Tải bản đầy đủ (.doc) (26 trang)

30-DE THI THU DAI HOC - HAY

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (196.63 KB, 26 trang )

ĐỀ 1
Câu 1: Cho hàm số y
1
22
2
+
++
=
x
xx
1) Khảo sát đồ thị (C) hàm số.
2) Tìm các điểm thuộc hai nhánh khác nhau của (C) sao cho khoảng
cách giữa 2 điểm đó là ngắn nhất.
Câu 2: Cho phương trình
01)1(
234
=+−++−
mxxmmxx
(m là tham số)
1) Giải phương trình khi m=3.
2) Định m để phương trình có nghiệm.
Câu 3: Giải phương trình
02
cos
3
cos
6
108
42
2
24


=++−−
xx
xtg
xtgxtg
Câu 4: Tính diện tích hình phẳng giới hạn bởi các đừơng
xxy 4
2
−=

xy 2
=
Câu 5: Trong mặt phẳng với hệ trục toạ độ Oxy, cho tam giác ABC có A(1;5);
B(-4;-5);C(4;-1). Tìm toạ độ tâm đừơng tròn nội tiếp tam giác ABC.
Câu 6: Trong không gian Oxyz cho 4 điểm A(2;-1;5);B(1;0;2);C(0;2;3);D(0;1;2).
Tìm toạ độ điểm A’ là điểm đối xứng của A qua mặt phẳng (BCD).
Câu 7: Cho hình chóp tứ giác đều S.ABCD có cạnh bên bằng a, góc của mặt bên
và đáy là 60
0
.Tính thể tích của hình chóp đã cho.
Câu 8: Có bao nhiêu số tự nhiên gồm 6 chữ số khác nhau từng đôi một trong đó
nhất thiết phải có mặt 2 chữ số 7,8 và hai chữ số này luôn đứng cạnh nhau.
Câu 9: Cho tam giác ABC có BC=a; CA=b; AB=c. Chứng minh rằng nếu có:
222
222
2
sin2
2
cos
2
sin2

2
cos
2
sin2
2
cos
cba
C
BA
c
B
AC
b
A
CB
a
++=

+

+

thì tam giác ABC đều.
ĐỀ 2
Câu 1: Cho hàm số
1)14()1(
3
2
3
−+++−=

xmxm
x
y
(C
m
)
1)Khảo sát hàm số khi m=2
2)Tìm các giá trị của tham số m để hàm số đạt cực đại, cực tiểu tại các
điểm có hoành độ lớn hơn 1. Khi đó viết phương trình đừơng thẳng qua điểm cực
đại và cực tiểu của đồ thị hàm số.
Câu 2: Cho phương trình
mxxxx
++−=+−
6234
22
(1)
1) Giải phương trình khi m=3
2) Định m để phương trình (1) có đúng hai nghiệm.
Câu 3: Giải phương trình:
333)cossin3)(cos(sin82sin)31(32cos)31(3
33
−−++=++−
xxxxxx
Câu 4: Trong mặt phẳng với hệ toạ độ Oxy, cho hình chữ nhật ABCD có diện tích
bằng 12, tâm I thuộc đừơng thẳng (d): x-y-3=0 có hoành độ
2
9
1
=
x

, trung điểm
1 cạnh là giao điểm của (d) và trục Ox. Tìm toạ độ các đỉnh của hình chữ nhật.
Câu 5: Giải hệ phương trình



−=−
=+
1002
70
4
3
x
y
x
y
xx
AC
CA

),(
Ν∈
yx
Câu 6: Trong không gian Oxyz cho mặt phẳng (P):
032
=+−+
zyx
, điểm A(1;1;-
2) và đường thẳng (


):
41
3
2
1 zyx
=

=
+
. Tìm phương trình đừơng thẳng (d) qua
A và cắt đừơng thẳng (

) và song song với mặt phẳng (P).
Câu 7: Tính tích phân I=

+
3
0
sin3cos
π
xx
dx
Câu 8: Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh bằng a. SA
vuông góc với mặt phẳng (ABCD) và SA=a. Tính khoảng cách giữa đừơng thẳng
AC và SD
Câu 9: Chứng minh rằng
zyx ,,

thỏa điều kiện
2

≥>>
zyx
ta có:
zzxxzzyyyyxx
eeeeee
444444
222222
111
−−−−−−



+

ĐỀ 3
Câu 1: Cho hàm số
23)1(3
24
+++−=
mxmxy
(C
m
)
1)Khảo sát hàm số khi m=1
2)Tìm các giá trị của tham số m để (C
m
) cắt trục Ox tại 4 điểm phân biệt có
hoành độ lập thành cấp số cộng.
Câu 2: Giải hệ phương trình:






