BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƢỜNG DỰ BỊ ĐẠI HỌC DÂN TỘC TRUNG ƢƠNG
*******
TÓM TẮT SÁNG KIẾN CÔNG TÁC
XÂY DỰNG TÀI LIỆU TỰ HỌC PHẦN THỂ TÍCH
CỦA KHỐI CHÓP, KHỐI LĂNG TRỤ CHO HỌC SINH
TRƢỜNG DỰ BỊ ĐẠI HỌC DÂN TỘC TRUNG ƢƠNG
Thực hiện: - ThS. Lê Thị Ngọc Phƣợng - Phòng BD-QL Chất lƣợng
- ThS. Dƣơng Minh Nhuận - Tổ bộ môn Toán
Phú Thọ, tháng 5 năm 2017
MỤC LỤC
I. ĐẶT VẤN ĐỀ
1
PHẦN 2. GIẢI QUYẾT VẤN ĐỀ
3
Chƣơng 1: CƠ SỞ LÍ LUẬN VÀ THỰC TIỄN
3
I. Tổng quan về lịch sử vấn đề nghiên cứu
3
II. Cơ sở lí luận
3
III. Một số khó khăn của học sinh khi học chủ đề thể tích của khối chóp, 5
khối lăng trụ và định hƣớng xây dựng tài liệu tự học
Chƣơng 2: XÂY DỰNG TÀI LIỆU TỰ HỌC CHỦ ĐỀ THỂ TÍCH CỦA 7
KHỐI CHÓP VÀ KHỐI LĂNG TRỤ HỖ TRỢ HOẠT ĐỘNG TỰ HỌC
CHO HỌC SINH TRƢỜNG DỰ BỊ ĐẠI HỌC DÂN TỘC TRUNG
ƢƠNG
Chủ đề 1: THỂ TÍCH CỦA KHỐI CHÓP
8
Chủ đề 2 : THỂ TÍCH KHỐI LĂNG TRỤ
16
Chƣơng 3 : HIỆU QUẢ CỦA SÁNG KIẾN
21
PHẦN 3. KẾT LUẬN VÀ KIẾN NGHỊ
25
1. Kết luận
25
2. Kiến nghị
25
TÀI LIỆU THAM KHẢO
26
I. ĐẶT VẤN ĐỀ
1. Lí do chọn đề tài
- Nghị quyết số 29-NQ/TW ngày 4/11/2013 Hội nghị trung ƣơng 8 khóa
XI về đổi mới căn bản và toàn diện GD-ĐT đã xác định mục tiêu tổng quát, định
hƣớng đổi mới giáo dục là “chuyển mạnh quá trình giáo dục từ chủ yếu trang bị
kiến thức sang phát triển toàn diện năng lực và phẩm chất ngƣời học.
- Nghị quyết 14/2005/NQ-CP về đổi mới cơ bản và toàn diện giáo dục đại
học Việt Nam giai đoạn 2006 - 2020 đã ghi rõ: “Triển khai đổi mới phương
pháp đào tạo theo 3 tiêu chí: Trang bị cách học, phát huy tính chủ động, sáng
tạo và sử dụng công nghệ thông tin và truyền thông trong dạy học”, Luật Giáo
dục cũng đã ghi: “Phương pháp giáo dục phải phát huy tính tích cực, tự giác,
chủ động, tư duy sáng tạo của người học, bồi dưỡng năng lực tự học, lòng say
mê học tập và ý chí vươn lên”.
Tại Văn kiện Đại hội XII, Đảng khẳng định: kế thừa quan điểm chỉ đạo
của nhiệm kỳ trƣớc đồng thời xác định: “Đổi mới căn bản và toàn diện giáo
dục, đào tạo theo hướng mở, hội nhập, xây dựng xã hội học tập, phát triển toàn
diện năng lực, thể chất, nhân cách, đạo đức, lối sống, ý thức tôn trọng pháp luật
và trách nhiệm công dân...”. “Đổi mới khung chương trình, quan tâm hơn đến
yêu cầu tăng cường kỹ năng sống, giảm tải nội dung trong các bậc học phổ
thông”.
Hiện nay trong xu thế đổi mới giáo dục đặc biệt là đổi mới hình thức thi
THPT Quốc gia năm 2017, với môn Toán chuyển từ hình thức thi tự luận sang
hoàn toàn thi trắc nghiệm, việc thay đổi hình thức thi nhƣ vậy bƣớc đầu tạo sự
bỡ ngỡ và khó khăn cho giáo viên cũng nhƣ học sinh khi giảng dạy và học toán.
Chuyên đề Hình học không gian là chuyên đề cơ bản của môn Toán
giảng dạy tại Nhà trƣờng, đây là chuyên đề khó đòi hỏi học sinh phối hợp tốt
giữa tƣ duy trực quan với tƣ duy logic, đặc biệt với học sinh ngƣời dân tộc thiểu
số - các em thiên về tƣ duy trực quan.
Qua thực tiễn giảng dạy tiếp cận với xu thế đổi mới của giáo dục và đào
tạo chúng tôi nhận thấy việc xây dựng một tài liệu tự học môn Toán trong thời
gian này là cần thiết và thiết thực với hoạt động tự học của học sinh. Bởi vậy
chúng tôi lựa chọn đề tài
Xây dựng tài liệu tự học phần Thể tích của khối chóp, khối lăng trụ cho
học sinh trường Dự bị Đại học Dân tộc Trung ương
2. Mục đích nghiên cứu
- Nghiên cứu, hệ thống hóa, phân loại các dạng toán và phƣơng pháp tính
thể tích khối chóp, khối lăng trụ.
