a xa
a xa
dx
Câu 156: Nguyên hàm của hàm số: y = 2 2 là:
x a
1
x a
1
xa
1 xa
1 xa
A.
ln
+C
B.
ln
+C
C. ln
+C
D. ln
+C
2a x a
2a x a
a xa
a xa
1
Câu 157: Để tìm họ nguyên hàm của hàm số: f (x) 2
. Một học sinh trình bày như sau:
x 6x 5
A.
1
ax
ln
+C
2a a x
1 x 1
ln
C
4 x 3
1
là:
x(x 1)
A. F(x) = ln
2
A. ln 3
3
D.
B.
Email:
Facebook: />
Trang 19
Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A
Phần Tích Phân-Giải tích 12
1
1
1 1
1
x 6x 5 (x 1)(x 5) 4 x 5 x 1
1
1
(II) Nguyên hàm của các hàm số
,
theo thứ tự là: ln x 5 , ln x 1
x 5 x 1
1
1 x 1
(III) Họ nguyên hàm của hàm số f(x) là: (ln x 5 ln x 1 C
C
4
4 x 5
(I) f (x)
2
Nếu sai, thì sai ở phần nào?
A. I
B. I, II
Email:
Facebook: />
C. II, III
D. III
Trang 20
Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A
Phần Tích Phân-Giải tích 12
PHƯƠNG PHÁP ĐỔI BIẾN VÀ VI PHÂN
A – LÝ THUYẾT TÓM TẮT
+ Phương pháp
+ Phương pháp biến đổi đưa về bảng công thức cơ bản
+ Cách giải:
+Phương pháp đổi biến số: Công thức đổi biến số f u(x).u ' (x)dx F[u(x)] C
( F(u) là một nguyên hàm của f(u) ).
Cốt lõi của phương pháp là dùng 1 biến phụ u đặt và chuyển đổi biểu thức f(x)dx ban đầu về toàn
bộ biểu thức g(u)du đơn giản và dễ tìm nguyên hàm hơn.Cần nhận dạng được các mối liên quan giữa
biểu thức và đạo hàm với nó ví dụ như:
1
t anx
;s inx
cos x;....
cos 2 x
- Ở phương pháp này người ta chia ra các dạng như sau :
+ Dạng 1:Hàm số cần tính tích phân có hoặc biến đổi được biểu thức và đạo hàm của biểu thức đó:
f (u(x)).u , (x).dx
+ Dạng 2: Nếu hàm số cần lấy tích phân có dạng :
f(x) chứa biểu thức
f(x) chứa biểu thức
f(x) chứa biểu thức
a 2 x 2 . Đặt x = |a|sint (-
t )
2
2
t )
2
2
|
a
|
x 2 a 2 . Đặt x =
( t 0; \ )
cos t
2
a 2 x 2 hoặc a2 + x2 . Đặt x = |a|tgt (
B – BÀI TẬP
Câu 1:
3cos x
2 sin x dx
bằng:
A. 3ln 2 sin x C
B. 3ln 2 sin x C
C.
3sin x
2 sin x
2
C
D.
e x e x
dx bằng:
ex ex
A. ln e x e x C
B. ln e x e x C
C. ln e x e x C
3sin x 2 cos x
dx bằng:
3cos x 2 sin x
A. ln 3cos x 2sin x C
B. ln 3cos x 2sin x C
C. ln 3sin x 2cos x C
D. ln 3sin x 2cos x C
3sin x
C
ln 2 sin x
Câu 2:
D. ln e x e x C
Câu 3:
sin x cos x
là:
sin x cos x
1
A. ln sin x cos x C B.
C
ln sin x cos x
Câu 4: Nguyên hàm của
Email:
Facebook: />
C. ln sin x cos x C
D.
1
C
sin x cos x
Trang 21
Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A
4x 1
dx bằng:
4x 2x 5
1
A.
C
2
4x 2x 5
Câu 5:
Phần Tích Phân-Giải tích 12
2
B.
C. ln 4x 2 2x 5 C
Câu 6: x 1 e x
2
2x 3
D.
1
C
4x 2x 5
2
1
ln 4x 2 2x 5 C
2
dx bằng:
x2
2
A. x e x 2x 3 C
2
1 x 2 2x
C. e
C
2
cot x
Câu 7: 2 dx bằng:
sin x
cot 2 x
cot 2 x
A.
C
B.