+=+++++
=
++
222233222
213)(4)(4)(
324.2
22
yxyxyxyx
yxyx
Câu 3: Cho phương trình
0cos33coscos.sinsin
23
=−−+
xmxmxxx
(1)
1)Giải phương trình khi m=
2
1
2) Định m để phương trình (1) có đúng 1 nghiệm thuộc






4

;0
π
Câu 4: Trong mặt phẳng Oxy, cho đừơng tròn (C):
4)2()1(
22
=−+−
yx
và điểm
A(4;-1). Viết phương trình tiếp tuyến của đường tròn (C) qua A và viết phương
trình đường thẳng nối các tiếp điểm của các tiếp tuyến trên với (C)
Câu 5: Trong không gian Oxyz, cho mặt phẳng (P):
02
=−++
zyx
và điểm
A(1;1;1); B(2;-1;0); C(2;3;-1). Tìm điểm M thuộc mặt phẳng (P) sao cho biểu thức
222
MCMBMAT
++=
có giá trị nhỏ nhất.
Câu 6: Tính tích phân:

=
2/
0
3sin
cos
π
xdxeI
x

Câu 7: Từ các phần tử của tập A={1,2,3,4,5,6,7,8,9}. Có thể lập được bao nhiêu
số tự nhiên gồm 4 phần tử khác nhau từng đôi một? Hãy tính tổng của các số này
Câu 8: Cho hình bình hành ABCD có khoảng cách từ A đến BD bằng a. Trên 2 tia
Ax, Cy cùng vuông góc với mặt phẳng (ABCD) và cùng chiều, lần lượt lấy hai điểm
M,N. Đặt AM=x, CN=y. Chứng minh rằng điều kiện cần và đủ để hai mặt phẳng
(BDM) và (BDN) vuông góc với nhau là: xy=a
2
Câu 9: Cho a,b,c là 3 số dương thỏa :
1
123
=++
cba
. Tìm giá trị nhỏ nhất của biểu
thức T=a+b+c
ĐỀ 4
Câu 1: Cho hàm số
4)3(2
23
++++=
xmmxxy
(1), đồ thị là (C
m
)
1)Khảo sát hàm số khi m=1
2)Tìm các giá trị của tham số m sao cho hàm số (1) đồng biến trong
khoảng
);1(
+∞
3)(D) là đừơng thẳng có phương trình y=x+4 và K(1;3). Tìm các giá trị của
tham số m sao cho (D) cắt (C

m
) tại 3 điểm A(0;4),B,C sao cho tam giác KBC có
diện tích bằng
28
.
Câu 2: Cho bất phương trình
4323
22
+−−≥+−
xxmxx
(1)
1)Giải bất phương trình (1) khi m=4
2)Tìm các giá trị của tham số m để bất phương trình được nghiệm đúng với
mọi
3

x
Câu 3: Giải hệ phương trình:



=+
=++
(2) coscos)cos(2
(1) 2sin12sin2cos
yxyx
yxx
Câu 4: Xét hình phẳng (H) giới hạn bởi hai đừơng






=
−+=
)(1
)(21
2
Dy
Cxxy
Tính thể tích vật thể tròn xoay sinh ra khi (H) quay quanh trục Ox
Câu 5: Trong mặt phẳng Oxy. Tìm phương trình đường thẳng qua điểm M(1;3)
sao cho đường thẳng đó cùng với hai đường thẳng d
1
:3x+4y+5=0; d
2
:4x+3y-1=0
tạo ra 1 tam giác cân có đỉnh là giao điểm của d
1
;d
2.
Câu 6:Trong không gian Oxyz, cho 3 điểm A(O;1;-1);B(-1;2;1) và C(1;-2;0).
Chứng minh ba điểm A,B,C tạo thành một tam giác và tìm toạ độ tâm đường tròn
ngoại tiếp tam giác ABC.
Câu 7: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng a; SA vuông
góc với mặt phẳng (ABC), gọi I là trung điểm cạnh BC. Mặt phẳng qua A vuông
góc với SI cắt SB,SC lần lượt tại M,N. Biết rằng
SABCSAMN
VV
4