- Xây dựng tài liệu tự học chủ đề Thể tích khối chóp, khối lăng trụ phù
hợp với đối tƣợng học sinh và xu thế của đổi mới hình thức kiểm tra trong môn
1
Toán. Đáp ứng nhu cầu tài liệu tham khảo cho học sinh trong hoạt động tự học
tại trƣờng.
- Trang bị những kiến thức để học sinh làm đƣợc bài toán tính thể tích
khối chóp và khối lăng trụ.
- Bản thân đƣợc trau dồi và nâng cao trình độ chuyên môn, các đồng
nghiệp có thêm tài liệu tham khảo.
3. Khách thể, đối tƣợng và phạm vi nghiên cứu
3.1. Khách thể nghiên cứu: Nội dung phần hình học không gian trong
môn Toán giảng dạy tại trƣờng Dự bị Đại học Dân tộc Trung ƣơng
3.2. Đối tượng nghiên cứu: Xây dựng tài liệu tự học phần thể tích của
khối chóp và khối lăng trụ.
3.3. Phạm vi nghiên cứu:
- Đề tài tập trung nghiên cứu và xây dựng một số dạng toán liên quan tới
chủ đề thể tích của khối chóp và khối lăng trụ.
- Tiến hành thực nghiệm trên nhóm HS khóa 42 năm học 2016 – 2017
4. Nhiệm vụ nghiên cứu
- Nghiên cứu lí luận về tự học và tài liệu tự học.
- Nghiên cứu nội dung, chƣơng trình toán hình học giảng dạy tại trƣờng
DBĐHDTTƢ.
- Phát triển một số nội dung theo định hƣớng tiếp cận hình thức thi trắc
nghiệm môn toán trong kì thi THPT QG.
5. Phƣơng pháp nghiên cứu
- Nhóm phƣơng pháp nghiên cứu lí luận.
- Nhóm phƣơng pháp nghiên cứu thực tiễn
- Nhóm phƣơng pháp bổ trợ
6. Cấu trúc của Sáng kiến kinh nghiệm
Ngoài phần Đặt vấn đề, Kết luận và kiến nghị, tài liệu tham khảo. Nội
dung chính của đề tài là phần Giải quyết vấn đề gồm có 4 chƣơng
Chƣơng 1: Cơ sở lí luận và thực tiễn
Chƣơng 2: Xây dựng tài liệu tự học chủ đề Thể tích của khối chóp và
lăng trụ hỗ trợ hoạt động tự học cho học sinh trƣờng Dự bị Đại học Dân tộc
Trung ƣơng
Chƣơng 3: Hiệu quả của sáng kiến công tác
2
PHẦN 2. GIẢI QUYẾT VẤN ĐỀ
Chƣơng 1: CƠ SỞ LÍ LUẬN VÀ THỰC TIỄN
I. Tổng quan về lịch sử vấn đề nghiên cứu
Luận án Tiến sĩ của tác giả Lê Trọng Tuấn về Phát triển kỹ năng tự học
cho học sinh các trƣờng Dự bị Đại học Dân tộc đã xây dựng giải pháp Phát triển
chương trình môn học của Trường DBĐHDT định hướng phát triển kỹ năng tự
học cho HS, tác giả cho rằng: chƣơng trình giáo dục dành cho HS DBĐHDT là
một thực thể không phải đƣợc thiết kế một lần và dùng cho mãi mãi, mà đƣợc
phát triển, bổ sung, hoàn thiện tùy theo sự thay đổi của trình độ phát triển kinh tế
- xã hội, của thành tựu khoa học - kỹ thuật và công nghệ, theo xu hƣớng phát
triển của giáo dục phổ thông và giáo dục đại học.
Các tác giả Mai Văn Trinh, Lƣơng Viết Mạnh (2013) có nghiên cứu Thiết
kế và sử dụng tài liệu hướng dẫn tự học Vật Lý cho học sinh ở trường Dự bị Đại
học Dân tộc, nhóm tác giả này đã xây dựng quy trình thiết kế và các bƣớc hƣớng
dẫn sử dụng tài liệu tự học Vật Lý cho học sinh nhằm nâng cao chất lƣợng tự
học ở môn này cho học sinh các trƣờng Dự bị Đại học Dân tộc.
Tại trƣờng Dự bị Đại học Dân tộc Trung ƣơng đã có SKKN tác giả Lê Thị
Thu Hà - nhóm chuyên môn Hóa học với tên đề tài Xây dựng tài liệu tự học theo
mô đun phần kiềm thổ cho học sinh khối A, B trường Dự bị Đại học Dân tộc
trung ương năm 2012; nhóm tác giả Nguyễn Thị Ngân, Phạm Thị Thơm với tên
đề tài Xây dựng tài liệu tự học theo mô đun phần Phi kim cho học sinh khối A, B
trường Dự bị Đại học Dân tộc trung ương năm 2013; tác giả Nguyễn Phƣơng
Thảo năm 2014 ... tuy nhiên chƣa có công trình nào nghiên cứu về xây dựng tài
liệu tự học Toán dành cho học sinh trƣờng Dự bị Đại học Dân tộc Trung ƣơng,
có phần trắc nghiệm toán.