C
2
2
sin x
Câu 8:
dx bằng:
cos 5 x
1
1
A.
C
B.
C
4
4cos x
4cos 4 x
B. x 1 e
D.
C
1 x 2 2x 3
e
C
2
C.
C.
1 3 2
x x 3x
3
tan 2 x
C
2
1
C
4sin 4 x
D.
tan 2 x
C
2
D.
1
C
4sin 4 x
D.
cos6 x
C
6
Câu 9: sin 5 x.cosxdx bằng:
sin 6 x
sin 6 x
C
B.
C
6
6
ln x
dx bằng:
Câu 10:
x 1 ln x
11
A. 1 ln x 1 ln x C
23
1
C. 2 1 ln x 1 ln x C
3
1
Câu 11:
dx bằng:
x.ln 5 x
ln 4 x
4
A.
C
B. 4 C
4
ln x
A.
Câu 12:
A.
3
2
Câu 13:
A.
C.
cos6 x
C
6
1
B. 1 ln x 1 ln x C
3
1
D. 2 1 ln x 1 ln x C
3
C.
1
C
4 ln 4 x
C.
2
3
D.
1
C
4 ln 4 x
ln x
dx bằng:
x
ln x
3
C
x
2x 2 3
B. 2
ln x
3
C
ln x
3
C
D. 3
ln x
3
C
dx bằng:
1
3x 2 2 C
2
B.
1
2x 2 3 C
2
C.
2x 2 3 C
D. 2 2x 2 3 C
2
Câu 14: x.ex 1dx bằng:
Email:
Facebook: />
Trang 22
Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A
A.
1 x 2 1
e C
2
B. e x
2
1
C. 2e x
C
2
1
Phần Tích Phân-Giải tích 12
D. x 2 .e x
C
e 2x
dx bằng:
ex 1
A. (e x 1).ln e x 1 C
B. e x .ln e x 1 C
C. e x 1 ln e x 1 C
D. ln e x 1 C
2
1
C
Câu 15:
1
ex
Câu 16: 2 dx bằng:
x
1
1
B. e x C
A. e x C
C. e x C
D.
1
e
Câu 17:
C
ex
dx bằng:
ex 1
A. e x x C
Câu 18:
1
x
x
x 1
2
B. ln e x 1 C
C.
ex
C
ex x
D.
B. ln x 1 C
C.
1
C
x 1
D. ln x 1
1
C
ln e x 1
dx bằng:
A. ln x 1 x 1 C
1
C
x 1
3
Câu 19: Họ nguyên hàm x x 1 dx là:
5
A.
C.
x 1
x 1
4
5
C
B.
x 5 3x 4
x2
x3 C
5
4
2
D.
5
4
x 1
5
x 1
4
4
C
x 5 3x 4
x2
x3 C
5
4
2
Câu 20: Hàm số f (x) x x 1 có một nguyên hàm là F(x) . Nếu F(0) 2 thì giá trị của F(3) là
116
146
886
A.
B. Một đáp số khác
C.
D.
15
15
105
x
Câu 21: Kết quả của
dx là:
1 x2
1
1
A. 1 x 2 C
B.
C.
D. 1 x 2 C
C
C
2
2
1 x
1 x
Câu 22: Kết quả nào sai trong các kết quả sao?
A.
dx
1
x
1 cos x 2 tan 2 C
C.
x ln x.ln(ln x) ln(ln(ln x)) C
1
x 2 1 1
ln
x x 2 1 2 x2 1 1 C
xdx
1
D.
ln 3 2x 2 C
2
3 2x
4
B.
dx
Câu 23: Tìm họ nguyên hàm: F(x)
dx
dx
x 2 ln x 1
A. F(x) 2 2 ln x 1 C
Email:
Facebook: />
B. F(x) 2 ln x 1 C
Trang 23
Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A
C. F(x)
1
2 ln x 1 C
4
Câu 24: Tìm họ nguyên hàm: F(x)
D. F(x)
Phần Tích Phân-Giải tích 12
1
2 ln x 1 C
2
x3
dx
x 4 1
1
B. F(x) ln x 4 1 C
4
1
D. F(x) ln x 4 1 C
3
A. F(x) ln x 4 1 C
1
C. F(x) ln x 4 1 C
2
Câu 25: Tính A = sin 2 x cos 3 x dx , ta có
sin 3 x sin 5 x
C
3
5
sin 3 x sin 5 x
A
C
3
5
C.
