xi
x
y
a
xi
a
xj
1;2;3
a
xj
a
a
a
x
y
x 1
y 1
ơ
ề
a
a
x 1
y 1
WWW.MATHVN.COM
'
x
x 1
y 1
z 3 .1 .1
3
3
x 3 .z 3 .1
3
y 3 .z 3 .1
3
ơ
x 1
y 1
x 3 .y 3 .1
ề
WWW.MATHVN.COM
m
0
y n 1
2m
0, x, y R
1
1 4m 2 0
2( y 4 m 2 2)
2(1 4m 2 )
'
0, y R
x
1
x
z
0
m
2m 1
n
z
0, x, y
1 4m 2
'
x
0, y
R
0
R
'
x
'
x
2m 2 (1 2m 2 ) 0
4m 2 (1 2m 2 )
1
4m 2 (1 2m 2 )
'
0
y
1 2m 2
'
y
0
0
'
y
'
y
ơ
ề
WWW.MATHVN.COM
m
n
1
1
p
0
2m
4m 2
2m 2
3m
n
2
2
2m 1
p
3m 2
m
1
0
0
2
2
2
2
2
2
2
m 0
(1 n) x (1 n) y 1
1
2m
0, x, y R
z
m
z
0
2n 1
m
2
0, x, y R
2n 1
2
ơ
ề
WWW.MATHVN.COM
n(2 3n) 0
2[(3n 2 3n 1) y n 1]
2n(2 3n)
'
0, y R
x
n(2 3n)
1
'
x
0, y
0
R
'
x
(1 n)(6n 2 5n 1) 0
2(1 n)(6n 2 5n 1)
2(1 n)(6n 2 5n 1)
'
0
y
1
(1 n)(6n 2
'
y
5n 1)
0
0
'
y
2n 1
2
0
2n 1
m
2
n(2 3n) 0
(1 n)(6n 2 5n 1)
1
p
2
1
2
'
y
m
n 1
2n 1
m
2
1
p
2
0
2n 1
2
1
2
2n 1
2
1
2
0)
0
ơ
ề
WWW.MATHVN.COM
2
2
t
t
1
(t
1
(t
1)
1
0
t
1
(0;
p
0, q
0
)
1)
1
t
1 0
f (t )
t
1
0
(0;
(0;
)
)
x2
y2
z2
x2
y2
z2
3
3
2
2
p
0, q
0
3
2
ơ
ề
WWW.MATHVN.COM
x 2 .1
y2z2
z 2 1 x2 y2 x2
2
2
2
2
x
y z2 1
2
y2 z2 1
2
0
3
z 3t 3
3
x3 y 3 z 3
3
x 3 y 3t 3
z3
t3 1
3
2( x 3 y 3
x3
z
3
y3 z3
3
t3) 1
x3
y3
3
t3
2( x 3
3
n
xin
1
xi
n
n
xi
i 1
ề
n
j 1 i 1, i j
i 1
i 1
ơ
n
n
xi
xi
i 1, i j
WWW.MATHVN.COM
y3
z3
3
t3) 1
3n 1
( x 3n 1 ) n 1 ( y 3n 1 ) n 1 ( z 3n 1 ) n
3n 1
( x 3n 1 ) n ( y 3n 1 ) n ( z 3n 1 ) n
(n 1) x 3n
1
( 2n 1)( x 3n
(n 1) y 3n 1 nz 3n 1 1 nx 3n 1 ny 3n 1 (n 1) z 3n
3n 1
3n 1
1
3n 1
3n 1
y
z ) 1
3n 1
(2n 1)( x 3n 1 y 3n 1 z 3n 1 ) 1
3n 1
x
y
ơ
1
ề
1
3
1
3
x
y
1
3
1
3
WWW.MATHVN.COM
1
1
3
1
3
1
2
1
2
1
2
1
2
a b c
, ,
k k k
9
4
1
4
9
4
9
4
9
4
9
4
1
4
9
4
9
4
m 9
27
ơ
ề
9
4
x
y
3
z
1
3
WWW.MATHVN.COM
3
1
12
m
27
9
4
9
4
9
4
1
4
1
2
3
xy
yz
zx 9 xyz
3
xyz
xyyzzx
0
xy
x
m 9
27
y
3
zx 9 xyz
z
3
0
m 9
27
1
3
1
4
9
4
m 9
27
1
4
m 9
27
9
4
m 9
27
1
4
1
4
m 9
27
ơ
yz
ề
WWW.MATHVN.COM
9
4
9
4
7
27
7
27
7
27
2
9
2
9
1
27
1
3
1
27
1
27
0;
1
27
1
3
3
2t 0
2
t0
ề
3
2t 0
1
3
0
x
ơ
1
3
y
1 t0
; z t0
2
3
2
2t 0 t 0
WWW.MATHVN.COM
2
t0
0
0;
1
3
1
4
1
4
1
4
7
27
2
9
1
4
xy
p 3m 2n
3m q
p 3m 2n
yz
0
2
p 3m 2n
m n
4
p m 2n
4
7 p 6m 13n
27
zx
3m q
xyz
p 3m 2n
p 3m 2n 0
q 3m 4n 2 p
7( p 3m 2n)
27
7 p 6m 13n
27
m n
p m 2n
4
26
27
ơ
ề
WWW.MATHVN.COM
1
4
13
27
1
2
a b c
, ,
2 2 2
52
27
x 1
y 1
x 1
y 1
4 xy
x y xy
4 xy
x y xy
ơ
ề
WWW.MATHVN.COM
x 1
y 1
x 1
y 1
x2
y2
2
xy
(4 x 2 )(4
2
y2 )
(4 x 2 )(4
2
xy
(4 x 2 )(4
2
xy
xy
y2 )
(4 x 2 )(4
2
( 4 x 2 )(4
y2 )
y2 )
0
3
4
ơ
ề
y2 )
WWW.MATHVN.COM
0
0
1
2
1
2
x
y
1
4
1
2
1
2
x
y
3
4
1
4
3
4
x2
y
ơ
ề
2
1
x2
1
1
2
1
y
WWW.MATHVN.COM
x2
y
2
1
2
1
x2
1
1
2
1
y
2
n
2
2
Sx , Sy , Sz
x
ề
x
a
y
ơ
a
a
y
a
WWW.MATHVN.COM
1;2;...; n
xi
xi
i S n \ An
i An
xi
xi
i A2
i S 2 \ A2
1
xi
xi
i Ak
i S k \ Ak
xi
xi
i S k \ Ak
i Ak
ak ; k
xi
ak
i Ak
xi
i S k \ Ak
xi
i Ak
k 1
k 1
ơ
ề
WWW.MATHVN.COM
xi
i S k \ Ak
2
1
2
2
2
n
xi2
xi2
i S n \ An
i An
1;2;...; n
xi2
xi2
i S n \ An
i An
2
i
x
i An
i An
2
1
ơ
i S n \ An
xi
xi
i S n \ An
2
1
xi2
2
2
2
n
2
2
ề
WWW.MATHVN.COM
ơ
ề
ơ
ề
WWW.MATHVN.COM