II. Cơ sở lí luận
1. Quan niệm về tự học
Tự học là tự mình động não suy nghĩ, sử dụng các năng lực trí tuệ (quan
sát, so sánh, phân tích, tổng hợp...) và có khi cả cơ bắp (khi phải sử dụng công
cụ), cùng các phẩm chất của mình rồi cả động cơ tình cảm, nhân sinh quan, thế
giới quan (nhƣ trung thực, khách quan, ý muốn thực thi biết biến khó khăn thành
thuận lợi...) để chiếm lĩnh lĩnh vực hiểu biết nào đó của nhân loại, biến lĩnh vực
hiểu biết đó thành sở hữu của mình.
2. Tự học với tài liệu
2.1. Tài liệu học tập
Tài liệu học tập đƣợc chia ra thành nhiều loại tuỳ theo tính chất hay chức
năng riêng biệt của nó. Thông thƣờng, đối với học sinh trƣờng Dự bị Đại học
Dân tộc Trung ƣơng có những loại tài liệu học tập sau đây:
3
1.1. Giáo trình: Đây là tài liệu học tập do các thầy cô giáo trong Tổ bộ
môn Toán biên soạn là tài liệu học tập cơ bản, chung, chính thống, bắt buộc đối
với mọi học sinh sinh khi học tập môn đó.
1.2. Tài liệu tham khảo, đọc thêm: Là những tài liệu cần thiết để bổ xung,
đào sâu, mở rộng tri thức cho từng bài học, từng chƣơng.
1.3. Tài liệu hướng dẫn học tập: Là những tài liệu có chức năng hƣớng
dẫn học tập, ôn tập hay rèn luyện kỹ năng, tự học, tự thực hành, nhƣ Giáo trình;
các đề tài NCKH, SKKN của các thầy cô giáo trong Nhà trƣờng trong nhiều
năm học; các bài viết, các video trên Website hỗ trợ tự học của các Nhóm
chuyên môn trong Nhà trƣờng…
Tài liệu tham khảo, hƣớng dẫn học tập là những tài liệu bổ trợ giúp học
sinh nắm chắc đƣợc kiến thức cơ bản, phát huy đƣợc tính tích cực, độc lập, sáng
tạo, học sinh phát huy hết năng lực nhận thức, kích thích tính ham học hỏi, tìm
tòi, sáng tạo những cái mới, độc lập, tự chủ trong việc lĩnh hội tri thức.
2.2. Tự học với tài liệu
Căn cứ theo phƣơng tiện học tập thì có một số hình thức tự học nhƣ: tự
học với tài liệu, tự học qua tivi, tự học với sách điện tử, tự học qua Internet...
trong đó tự học với tài liệu là hình thức phổ biến nhất đối với học sinh, nhà
nghiên cứu...
Học sinh học độc lập với tài liệu, không có thầy cô, có nhƣợc điểm là khi
ngƣời học không hiểu thì không có thầy bên cạnh để hỏi. Hoạt động tự học diễn
ra thầm lặng, không có sự sôi nổi, sinh động bởi không có sự trao đổi, thảo luận
với bạn, với thầy.
Bên cạnh nhƣợc điểm trên thì việc tự học với tài liệu có những ƣu điểm:
Đây là hình thức học ít tốn kém nhất, không cần phải đến trƣờng, lớp ngƣời học
có thể học ở mọi nơi, mọi lúc phù hợp với quỹ thời gian của bản thân. Đặc biệt,
hình thức tự học này sẽ phát huy cao độ tính độc lập của ngƣời học, phát triển
năng lực tự học, năng lực là việc độc lập với sách, một năng lực cần thiết cho
mọi ngƣời để có thể học tập suốt đời.
2.3. Xây dựng tài liệu tự học Toán cho học sinh trƣờng Dự bị Đại học
Dân tộc Trung ƣơng
2.3.1. Nguyên tắc xây dựng
2.3.2. Quy trình xây dựng tài liệu tự học
Việc nghiên cứu và xây dựng tài liệu tự học đƣợc tiến hành theo các bƣớc.
Bƣớc 1: Phân tích - Xác định nhu cầu, tìm hiểu đối tƣợng và đề ra mục
tiêu (về kiến thức, kĩ năng, thái độ)
Xác định mục tiêu của chủ đề theo các mức độ nhận thức, kỹ năng, thái
độ và mục tiêu phát triển năng lực một cách rõ ràng.
Mục tiêu chủ đề có vai trò định hƣớng cho hoạt động dạy học và là cơ sở
4
để kiểm tra đánh giá hiệu quả dạy học.
Bƣớc 2: Biên soạn - Vạch ra đề cƣơng, nội dung, xem xét tài liệu hiện có;
tổ chức biên soạn nội dung, các phƣơng tiện hỗ trợ...
Bƣớc 3: Đánh giá - Sau khi biên soạn cần đƣợc đƣa vào thử nghiệm và
xác định các công cụ đánh giá, kiểm tra chất lƣợng, lấy ý kiến chuyên gia về
mục tiêu, tên chủ đề, nội dung của chủ đề (nếu cần).
Bƣớc 4: Hoàn thiện cấu trúc, nội dung chủ đề và đƣa vào triển khai thực
hiện.
2.3.3. Cấu trúc tài liệu hướng dẫn tự học Toán
Tài liệu hƣớng dẫn tự học Toán gồm 2 phần: Phần mở đầu và phần nội dung
- Phần mở đầu:
+ Hƣớng dẫn sử dụng tài liệu tự học.
+ Giới thiệu về chủ đề: thời lƣợng giảng dạy, mối quan hệ với các đơn
vị kiến thức khác.