B. A sin 3 x sin 5 x C
A. A
D. Đáp án khác
Câu 26: Họ nguyên hàm F(x) của hàm số f (x) sin 4 x cos x
1
A. F(x) sin 5 x C
B. F(x) cos5 x C
5
1
C. F(x) sin 5 x C
D. F(x) sin 5 x C
5
Câu 27: Để tìm nguyên hàm của f x sin 4 x cos5 x thì nên:
A. Dùng phương pháp đổi biến số, đặt t cos x
u cos x
B. Dùng phương pháp lấy nguyên hàm từng phần, đặt
4
4
dv sin x cos xdx
4
u sin x
C. Dùng phương pháp lấy nguyên hàm từng phần, đặt
5
dv cos xdx
D. Dùng phương pháp đổi biến số, đặt t sin x
Câu 28: Họ nguyên hàm của hàm số f x cos 3x tan x là
4
A. cos 3 x 3cos x C
3
4
C. cos 3 x 3cos x C
3
1 3
sin x 3sin x C
3
1
D. cos3 x 3cos x C
3
B.
Câu 29: Họ nguyên hàm của hàm số f x
A.
2ln x 3
2
2
2ln x 3
2 ln x 3
B.
C
8
C
x
C.
Câu 30: Gọi F(x) là nguyên hàm của hàm số f (x)
F(x) = x có nghiệm là:
A. x = 0
Câu 31: Tích phân
B. x = 1
3
là
2ln x 3
8
x
8 x2
C. x = -1
4
C
D.
2ln x 3
2
4
C
thỏa mãn F(2) =0. Khi đó phương trình
D. x 1 3
dx
bằng
e 1
x
Email:
Facebook: />
Trang 24
Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A
A. ln
e
2e 2
B. ln
2e
e 1
C. ln
Phần Tích Phân-Giải tích 12
e
2 e 1
D. ln e 1 ln 2
Câu 32: Họ nguyên hàm của tanx là:
A. ln cos x C
B. -ln cos x C
1
ln(x 1)
2
D. ln(cosx) + C
x
là:
x 1
Câu 33: Một nguyên hàm của f (x)
A.
tan 2 x
C.
C
2
2
B. 2ln(x 2 1)
C.
1
ln(x 2 1)
2
D. ln(x 2 1)
Câu 34: Hàm số nào là nguyên hàm của f(x) = x. x 2 5 :
3
3
3
3
1
1
A. F(x) = (x 2 5) 2
B. F(x) = (x 2 5) 2
C. F(x) = (x 2 5) 2
D. F(x) 3(x 2 5) 2
3
2
2 ln x x
Câu 35: Nguyên hàm của hàm số f x
, x 0 là:
x
ln 2 x
ln 2 x
2
A.
C
B. 2ln x 1 C
C. 2 ln x x ln x C D.
xC
x
x
ex
Câu 36: Họ nguyên hàm của 2x
là:
e 1
1 ex 1
A. ln e 2x 1 C
B. ln x
C
2 e 1
C. ln
ex 1
C
ex 1
Câu 37: Gọi F(x) là một nguyên hàm của hàm y ln 2 x 1.
1
.
9
1
Câu 38: Họ nguyên hàm của
là:
sin x
x
x
A. ln cot C
B. ln tan C
2
2
A.
8
9
B.
C.
8
.
3
D.
1 ex 1
ln
C
2 ex 1
ln x
1
mà F(1) . Giá trị F2 (e) bằng:
x
3
1
D. .
3
C. -ln|cosx| + C
D. ln sin x C
C. sin 4 x C
D. cos 4 x C
Câu 39: cos x.sin 3 xdx bằng:
A.
cos4 x
C
4
B.
sin 4 x
C
4
Câu 40: Họ nguyên hàm của f (x) x.cos x 2 là:
A. cos x 2 C
B. sin x 2 C
C.
1
sin x 2 C
2
D. 2sin x 2 C
2
Câu 41: Một nguyên hàm của f(x) = xe x là:
2
1 2
A. e x
B. e x
2
2x
Câu 42:
dx
4
2
x 9
A.
1
5 x 9
2
5
C
B.
1
3 x 9
2
3
C
Email:
Facebook: />
C. e x
C.
2
D.
4
x
2
5
9
C
1 x2
e
2
D.
1
x
2
3
9
C
Trang 25