1
=
. Hãy tính V
SABC
Câu 8: Cho n là số nguyên dương thoả phương trình:
4523
3
1
2
1
2
=−+
++

nn
n
n
CAC
Tìm các số hạng không chứa x trong khai triển Newton của biểu thức :
n
x
xE )
1
2(
3
+=
Câu 9: Giải bất phương trình
0632
3
2

)(
2369
>+−+−=
xxxxxxf
ĐỀ 5
Câu 1: Cho hàm số y=
mx
x
xf

+
=
2
)(
(m là tham số)
1) Tìm các giá trị của tham số m sao cho hàm số nghịch biến trong (-4;5)
2) Khảo sát hàm số khi m=1
3) Gọi (D) là đừơng thẳng A(1;0) và có hệ số góc k. Tìm k để (D) cắt (C)
tại 2 điểm M,N thuộc 2 nhánh khác nhau của (C) sao cho
ANAM 2
−=
Câu 2: Giải phương trình :
x
x
x
x
27log
9log
3log
log

81
27
9
3
=
Câu 3: Giải phương trình:
xxx
xg
x
xtg
2sin
16
sin
4
cos
cot
sin
422
4
2
4
=++
Câu 4: Cho
24269
34
)(
23
−+−
+
=

xxx
x
xf
1)Tìm A,B,C sao cho
432
)(

+

+

=
x
C
x
B
x
A
xf
2)Tìm họ nguyên hàm của
)(xf
Câu 5: Cho hyperbol (H):
1
916
22
=−
yx
có hai tiêu điểm F
1
,F

2
. Tìm điểm M thuộc
(H) sao cho
°=

120
21
MFF
và tính diện tích tam giác F
1
MF
2

C âu 6: Cho 2 mặt phẳng (P):x+y-5=0 và (Q):y+z+3=0 và điểm A(1;1;0). Tìm
phương trình đừơng thẳng (D) vuông góc với giao tuyến của (P) và (Q), cắt (P) và
(Q) tại M,N sao cho A là trung điểm M,N
Câu 7: Cho hình chóp S.ABCD đáy là ABCD là hình vuông, cạnh a, tâm O. SA
vuông góc với mặt phẳng (ABCD), nhị diện (B,SC,D) có số đo bằng 120
0
. Tính SA
Câu 8: Tìm hệ số của số hạng chứa x
8
trong khai triển Newton của
)0()1
1
()(
124
≠−+=
x
x

xxf
Câu 9: Cho
]1;1[
−∈
x
. Tìm GTLN của
xxxxxf
−+−+=
2242)(
325
ĐỀ 6
Câu 1: Cho hàm số :
x
x
y

+
=
1
42
(C)
1)Khảo sát hàm số
2) Tìm các giá trị của tham số m để parabol (P):
mxxy
++−=
6
2
tiếp xúc
với (C)
3) Gọi (D) là đừơng thẳng qua A(1;1) có hệ số góc là k.Tìm giá trị của k

sao cho (D) cắt (C) tại hai điểm M,N và
103
=
MN
Câu 2: Cho phương trình:
2
12
23
223
2
12
2
12
log)1738254(log45log23log mxxxxxxx
−−+−
+−+−=+−−+−
(m là tham số khác 0)
1) Giải phương trình khi m=1
2) Tìm các giá trị của tham số m sao cho phương trình đã cho có nghiệm.
Câu 3: Giải phương trình sau:
xx
xgxxtgx
sin
3
cos
2
5)cos(cot3)sin(2
+=+−+−
Câu 4: Trong mặt phẳng Oxy, cho parabol (P):
xy

=
2
và hai điểm A(-2;-2);B(1;-
5). Tìm trên (P) hai điểm M,N sao cho tứ giác ABMN là hình vuông.
Câu 5: Trong không gian Oxyz, tìm phương trình mặt cầu (S) qua 3 điểm
A(0;1;2); B(1;2;4);C(-1;0;6) và tiếp xúc mặt phẳng (P): x+y+z+2=0
Câu 6: Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a, khoảng cách từ
tâm O của tam giác ABC đến mặt phẳng (A’BC) bằng
6
a
. Tính thể tích và diện tích
toàn phần của hình lăng trụ ABC.A’B’C’ theo a.
Câu 7: Tính các tích phân sau:
a)

+++
5
0
1346 xx
dx
b)

+++
22
3
2
11 xx
dx
Câu 8: Có bao nhiêu cách sắp xếp chỗ ngồi vào 1 bàn tròn có 10 ghế cho 6 chàng
trai và 4 cô gái? Biết rằng bất kỳ cô gái nào đều không ngồi cạnh nhau.