+ Giới thiệu nhiệm vụ của chủ đề: Mục tiêu chung (kiến thức, kĩ năng,
thái độ); về thời gian tự học.
- Phần nội dung: Chia chủ đề thành nhiều nhiệm vụ cụ thể giúp học sinh
có thể giải quyết từng nhiệm vụ một cách độc lập trong thời gian cho phép. Ở
mỗi nhiệm vụ đều thực hiện theo các bƣớc
Bƣớc 1: Trang bị các kiến thức liên quan (Phần này vừa mang tính gợi
mở vừa mang tính tái hiện lại kiến thức trong sách giáo trình)
Bƣớc 2: Giới thiệu các ví dụ điển hình theo từng dạng toán có phân tích,
định hƣớng.
Bƣớc 3: Giới thiệu hệ thống bài tập tự học dạng bài tập trắc nghiệm (bài
tập đề nghị) để sau khi học sinh tự nghiên cứu các ví dụ điển hình luyện tập theo
nhóm hoặc cá nhân (hệ thống bài tập này đa dạng vừa có bài tập dễ để củng cố
kiến thức, vừa có bài tập khó để nâng cao để kiểm tra kiến thức mà học sinh thu
nhận đƣợc khi đọc một đơn vị kiến thức)
Bƣớc 4: Sau khi hoàn thành các nhiệm vụ của chuyên đề học sinh độc lập
thực hiện kiểm tra và tự đối chiếu kiến thức lĩnh hội trong quá trình tự học bằng
đáp án có sẵn từ đó học sinh tự rút kinh nghiệm hoặc có thể trao đổi với giáo
viên và học sinh khác.
III. Một số khó khăn của học sinh khi học chủ đề thể tích của khối chóp,
khối lăng trụ và định hƣớng xây dựng tài liệu tự học
Các thắc mắc:“ Vẽ hình như thế nào? Phải bắt đầu từ đâu?... ” là những
thắc mắc thƣờng gặp của học sinh khi bắt tay vào làm một bài tập hình học
không gian nói chung. Đặc biệt đối với bài toán tính thể tích khối đa diện nói
chung và tính thể tích khối chóp, khối lăng trụ nói riêng thì đối với hầu hết học
5
sinh trong quá trình học toán tại nhà trƣờng, kể cả những học sinh khá giỏi cũng
gặp rất nhiều khó khăn khi giải bài tập. Nguyên nhân của thực trạng trên là:
- Học sinh còn lúng túng trong việc phân tích và nắm bắt đƣợc các mối
quan hệ ràng buộc giữa giả thiết và kết luận của bài toán.
- Chƣa biết cách hệ thống hóa đƣợc các kiến thức cơ bản liên quan đến
chủ đề về thể tích khối chóp và khối lăng trụ.
- Kỹ năng vận dụng kiến thức hình học không gian còn hạn chế.
- Kỹ năng vẽ hình không gian còn hạn chế, thƣờng xuyên nhầm lẫn giữa
nét đứt và nét liền.
Chủ đề về tính thể tích khối chóp và khối lăng trụ đƣợc đề cập thƣờng
xuyên trong các đề thi, một số chuyên đề đã viết về vấn đề này nhƣng chỉ mang
tính tổng hợp, chƣa phân tích và phân dạng bài tập cụ thể.
Trong những năm gần đây hoạt động giảng dạy, học tập môn toán tại
trƣờng Dự bị Đại học Dân tộc Trung ƣơng giáo viên và học sinh sử dụng tài liệu
giảng dạy, tài liệu tham khảo là Giáo trình do Tổ bộ môn biên soạn và các sách
tham khảo trên thƣ viện Nhà trƣờng. Các tài liệu trên thƣ viện mặc dù khá đa
dạng song hầu hết không viết dƣới dạng dành cho học sinh tự học. Do đó trong
quá trình tự học học sinh chỉ biết lời giải trong mỗi bài toán cụ thể, ít học hỏi
đƣợc ở các tài liệu này cách nghĩ, cách giải quyết bài toán.
Trên cơ sở đó, chúng tôi xây dựng tài liệu hƣớng dẫn tự học chủ đề thể
tích khối chóp và khối lăng trụ có một số điểm khác biệt nhƣ sau:
- Trong từng chủ đề dạy học phần thể tích, chúng tôi phân chia các nhiệm
vụ, trong mỗi nhiệm vụ lại có các ví dụ minh họa từ dễ đến khó, từ đơn giản đến
phức tạp từ đó học sinh có thể dễ dàng nhận dạng và phân loại bài toán để đƣa ra
phƣơng pháp giải phù hợp.
- Mỗi ví dụ đều có hƣớng dẫn học sinh phân tích giả thiết, nhất là các giả
thiết cho ở dạng gián tiếp từ đó hƣớng dẫn học sinh vẽ hình, tìm đƣợc mối quan
hệ giữa các yếu tố từ đó đƣa ra lời giải bài toán ngắn gọn.
- Đƣa ra đƣợc hệ thống bài tập trắc nghiệm theo từng dạng từ dễ đến khó,
đáp ứng đƣợc nhu cầu, trình độ của ngƣời học nhằm giúp các em tự luyện và
nâng cao khả năng tƣ duy; phát huy đƣợc tính tích cực, chủ động sáng tạo của
học sinh.
