Tải bản đầy đủ (.doc) (5 trang)

BAI TAP PASCAL BOI DUONG HOC SINH GIOI- KHONG CO DAP AN

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (191.72 KB, 5 trang )

CÁC BÀI TẬP PASCAL HAY
DÀNH CHO HS LỚP 9
BÀI 1 : XẾP GẠCH.
Minh rất thích trò chơi xếp các chiếc hộp có hình viên gạch. Minh đặt các viên
gạch chồng lên nhau và xây thành nhiều chồng có độ cao khác nhau. Minh khoe với
chị rằng “Chị trơng, em đã xây được một bức tường”. Chị của Minh trả lời “Em phải
xếp các viên gạch có độ cao giống nhau mới được gọi là một bức tường”. Sau khi
nghe chị nói như vậy nó cân nhắc một tí và cho rằng ý kiến ấy là đúng. Vì vậy em bắt
đầu tiến hành sắp xếp lại các chồng gạch lần lượt từng chiếc một cho đến khi hồn
thành cơng việc. Khi cơng việc đã hồn tất, Minh mệt lả và muốn có bạn nào giúp
Minh di chuyển các viên gạch với số lần ít nhất.
Các chiếc hộp trước và sau khi xếp
u cầu: Hãy lập trình đưa ra số lần di chuyển ít nhất của các viên gạch sao
cho từ các chồng gạch có độ cao khác nhau trở thành các chồng gạch có độ cao bằng
nhau; lần lượt từng chiếc một cho đến khi hồn thành cơng việc.
Dữ liệu vào: có cấu trúc sau:
- dòng đầu tiên là số n, n là số các chồng gạch,
- dòng tiếp theo lần lượt là các h
i
, độ cao của chồng gạch thứ i. (1≤ n ≤ 50; 1≤
h
i
≤ 100; i = 1..n). Lưu ý rằng số viên gạch bao giờ cũng chia hết cho số
chồng gạch.
Dữ liệu ra: chỉ có một dòng chứa một số ngun dương là kết quả tính tốn số
lần ít nhất sau khi xếp lại các chồng gạch. Nếu khơng có kết quả cũng phải ghi rõ
“KHONG CAN DI CHUYEN LAN NAO”
Ví dụ: với hình trên ta có dữ liệu vào, ra:
Input Output
6
5 2 4 1 7 5


5
7 Khong can di chuyen lan
nao
9 9 9 9 9 9 9
BÀI 2: SẮP SỐ TRONG XÂU
1. Nhập một xâu s bao gồm số và kí tự, in ra xâu đã sắp xếp số theo thứ tự tăng
dần còn vò trí các kí tự vẫn giữ nguyên?
Input Output
abc6ghj7kkkkk1hhhh9 abc6ghj7kkkkk1hhhh9
BÀI 3: KÝ TỰ NHIỀU NHẤT
Nhập vào xâu s (az), in ra ký tự xuất hiện nhiều lần nhất trong xâu và số lần
xuất hiện? Nếu có nhiều trường hợp thì in ra trường hợp đầu tiên.
ví dụ:
Input Output
abcaabca a 4
bcbsaaba b 3
BÀI 4: TỪ DÀI NHẤT
In ra từ dài nhất trong một xâu nhập từ bàn phím và số ký tự của từ này? Nếu
có nhiều từ có độ dài bằng nhau thì in ra hết.
ví dụ:
Input Output
Nguyen van truong truong
4
Truong thich hoc pascal Truong
pascal
5
BÀI 5: DÃY CON LỚN NHẤT
Cho một mảng số ngun gồm n phần tử. Tìm dãy con gồm m phần tử (m≤n) sao cho dãy
con này có tổng lớn nhất. (Dãy con là dãy các phần tử liên tiếp nhau trong mảng).
nhập n, nhập các phần tử của dãy, nhập m, in ra dãy con có m phần tử.

Input Output
8
4 3 5 2 8 7 9 6
3
8 7 9
BÀI 6: XOÁ KÝ TỰ TRÙNG
Viết chương trình nhập vào 1 xâu và xoá hết các ký tự liên tiếp giống
nhau trong xâu chỉ chừa lại một?
Input Output
cccccaaannnnooo cano
yeseeeyysss yeseys
BÀI 7: SỐ ĐƠN ĐIỆU
Các số nguyên dương 3748, 58, 859, 32435465768 được gọi là các số đơn điệu do nếu quan sát
các chữ số của số này , ta thấy chúng luân phiên tăng giảm hoặc giảm tăng. Chẳng hạn:
3 < 7 > 4 < 8 và 3 > 2 < 4 > 3 < 5 > 4 < 6 > 5 < 7 > 6 < 8
Số chỉ có một chữ số là số đơn điệu chiều dài 1.
Hãy viết chương trình xác đònh số chữ số đầu tiên lớn nhất tạo thành số đơn điệu của một số
cho trước.
Nhập vào một số nguyên dương không quá 75 chữ số.
Xuất ra số chữ số đầu tiên lớn nhất tạo thành số đơn điệu.
Input Output
37486398 5
859672534163 12
BÀI 8: SỐ NGUYÊN TỐ GHÉP
Xét dãy A các số ngun tố 2, 3, 5, 7, 11, 13, 17, 19,...
và dãy B gồm các số thu được từ dãy A bằng cách ghép hai số liên tiếp trong A:
23, 57, 1113, 1719, ...
Trong dãy B có những phần tử là số ngun tố. Chẳng hạn 23, 3137, 8389,
157163...
Các số ngun tố trong dãy B gọi là số ngun tố ghép.

