ễN TP VO LP 10 CHUYấN HM S
B i 1 Cho hàm số: y=(m-2)x+n (d)
Tìm các giá trị của m và n để đồ thị (d) của hàm số:
a. Đi qua điểm A(-1;2) và B(3;-4)
b. Cắt trục tung tại điểm có tung độ bằng
21
và cắt trục hoành tại điểm có hoành
độ bằng
22
+
.
c. Cắt đờng thẳng -2y+x-3=0
d. Song song với đờng thẳng 3x+2y=1.
Bài 2. Cho hàm số y=2x
2
(P)
a. Vẽ đồ thị.
b. Tìm trên (P) các điểm cách đều hai trục tọa độ.
c. Tùy theo m, hãy xét số giao điểm của (P) với đờng thẳng y=mx-1.
d. Viết phơng trình đờng thẳng đi qua A(0;-2) và tiếp xúc với (P).
Bài 3. Cho Parabol (P): y=x
2
và đờng thẳng (d): y=2x+m.
Xác định m để hai đờng đó:
a. Tiếp xúc với nhau. Tìm hoành độ tiếp điểm.
b. Cắt nhau tại hai điểm, một điểm có hoành độ x=-1.Tìm tọa độ điểm còn lại.
c. Giả sử (d) cắt (P) tại hai điểm phân biệt A và B. Tìm quĩ tích trung điểm I của AB
khi m thay đổi.
Bài 4. Cho đờng thẳng có phơng trình:
2(m-1)x+(m-2)y=2 (d)
a. Tìm m để đờng thẳng (d) cắt (P); y=x
2
tại hai điểm phân biệt A và
b. Tìm tọa độ trung điểm của đoạn AB theo m.
c. Tìm m để (d) cách gốc tọa độ một khoảng lớn nhất.
d. Tìm điểm cố định mà (d) đi qua khi m thay đổi.
b i 5 : ( 2 điểm )
a)Tìm các giá trị của a , b biết rằng đồ thị của hàm số y = ax + b đi qua hai điểm
A( 2 ; - 1 ) và B (
)2;
2
1
b) Với giá trị nào của m thì đồ thị của các hàm số y = mx + 3 ; y = 3x 7 và đồ thị
của hàm số xác định ở câu ( a ) đồng quy .
B i 6 ( 2 điểm ) .
Cho Parabol (P) : y =
2
2
1
x
và đờng thẳng (D) : y = px + q .
Xác định p và q để đờng thẳng (D) đi qua điểm A ( - 1 ; 0 ) và tiếp xúc với (P) . Tìm
toạ độ tiếp điểm .
B i 7 :
Trong cùng một hệ trục toạ độ Oxy cho parabol (P) :
2
4
1
xy
=
và đờng thẳng (D) :
12
=
mmxy
a) Vẽ (P) .
b) Tìm m sao cho (D) tiếp xúc với (P) .
c) Chứng tỏ (D) luôn đi qua một điểm cố định .
B i 8 Cho hàm số y = ( m 2 ) x + m + 3 .
a) Tìm điều kiệm của m để hàm số luôn nghịch biến .
b) Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hành độ là 3 .
c) Tìm m để đồ thị các hàm số y = - x + 2 ; y = 2x 1và y = (m 2 )x + m + 3 đồng
quy .
B i 9 . Cho hàm số y = x
2
có đồ thị là đờng cong Parabol (P) .
a) Chứng minh rằng điểm A( -
)2;2
nằm trên đờng cong (P) .
b) Tìm m để để đồ thị (d ) của hàm số y = ( m 1 )x + m ( m
R , m
1 ) cắt
đờng cong (P) tại một điểm .
c) Chứng minh rằng với mọi m khác 1 đồ thị (d ) của hàm số y = (m-1)x + m luôn đi
qua một điểm cố định .
Bi 10 Cho hai đờng thẳng y = 2x + m 1 và y = x + 2m .
a) Tìm giao điểm của hai đờng thẳng nói trên .
Tìm tập hợp các giao
B i 11 Trong mặt phẳng toạ độ cho điểm A ( -2 , 2 ) và đờng thẳng (D) : y = - 2(x +1) .
a) Điểm A có thuộc (D) hay không ?
b) Tìm a trong hàm số y = ax
2
có đồ thị (P) đi qua A .
c) Viết phơng trình ng thẳng đi qua A và vuông góc với (D) .
B i 12 Vẽ đồ thị hàm số
2
2
x
y
=
1) Viết phơng trình đờng thẳng đi qua hai điểm ( 2 ; -2 ) và ( 1 ; - 4 )
2) Tìm giao điểm của đờng thẳng vừa tìm đợc với đồ thị trên .
B i 13 Trong hệ trục toạ độ Oxy cho hàm số y = 3x + m (*)
1) Tính giá trị của m để đồ thị hàm số đi qua : a) A( -1 ; 3 ) ; b) B( - 2 ; 5 )
2) Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ là - 3 .
3) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ là - 5 .
B i 14 : à Cho hµm sè : y =
2
3
2
x
( P )
a) TÝnh gi¸ trÞ cña hµm sè t¹i x = 0 ; -1 ;
3
1
−
; -2 .
b) BiÕt f(x) =
2
1
;
3
2
;8;
2
9
−
t×m x .
c) X¸c ®Þnh m ®Ó ®ưêng th¼ng (D) : y = x + m – 1 tiÕp xóc víi (P) .