Câu 9: Cho 3 số dương x,y,z. Tìm GTNN của biểu thức
yxzxzyzyx
zyxA
2
1
2
1
2
1
++
+
++
+
++
+++=
ĐỀ 7
Câu 1: Cho hàm số
43
23
−+−=
xxy
(C)
1) Khảo sát hàm số
2) Dùng (C), biện luận theo tham số m, số nghiệm của phương trình
2323
33 mmxx
−=−
3) Tìm cặp điểm trên (C) đối xứng qua điểm I(0;-1)
Câu 2: Giải phương trình:
1444

7325623
222
+=+
+++++− xxxxxx
Câu 3: Cho
xxxxxf
222
sincossin1)2cos1()(
−+−=
1) Tìm GTLN,GTNN của f(x)
2) Cho
xxxxg
8
sin82cos44cos3)(
−−+=
. Tìm các giá trị của tham số m
sao cho phương trình g(x)=f(x)+m có nghiệm
Câu 4: Trong mặt phẳng Oxy, cho hyperbol (H):
1
916
22
=−
yx
và hai điểm B(1;2);
C(3;6). Chứng tỏ rằng đừơng thẳng BC và hyperbol (H) không có điểm chung và
tìm các điểm M thuộc (H) sao cho tam giác MBC có diện tích nhỏ nhất
Câu 5: Trong không gian Oxyz, cho 3 điểm A(1;0;1); B(0;2;3) và C(3;3;7). Tìm
phương trình đừơng phân giác trong AD của góc A trong tam giác ABC
Câu 6: Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, hình chiếu
vuông góc của A’ lên mặt phẳng (ABC) trùng với tâm O của tam giác ABC. Một

mặt phẳng (P) chứa BC và vuông góc với AA’, cắt hình lăng trụ ABC.A’B’C’ theo 1
thiết diện có diện tích bằng
8
3
2
a
. Tính thể tích hình lăng trụ ABC.A’B’C’.
Câu 7: Tính:
a)

+=
+
1
0
3
)32.(
2
dxxeI
xx
b)

+++=
6
0
2
)23(42 dxxxxJ
Câu 8: Cho 1 đa giác lồi có n đỉnh, biết rằng bất kỳ 2 đừơng chéo nào của đa giác
cũng đều cắt nhau và bất kỳ 3 đừơng chéo nào của đa giác cũng không đồng quy.
Tìm n sao cho số giao điểm của các đừơng chéo của đa giác gấp 3 lần số tam giác
được tạo thành từ n đỉnh của đa giác.

Câu 9: Cho tam giác ABC thoả mãn điều kiện:
)cos(cos22sin42cos)cos(cos7 CBAACBA
+≤−−−−
Tính 3 góc của tam giác.
ĐỀ 8
Câu 1: Cho hàm số
1
1
22
+
−+=
x
xy
(C)
1) Khảo sát hàm số. Chứng minh (C) có 1 tâm đối xứng
2) M là một điểm bất kỳ thuộc (C) và (D) là tiếp tuyến của (C) tại M, (D)
cắt hai tiệm cận của (C) tại A và B. Chứng minh:
a. M là trung điểm AB
b. Tam giác IAB có diện tích không đổi (I là giao điểm của 2 tiệm
cận)
Câu 2: Cho phương trình:
mxxmxxx
+++−+−=++−
)44(1644
22422
(1)
1) Giải phương trình (1) khi m=0
2) Tìm các giá trị của tham số m để 1 có nghiệm.
Câu 3: Giải hệ phương trình:








+=+
+−=+
yx
gygxtgxy
xyy
sin.2sin
1
cot)cot(sin
)2sin21)(
2
1
(cos
2
1
2cos
Câu 4: Trong mặt phẳng với hệ toạ độ Oxy, cho parabol (P):
xy 4
2
=
. Tìm hai
điểm A,B thuộc (P) sao cho tam giác OAB là tam giác đều.
Câu 5: Trong không gian Oxyz, cho hình hộp ABCD.A’B’C’D’ có các đỉnh A(2;1;0);
C(4;3;0); B’(6;2;4); D’(2;4;4). Tìm toạ độ các đỉnh còn lại của hình hộp đã cho
Chứng minh rằng các mặt phẳng (BA’C’) và (D’AC) song song và tính khoảng cách

giữa 2 mặt phẳng này.
Câu 6: Cho tứ diện ABCD có AB vuông góc với CD, đoạn nối 2 trung điểm I,J của
AB, CD là đoạn vuông góc chung của chúng. Xác định tâm và bán kính mặt cầu
ngoại tiếp tứ diện ABCD biết AB=CD=IJ=a
Câu 7: Cho parabol (P):
2
xy
=
. (D) là tiếp tuyến của (P) tại điểm có hoành độ
x=2. Gọi (H) là hình phẳng giới hạn bởi (P),(D) và trục hoành. Tính thể tích vật
thể tròn xoay sinh ra khi (H) quay quanh trục Ox, trục Oy
Câu 8: Tính theo n (
Ν∈
n
):

=
++++++==
n
k
nn
n
kk
nnnn
kk
nn
CCCCCCS
0
2210
6....6....6.6.6

Câu 9: Giải hệ:





=+++
=+++
=+++
03322
03322
03322
23
23
23
xxz
zzy
yyx
ĐỀ 9
Câu 1: Cho hàm số
43
23
+−=
xxy
(C)
1) Khảo sát hàm số
2) Gọi (D) là đừơng thẳng qua điểm A(3;4) và có hệ số góc là m. Định m
để (D) cắt (C) tại 3 điểm phân biệt A,M,N sao cho 2 tiếp tuyến của (C)
tại M và N vuông góc với nhau.
3) Phương trình:

223
2343 xxxx
−+=+−
có bao nhiêu nghiệm ?
Câu 2: Cho hệ phương trình



=+−+
=−−
4)(2
)2)(2(
22
yxyx
myxxy
1) Giải hệ khi m=4
2) Tìm các giá trị của tham số m để hệ có nghiệm
Câu 3: Giải các phương trình sau:
1)
xxx cos2sinsin
3
=−
2)
xxtgxxx cos12sin.sin
2
1
sin2
22
+−−=−
Câu 4: Trong mặt phẳng Oxy, cho đường tròn (C):

4)4()4(
22
=−+−
yx
và điểm
A(0;3)
1) Tìm phương trình đừơng thẳng (D) qua A và cắt đừơng tròn (C) theo 1
dây cung có độ dài bằng
32
2) Gọi M
1
,M
2
là hai tiếp điểm của (C) với hai tiếp tuyến của (C) vẽ từ gốc
tọa độ O. Tính diện tích hình tròn ngoại tiếp tam giác OM
1
M
2
Câu 5: Trong không gian Oxyz, cho 2 đừơng thẳng:
3
1
2
4
2
:)(
1
+
=−=

z

y
x
D
;
13
1
2
3
:)(
2
zyx
D
=
+
=

Tìm phương trình đừơng vuông góc chung của (D
1
) và (D
2
)
Câu 6: Cho tam giác đều ABC cạnh a. Trên 2 tia Bx và Cy cùng chiều và cùng
vuông góc mặt phẳng (ABC) lần lượt lấy 2 điểm M,N sao cho BM=a; CN=2a. Tính
khảong cách từ C đến mặt phẳng (BMN).
Câu 7: Chứng minh:
10
31242
1
)23(2
3

2
5
2

<

<−

x
x
Câu 8: Cho n là số tự nhiên,
2

n
. Hãy tính:
nn
n
kk
nn
n
k
n
kk
n
CnCkCCCkS 2....2....2.22..12.
22222
1
122
+++++==


=
Câu 9: Giải phương trình:
82315
22
++−=+
xxx
ĐỀ 10
Câu 1: Cho hàm số:
1
12
)(

+
==
x
x
xfy
(C)
1) Khảo sát hàm số. Từ (C) vẽ đồ thị (C’) của hàm số
1
12
)(

+
==
x
x
xgy
2) Gọi (D) là đường thẳng có phương trình: y=x+m (m là tham số). Tìm
các giá trị của tham số m sao cho (D) cắt (C) tại 2 điểm phân biệt M,N.