6
Chƣơng 2
XÂY DỰNG TÀI LIỆU TỰ HỌC CHỦ ĐỀ THỂ TÍCH CỦA KHỐI CHÓP
VÀ KHỐI LĂNG TRỤ HỖ TRỢ HOẠT ĐỘNG TỰ HỌC CHO
HỌC SINH TRƢỜNG DỰ BỊ ĐẠI HỌC DÂN TỘC TRUNG ƢƠNG
I. Hƣớng dẫn sử dụng tài liệu
Tài liệu đƣợc biên soạn với cấu trúc và nội dung của chƣơng trình ở trƣờng
Dự bị Đại học Dân tộc. Đồng thời, tài liệu cũng đƣợc thiết kế phù hợp với khả
năng của học sinh và nêu lên đƣợc phƣơng pháp học tập. Tài liệu đƣợc sử dụng
cả trong tự học và giờ học trên lớp. Ở trong giờ tự học, học sinh sẽ tự học theo
nhịp độ cá nhân, ghi chép lại những nội dung đã học, những vấn đề còn chƣa
giải quyết đƣợc sẽ đƣợc trao đổi, thảo luận ở trên lớp với sự hƣớng dẫn trực tiếp
của giáo viên. Tuy nhiên do khả năng của mỗi học sinh khác nhau nên tác dụng
đạt đƣợc của tài liệu sẽ không giống nhau.
Đối với học sinh, để sử dụng tốt tài liệu này, học sinh cần phải tuân thủ từng
bƣớc theo yêu cầu sau đây:
- Học sinh phải nắm đƣợc mục tiêu của kiến thức mình định nghiên cứu.
Phần này trình bày những yêu cầu về kiến thức, kĩ năng mà học sinh cần nắm
đƣợc khi học.
- Học sinh nghiên cứu các ví dụ minh họa, những phân tích định hƣớng trong
bài toán cụ thể. Những phân tích định hƣớng trong các ví dụ này vừa mang tính
chất gợi mở vừa mang tính chất tái hiện những kiến thức trong các tài liệu.
- Thực hành với các bài tập tƣơng tự (bài tập đề nghị - dạng trắc nghiệm), đối
chiếu với kết quả bài làm của mình tại phần đáp số.
II. Giới thiệu về chủ đề thể tích khối chóp, khối lăng trụ trong chƣơng trình
môn Toán hệ Dự bị Đại học.
Trong chƣơng trình dự bị đại học, phần kiến thức về tính thể tích khối
khóp và khối lăng trụ là một trong những kiến thức cơ bản và quan trọng của
chƣơng Hình học không gian, thƣờng là phần kiến thức có trong nội dung ôn tập
và thi học kỳ I của các khối A, B, D tại trƣờng.
III. Tài liệu học tập
1. Giáo trình Toán (dành cho khối A, B; D) Trƣờng Dự bị Đại học Dân tộc
Trung ƣơng (Tài liệu lƣu hành nội bộ-2016).
2. Đoàn Quỳnh (Tổng chủ biên), Hình học 12 (Chương trình nâng cao), NXB
Giáo dục Việt Nam, 2015.
...
IV. Yêu cầu đạt đƣợc
1. Kiến thức, Kĩ năng, Thái độ,. Định hƣớng phát triển năng lực
V. Hệ thống các kiến thức liên quan tới tính thể tích khối chóp và lăng trụ
7
Chủ đề 1: THỂ TÍCH CỦA KHỐI CHÓP
1. Tính trực tiếp thể tích khối chóp
Tính trực tiếp thể tích khối chóp là phải tìm được chiều cao và diện tích
đáy của khối chóp đó.
Bƣớc 1: Xác định các yếu tố của giả thiết (đƣờng cao, các mặt phẳng
vuông góc, khoảng cách giữa điểm và đƣờng thẳng, khoảng cách giữa điểm và
mặt phẳng, góc giữa đƣờng thẳng với mặt phẳng, góc giữa 2 mặt phẳng,...) theo
các phƣơng pháp đã biết.
Bƣớc 2: Dựa vào công thức tính thể tích, ta phân tích V thành các biểu
thức chứa những đoạn thẳng phải tính. Tính những đoạn thẳng ấy bằng cách sử
dụng các hệ thức lƣợng trong tam giác, tính chất đồng dạng,...
Bƣớc 3: Tính giá trị của V.
2. Tính gián tiếp thể tích khối chóp thông qua việc sử dụng tỉ số thể tích
Để sử dụng tỉ số thể tích để tính thể tích ta dựa vào kết quả: Cho hình
chóp S.ABC. Trên các đường thẳng SA, SB, SC lần lượt lấy 3 điểm A’,B’,C’
V
SA ' SB ' SC '
khác với điểm S. Ta có: S . A ' B ' C '
VS . ABC
SA SB SC
Nhiệm vụ 1: Thể tích khối chóp có đƣờng cao là một cạnh bên của
khối chóp
Nếu hình chóp có một cạnh bên vuông Nếu hình chóp có hai mặt bên SAC và
góc với đáy thì cạnh bên đó là đƣờng SAB vuông góc với đáy, thì cạnh bên
cao của hình chóp.
là giao tuyến của hai mặt bên đó vuông
SA ABC
góc với đáy.
S
S
A
B
C
A
D
B
C
Trƣờng hợp 1: Giả thiêt cho biết rõ chiều cao của hình chóp là một cạnh
bên cụ thể.
a. Hình chóp có đáy là tam giác
Ví dụ 1: Cho khối chóp SABC, đáy ABC là tam giác đều cạnh a, đƣờng cao
SA a 3 . Tính thể tích khối chóp.
8
* Phân tích đề bài để vẽ hình
- Vẽ đáy ABC là tam giác thƣờng, có một cạnh trùng với đƣờng kẻ ngang
của giấy vở (song song với mép ngang của giấy, vở).