u cầu: Cho trước số ngun dương K ≤ 500, hãy tìm số ngun tố ghép thứ
K.
Input Output
2 3137
BÀI 9: TỔNG 2 SỐ NGUYÊN TỐ
Trong mt bc th mà Christian Goldbach gi cho Euler, ơng ã   cp   n
phng ốn ca mình: Mi s t nhiên chn ln hn 2   u là tng ca 2 s ngun t.
Hãy lp ch  ng trình   kim chng phng ốn ca Goldbach.
u cu:
- D liu vào t file GB.INP gm nhiu dòng, dòng   u là s test (<10), các dòng tip theo
mi dòng ghi 1 s t nhiên chn ln hn 2 (<32000)
- D liu ra là file GB.OUT gm các dòng (mi dòng ng vi 1 test) - mi dòng
gm 2 s ngun t cách nhau ít nht 1 du cách có tng bng s ã cho (hoc khơng tìm
   c – ghi là “khong”).
Input Output
3
8
12
3 5
5 7
5 2 3
BAỉI 10: ẹềNH LY 6174
Dóy 6174 c to theo cỏch sau. S hng u tiờn ca dóy l s nguyờn dng n1 gm bn
ch
s (bn ch s ca s hng u tiờn ny khụng ng thi bng nhau). Hai s mi (a
1
v b
1
) c
to thnh t s u tiờn ca dóy. S th nht a1 cú c bng cỏch sp xp cỏc ch s ca n1 theo

th t gim dn v s th nhỡ b1 cú c bng cỏch sp xp cỏc ch s ca n1 theo th t tng
dn. S th nhỡ n
2
ca dóy l hiu a
1
- b
1
. Tip tc, hai s a
2
v b
2
c to thnh t n
2
tng t
nh a
1
v b
1
v s th ba n3 ca dóy 6174 l hiu a
2
- b
2
, v c th tip tc. Dóy s kt thỳc khi
cỏc s hng ca dóy bt u lp li (ngha l cỏc phn t ca dóy ụi mt khỏc nhau). Ch s 0
u s (v trớ th nht tớnh t bờn trỏi) vn cú ngha.
nh lý 6174 phỏt biu rng s hng cui ca dóy s xõy dng nh trờn luụn l s 6174.
Chng hn, xột dóy m s hng u tiờn (n1) l 7815. Ta cú:
8751 - 1578 = 7173 (n
2
)

7731 - 1377 = 6358 (n
3
)
6543 - 3456 = 3087 (n4
)
8730 - 0378 = 8352 (n5
)
8532 - 2358 = 6174 (n6
)
Bi toỏn:
Cho trc s hng u tiờn ca dóy 6174. Cho bit ch s ca s hng cui (l s hng 6174) ca
dóy.
D liu:
Cho trong tp tin vn bn DL6174.INP, gm mt dũng gm s nguyờn dng duy nht l s
hng u tiờn ca dóy s 6174.
Kt qu:
Cho trong tp tin vn bn DL6174.OUT, gm mt dũng gm s nguyờn dng duy nht l s
hiu ca s hng cui ca dóy s 6174 m s hng u cho trong tp tin d liu.
Vớ d:
DL6174.INP DL6174.OUT
7815 6
BAỉI 11: DIEN TCH CAC HèNH
Cho hỡnh ch nht ABCD cú chiu di AB l a (cm), chiu rng AD l b (cm) vi
a, b l cỏc s nguyờn dng khụng vt quỏ 10000. Mt im M trờn on BC, mt
im N trờn on CD sao cho di (tớnh bng cm) cỏc on BM, CN bng nhau v
l s nguyờn khụng õm.
A
B
D
C

M
Yêu cầu:
1. Biết độ dài BM, tính diện tích hình chữ nhật ABCD và diện tích tam giác
MCN.
2.Tìm giá trị lớn nhất và giá trị nhỏ nhất của diện tích tam giác AMN khi M, N thay đổi.
Dữ liệu vào: Dữ liệu của bài toán cho trong tệp tin DIENTICH.INP gồm ba số a, b, x
(x

b

a, x là độ dài BM trong yêu cầu 1) được ghi trên cùng một dòng theo đúng
thứ tự trên, hai số liên tiếp cách nhau một khoảng trắng.
Dữ liệu ra: Kết quả ghi ra màn hình (hoặc ghi ra file DIENTICH.OUT) trên 5 dòng:
- Dòng đầu là ba số a, b và x.
- Dòng thứ hai là diện tích hình chữ nhật ABCD.
- Dòng thứ ba là diện tích tam giác MCN
- Dòng thứ tư là giá trị lớn nhất của diện tích tam giác AMN
- Dòng thứ năm là giá trị nhỏ nhất của diện tích tam giác AMN
(Các giá trị diện tích được ghi trong dạng thập phân với 1 chữ số sau dấu phẩy).
Ví dụ:
DIENTICH.INP Kết quả trên màn hình (hoặc file DIENTICH.OUT)
10 6 2 10 6 2
60.0
4.0
30.0
17.5
Hạn chế kỹ thuật:
- Ghi tên file bài làm là DIENTICH.PAS.
- Dữ liệu vào là chính xác không cần kiểm tra.
- Nếu không nhập được dữ liệu vào từ file, thí sinh có thể nhập dữ liệu vào từ bàn phím

- Có khoảng 60% số bộ test có a < 100.
N

×