Khi đó tính diện tích tam giác IMN theo m (I là tâm đối xứng của (C))
và tìm m sao cho S
IMN
=4
Câu 2: Giải các bất phương trình sau:
1)
1)12(log
2
1
>−−
+
xx
x
2)
)243(log1)243(log
2
3
2
9
++>+++
xxxx
Câu 3: Giải các bất phương trình và hệ phương trình sau :
1)
),0(,
2
sin1
sin
sin1
2
cos

2
sin
22
44
π
∈+
+
=−

+
xxtg
x
xxtg
x
xx
2)





=
=
3.
4
3
sin.sin
ytgxtg
yx
ππ

ππ
Câu 4: Trong mặt phẳng Oxy, cho (E):
1
4
2
2
=+
y
x
, (D) là 1 tiếp tuyến của (E),(D)
cắt hai trục toạ độ Ox,Oy lần lượt tại M,N. Tìm phương trình (D) biết:
1) Tam giác OMN có diện tích nhỏ nhất
2) Đoạn MN có độ dài nhỏ nhất
Câu 5: Trong không gian Oxyz, cho 2 mặt cầu:
(S
1
):
01562
222
=−−−++
zyzyx
(S
2
):
01143
222
=−−−+++
zyxzyx
Cho biết rằng (S
1

) và (S
2
) cắt nhai. Tìm tâm và bán kính đừơng tròn (C) là phần
giao của (S
1
) và (S
2
)
Câu 6: Cho hình chóp S.ABCD đáy ABCD là hình vuông cạnh a, SA vuông góc với
mặt phẳng (ABCD) và
2aSA
=
. Mặt phẳng (P) qua A và vuông góc SC, (P) cắt
các cạnh SB,SC,SD lần lựơt tại M,N,K. Tính diện tích tứ giác AMNK
Câu 7: Tìm 1 nguyên hàm F(x) của hàm số
0,
)1(
1
)(
7
573
>
+
=
x
xx
xf
biết F(x) có
giá trị nhỏ nhất trên đoạn [1;2] bằng 4
Câu 8: Cho hai số tự nhiên n,k thỏa:

nk
≤≤
6
. Chứng minh:
k
n
k
n
k
n
k
n
k
n
k
n
k
n
k
n
CCCCCCCCCCCCCCC
6
66
6
55
6
44
6
33
6

22
6
11
6
0
6
.......
+
−−−−−−
=++++++
Câu 9: Cho 4 số a,b,c,d thuộc [1;2].CMR:
12
25
)(
))((
2
2222

+
++
bdac
dcba
ĐỀ 11
Câu 1: Cho hàm số
7)1(2)1(
24
−+++−=
mxmxmy
1) Định m để hàm số chỉ có cực đại mà không có cực tiểu
2) a) Khảo sát và vẽ đồ thị (C) hàm số khi m=0

b) Dùng (C), biện luận theo tham số a số nghiệm của phương trình:
0
44
12
8)
44
12
(
2
2
2
2
2
=+
+−
+−

+−
+−
a
xx
xx
xx
xx
Câu 2: Giải hệ:








=
+

=
+
+
4)
2
1
4(
32)
2
1
4(
y
xy
x
xy
Câu 3: Giải phương trình sau:
1
)7
2
sin(
)4
2
(cot).sin(
=


++
x
xgx
π
π
π
Câu 4: Trong mặt phẳng toạ độ Oxy, cho đường thẳng (d):2x-y+3=0 và 2 điểm
A(4;3); B(5;1). Tìm điểm M trên (d) sao cho MA+MB nhỏ nhất
Câu 5: Trong không gian Oxyz, cho bốn điểm A(4;4;4); B(6;-6;6); C(-2;10;-2) và
S(-2;2;6).
1) Chứng minh OBAC là 1 hình thoi và chứng minh SI vuông góc với mặt
phẳng (OBAC) (I là tâm của hình thoi)
2) Tính thể tích của hình chóp S.OBAC và khoảng cách giữa 2 đường thẳng
SO và AC
3) Gọi M là trung điểm SO, mặt phẳng (MAB) cắt SC tại N, tính diện tích tứ
giác ABMN
Câu 6: Tính