- Vì SA là đƣờng cao của hình chóp nên vẽ SA song song với mép dọc của
giấy, vở.
* Định hướng lời giải
Đƣờng cao SA đã biết độ lớn
Chỉ cần tính diện tích đáy: Tam giác đều cạnh a thì diện tích bằng
a2 3
4
Lời giải
a2 3
* Diện tích đáy: SABC
4
* Đƣờng cao: SA a 3
* Thể tích khối chóp:
2
S
a
A
3
C
1
1a 3
a
V SABC .SA
.a 3
B
3
3 4
4
Bài tập đề nghị (9 bài)
Bài 1: Cho khối chóp SABC có SA vuông góc với đáy, tam giác ABC vuông tại
B, AB a; AC a 3 . Tính thể tích của khối chóp SABC biết rằng SB a 5 .
a 3 15
a3 2
a3 6
a3 6
A.
B.
C.
D.
6
4
3
6
Bài 2: Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại B với AC =
a. Biết SA vuông góc với đáy ABC và SB hợp với đáy một góc 600 . Tính thể
tích của khối chóp
a3 6
a3 3
a3 6
a3 6
B.
C.
D.
24
24
8
48
b. Hình chóp có đáy là hình vuông, hình chữ nhật
Ví dụ 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông. Cạnh bên SA
vuông góc với mặt đáy và SA = AC = a 2 . Tính thể tích khối chóp S.ABCD
theo a.
* Phân tích đề bài để vẽ hình
- Đáy ABCD là hình vuông nê khi vẽ ta sẽ phải vẽ ABCD là hình bình
hành có một cặp cạnh song song với mép ngang của tờ giấy.
- Vì SA là đƣờng cao của hình chóp nên vẽ SA song song với mép dọc của
tờ giấy
* Định hướng lời giải
Đƣờng cao SA đề bài đã cho biết độ lớn
A.
9
để tính đƣợc thể tích khối chóp ta phải tính đƣợc diện tích đáy:
Vì ABCD là hinhf vuông cho biết độ dài đƣờng chéo nên có hai cách tính
diện tích :
Cách 1 : Tính cạnh của hình vuông khi biết độ dài đƣờng chéo. Áp dụng
công thức tính diện tích hình vuông.
Cách 2 : Vì hình vuông có hai đƣờng chéo nên suy ra diện tích của nó
theo công thức tính diện tích diện tích của tứ giác có hai đƣờng chéo vuông
góc.
Lời giải:
S
+) SA = a 2
+) Vì ABCD là hình vuông có đƣờng chéo
1
2
AC = a 2 nên diện tích là SABCD AC2 = a2
Vậy thể tích khối chóp S.ABCD là
A
a3 2
1
V SABCD.SA =
3
3
B
D
C
Bài tập đề nghị (22 bài)
Bài 10: Cho hình chóp SABC có đáy ABCD là hình vuông cạnh a 5 . SA vuông
góc với đáy và SA 2a 2 . Tính theo a thể tích khối chóp SABCD
C. 5a3 2
10a 3 2
2a 3 10
a3 2
A.
B.
D.
3
3
3
Bài 11: Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a và SA vuông
góc với đáy ABCD và mặt bên (SCD) hợp với đáy một góc 600 . Tính thể tích của
khối chóp SABCD.
D. a3 3
2a 3 3
a3 3
a3 3
A.
B.
C.
6
3
3
c. Hình chóp có đáy là hình thang, hình thoi, hình bình hành
Ví dụ 3: Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D,
AB = 2a; CD = a và BC = a 2 . Cạnh bên SA vuông góc với mặt đáy và cạnh
bên SC tạo với mặt đáy góc 600. Tính thể tích khối chóp S.ABCD theo a.
* Phân tích đề bài để vẽ hình
- Vẽ hình thang ABCD, lƣu ý đến quan hệ độ dài 2 cạnh đáy. Thông thƣờng
sẽ vẽ cạnh đáy lớn hơn có nét khuất, tạo chiều sâu của hình và hai đáy song
song với mép ngang của tờ giấy.
- SA là đƣờng cao nên vẽ SA song song với mép dọc của giấy.
- Xác định góc giữa SC và mp(ABCD).
* Định hướng lời giải
10
- Từ công thức tính diện tích hình thang ABCD cần xác định và tính chiều
cao của hình thang.
ABCD là hình thang vuông, cho biết độ dài đáy lớn, đáy nhỏ, cạnh bên BC
nên muốn tính chiều cao của hình thang có thể dựng tam giác vuông và áp
dụng định lý Pitago.
- Việc tính độ dài SA sẽ phải dựa vào tam giác vuông SAC để tính độ dài, vì
có góc giữa cạnh SC và mặt đáy, còn có thể tính đƣợc độ dài cạnh góc vuông
AC.
Lời giải:
+) Gọi M là trung điểm của AB khi đó CD AM a ; Lại có AM / /CD và
DAM 900 nên tứ giác ADCM là hình chữ nhật suy ra CM AB.
+) Áp dụng định lí Pitago trong các tam giác vuông CMB và CMA ta
đƣợc:
CM BC2 MB2
AC AM2 CM2
2
a 2 a 2 a;
a 2 a 2 a 2.
1
1
3a 2
AB
CD
.CM
a
2a
a
2
2
2
+) Vì SA (ABCD) nên AC là hình chiếu vuông góc của SC lên
mp(ABCD).
Do vậy góc giữa SC và (ABCD) là SCA 600 .
S
+) Tam giác SAC vuông tại A nên:
Suy ra: SABCD
0
SA = AC.tan 60 a 2. 3 a
6.
Do đó:
1
1 3a 2
a3 6
VS.ABCD SABCD .SA
a 6
3
3 2
2
M
A
B
60
D
C
Bài tập đề nghị (17 bài)
Trƣờng hợp 2: Xác định chiều cao của hình chóp dựa vào tính chất: nếu hai
mặt phẳng cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng
(nếu có) sẽ vuông góc với mặt phẳng thứ ba đó.
Ví dụ 4: Cho tứ diện ABCD có AB = BC = CD = DB = a. Mặt phẳng
(ABC) và mặt phẳng (ABD) cùng vuông góc với mặt phẳng (BCD). Tính thể
tích khối tứ diện ABCD theo a.
11
* Phân tích đề bài để vẽ hình
+ Ta có: ( ABC) ( ABD) AB ; ( ABC) ( BCD) ; ( ABD) ( BCD)
AB ( BCD)
Do đó vẽ đáy là tam giác BCD là một tam giác có một cạnh trùng với mép
ngang của tờ giấy và có nét đứt, đỉnh còn lại ở phía dƣới đƣờng thẳng đó.
Đƣờng cao AB song song với mép dọc của tờ giấy.
* Định hướng lời giải
- Đƣờng cao AB = a đã biết.
- Tính diện tích tam giác đều BCD khi biết cạnh.
Lời giải
A
+) Ta có : (ABC) (BCD),
(ABD) (BCD), (ABC) (ABD) AB
AB (BCD)
+) Vì BC = CD = DB = a nên tam giác BCD
a2 3
đều cạnh a, suy ra Sđ = SBCD
4
Do đó thể tích tứ diện ABCD là :
1 a2 3
a3 3
1
a
V Sđ.h
3 4
12
3
D
B
C
Bài tập đề nghị (7 bài)
Nhiệm vụ 2: Thể tích khối chóp có chân đƣờng cao nằm trên cạnh đáy
Hình chóp trong trường hợp này thường có các đặc điểm sau:
- Khi một mặt bên vuông góc với mặt đáy thì đường cao của mặt bên đó
chính là đường cao của khối chóp.
- Khi 2 mặt phẳng cùng đi qua đỉnh hình chóp và cùng vuông góc với đáy
thì đường cao khối chóp chính là giao tuyến của 2 mặt phẳng đó.
- Khi biết hình chiếu của đỉnh nằm trên cạnh đáy thỏa mãn điều kiện cho
trước thì đoạn thẳng nối đỉnh và hình chiếu của nó chính là đường cao khối
chóp.
Ví dụ 5: Cho tứ diện ABCD có ABC là tam giác đều, BCD là tam giác vuông
cân tại D , mặt phẳng (ABC) vuông góc với mặt phẳng (BCD), AD hợp với mặt
phẳng (BCD) một góc 60o và AD = a. Tính thể tích khối tứ diện ABCD theo a.
* Phân tích đề bài để vẽ hình
ABC BCD
( ABC ) BCD BC
- Vì
AH BCD
AH ABC
AH BC
12
AH chính là đƣờng cao, tam giác BCD là đáy của hình chóp A.BCD.
Điểm H có đặc điểm gì? (H là trung điểm BC)
* Định hướng lời giải
- Để tính đƣợc thể tích của khối tứ diện ABCD thì ta phải tính đƣợc độ dài
đƣờng cao AH và diện tích đáy BCD Phải xác định và tính đƣợc độ dài
các đoạn thẳng : AH, HD, BC.
Phải xác định góc giữa AD và (BCD).
Dựa vào tam giác AHD để tính AH, HD.
Dựa vào tính chất của tam giác vuông để có BC. Từ đó suy ra kết quả.
Lời giải:
+) Gọi H là trung điểm của BC. Vì tam giác ABC đều nên AH (BCD) , mà
(ABC) (BCD) AH (BCD) . Suy ra ADH 600 .
+) Ta có AH (BCD) , HD (BCD) AH HD
AH = AD.sin60 =
o
a 3
A
2
a
2
+) H là trung điểm của BC, BCD vuông cân
tại D BC = 2HD = a và HD BC.
1
1 1
a3 3
Vậy V = SBCD .AH . BC.HD.AH
3
3 2
24
và HD = AD.cos60o =
60
B
H
C
Bài tập đề nghị (36 bài)
Nhiệm vụ 3: Thể tích khối chóp có chân đƣờng cao là điểm bên trong hoặc
bên ngoài đa giác đáy
Hình chóp trong trƣờng hợp này thƣờng có một trong các đặc điểm sau:
- Khối chóp đều. Khi đó chân đường cao trùng với tâm của mặt đáy.
- Khối chóp có các cạnh bên (ít nhất 3 cạnh bên) bằng nhau hoặc tạo với mặt
đáy những góc bằng nhau thì chân đường cao trùng với tâm đường tròn ngoại
tiếp đa giác đáy.
- Khối chóp có các mặt bên (ít nhất 3 mặt bên) cùng tạo với mặt đáy các góc
bằng nhau thì chân đường cao trùng với tâm đường tròn nội tiếp đa giác đáy
(chân đường cao nằm trong đa giác đáy).
- Khối chóp có hình chiếu vuông góc của đỉnh nằm trên mặt đáy thì đoạn nối
đỉnh và hình chiếu của nó là đường cao.