+
=
1
0
2
2
)2(
dx
x
ex
I
x

Câu 7: Hãy tìm số hạng có hệ số lớn nhất trong khai triển Newton của biểu thức
20
)32(
+
x
Câu 8: Cho 4 số dương a,b,c,d.CMR:
3
2222
44
abdcdabcdabcdcba +++

+++
ĐỀ 12
Câu 1: Cho hàm số
32
24
−+=
xxy
(C)
1) Khảo sát hàm số
2) Tìm phương trình tiếp tuyến của (C) có khoảng cách đến điểm A(0;-3)
bằng
65
5
Câu 2: Cho hệ:



++=
++=

myxy
mxyx
2
2
3
3
(m là tham số)
1) Giải hệ khi m=2
2) Định m để hệ có nghiệm duy nhất
Câu 3: Giải các phương trình và hệ phương trình sau:
1)
34sin4sin4cos3cos2cos4
2423
++=−+
xxxxx
2)



=+
++=++
1sinsin
sinsinsin2sinsinsin2
2323
yx
yyyxxx
Câu 4: Trong mặt phẳng Oxy, cho parabol(P):
xy 4
2
=

và 1 điểm thuộc đừơng
chuẩn của (P).
1) Chứng minh rằng từ A luôn vẽ được đến (P) hai tiếp tuyến vuông góc
với nhau
2) Gọi M
1
,M
2
là hai tiếp điểm của hai tiếp tuyến trên với (P) hãy chứng
minh đường thẳng M
1
M
2
luôn đi qua điểm cố định và chứng minh rằng
đường tròn qua 3 điểm A,M
1
,M
2
luôn tiếp xúc với 1 đường thẳng cố định
Câu 5: Cho mặt phẳng (P):
012
=−+−
zyx
và đường thẳng d:
3
2
1
1
2
1


=

=
+
zyx
1) Tìm phương trình hình chiếu vuông góc của d lên (P)
2) Tìm phương trình hình chiếu của d lên (P) theo phương của đường
thẳng
3
2
4
2
1
3
:

=
+
=


zyx
Câu 6: Cho f là hàm chẵn liên tục trên [-a;a] (a>0). CMR:
∫∫
=
+

aa
a

x
dxxf
b
dxxf
0
)(
1
)(
Áp dụng: Tính:


++
2
2
2
4)1( xe
dx
x
Câu 7: CMR:
20050
1
2005
2006
2005
20062006
2004
2005
1
2006
2005

2006
0
2006
2.2006..........
=+++++


CCCCCCCC
k
k
k
Câu 8: Tìm giá trị của tham số m để giá trị lớn nhất của hàm số:
2
22)1(
2

+++−
=
x
mxmx
y
trên [-1;1] là nhỏ nhất
ĐỀ 13
Câu 1: Cho hàm số:
mx
mmxmmx
y
+
++++
=

24)2(
222
1) Tìm các giá trị của m để đồ thị hàm tương ứng có 1 điểm cực trị thuộc
góc phần tư thứ (II) và 1 điểm cực trị thuộc góc phần tư thứ (IV) của
mặt phẳng toạ độ.
2) Khảo sát và vẽ đồ thị (C) của hàm số khi m=-1. Dùng (C), biện luận
theo a số nghiệm thuộc
]3;0[
π
của phương trình:
04cos)1(cos
2
=−+−+
mxmx
Câu 2: Tìm m sao cho hệ bất phương trình sau có nghiệm:



≥+−+−
≤+−
03)1(2
067
2
2
mxmx
xx
Câu 3: Định a để hai phương trình sau là 2 phương trình tương đương
xxxxx 5sin
2
1

3cos.2sin2cos.sin
−=
(1)
16cos4cos2cos
=++
xxaxa
(2)
Câu 4: Trong mặt phẳng Oxy cho 3 điểm I(2;4); B(1;1); C(5;5). Tìm điểm A sao
cho I là tâm đường tròn nội tiếp tam giác ABC
Câu 5: Trong không gian Oxyz, cho tam giác ABC có A(1;1;2); B(4;1;2); C(1;4;2)
1) Chứng minh tam giác ABC vuông cân
2) Tìm tọa độ điểm S biết SA vuông góc với mặt phẳng (ABC) và mặt cầu
ngoại tiếp tứ diện S.ABC tiếp xúc với mặt phẳng (P): x+y+4=0

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×