Ví dụ 6: Cho chóp tam giác đều S.ABC cạnh đáy bằng 3a và cạnh bên bằng
2a. Tính thể tích khối chóp S.ABC .
* Phân tích đề bài để vẽ hình
- Vẽ tam giác ABC. Xác định trọng tâm O của tam giác ABC
13
D
- Vẽ OS thẳng đứng, nối S với A, B, C.
* Định hướng lời giải
- Tính diện tích tam giác đều.
- Dựa vào tam giác vuông SOA để tính chiều cao.
Lời giải:
+) Gọi O là tâm của tam giác đều ABC. Vì S.ABC là hình chóp đều nên :
SO (ABC).
S
+) Vì tam giác ABC đều nên
2
2 3a 3
AH
a 3
3
3 2
+) Xét tam giác vuông SAO có
AO =
SO2 SA2 OA2 4a2 3a2 a2
SO a
1
3 3a3
Vậy V SABC .SO
3
4
C
A
0
H
B
Ví dụ 7: Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, cạnh bên SA = a,
SAB SAD BAD 600 . Tính thể tích khối chóp S.ABCD theo a.
* Phân tích đề bài để dựng hình:
- Từ giả thiết suy ra S.ABD là hình chóp đều.
- Vẽ đáy ABCD và giao điểm 2 đƣờng chéo.
- Lấy H là trọng tâm tam giác ABD, vẽ HS thẳng đứng và vẽ các cạnh bên
SA, SB, SC, SD.
* Định hướng lời giải
- Tính diện tích hình thoi
(cách 1: SABCD =
1
1
AC.BD; cách 2: SABCD = 2SABD = 2. AB.AD.sin600 )
2
2
- Tính đƣờng cao SH từ việc xét tam giác vuông SAH.
Lời giải:
S
+) Từ giả thiết ta có ABD, SAB, SAD đều
SB = SD = SA = BD = a.
+) Kẻ SH mp(ABCD) HA = HB= HD = R,
R là bán kính đƣờng tròn ngoại tiếp ABD.
D
BD
a
a
R=
2 sin A 2 sin 60 0
3
H
A
14
B
C
2
2
2
SH = SA R a (
a
3
)2
a 2
3
1
2
+) SABCD = 2SABD = 2. AB.AD.sin600 =
3a 2
2
1
1 3a 2 a 2
2a 3
Vậy V = S ABCD SH
3
3 2
6
3
Bài tập đề nghị (44 bài)
Nhiệm vụ 4. Tính thể tích khối chóp thông qua sử dụng tỉ số thể tích
Sử dụng các phƣơng pháp sau :
+ Dùng công thức về tỉ số thể tích của hai khối chóp tam giác
+ Dùng phƣơng pháp trƣợt đỉnh, giãn đáy;
+ Chia hoặc bổ sung thêm khối đa diện để dễ tính thể tích hơn.
Để sử dụng tỉ số thể tích để tính thể tích ta dựa vào kết quả: Cho hình
chóp S.ABC. Trên các đường thẳng SA, SB, SC lần lượt lấy 3 điểm A’,B’,C’
V
SA ' SB ' SC '
khác với điểm S. Ta có: S . A ' B ' C '
(1)
VS . ABC
SA SB SC
Ví dụ 8: Cho hình chóp S.ABCD có đáy ABCD là hình thang, cạnh bên SA
vuông góc với mặt đáy, SA = 2a, AB BC a, AD 2a , BAD ABC 900 . Gọi
M, N lần lƣợt là trung điểm của SA và SD. Tính thể tích khối chóp S.BCNM
theo a.
* Phân tích đề bài để vẽ hình:
- Vẽ đáy ABCD, chú ý đến quan hệ độ dài giữa AD và BC.
- Vẽ SA thẳng đứng và vẽ các cạnh bên SB, SC, SD.
* Định hướng lời giải
Ta dễ dàng chứng minh đƣợc BCMN là hình chữ nhật, từ đó tính đƣợc diện
tích đáy, nhƣng việc xác định chân đƣờng cao của hình chóp gặp nhiều khó
khăn.
Do đó dựa vào giả thiết M, N là trung điểm của SA, SD ta dùng phƣơng
pháp phân chia khối chóp và sử dụng tỉ số thể tích để chuyển từ việc tính thể
tích khối chóp S.BCNM sang tính thể tích các khối chóp S.BCA và S.CDA.
Lời giải:
( AD BC ). AB 3a 2
+) ABCD là hình thang vuông nên: SABCD
2
2
2
a
+) ABC là tam giác vuông cân tại A nên SABC =
2
15
+) SACD = SABCD - SABC = a2
S
3
Suy ra: VS.BCM =
a
1
SABC. SA =
3
3
Áp dụng công thức (1) ta có:
VS .BCM SM 1
;
VS .BCA
SA 2
A
VS .CMN SM SN 1
VS .CAD
SA SD 4
Do đó: VS .BCNM VS .BCM VS .CNM
N
M
2a 3
1
và VS.ACD = SACD. SA =
3
3
B
D
C
1
1
a 3 2a 3 a 3
VS . BCA VS .CAD
2
4
2.3 4.3 3
Bài tập đề nghị (19 bài)
Chủ đề 2 : THỂ TÍCH KHỐI LĂNG TRỤ
1. Phân loại
Khối lăng trụ có hai loại là khối lăng trụ đứng và khối lăng trụ xiên.
- Đối với khối lăng trụ đứng thì chiều cao của khối bằng độ dài cạnh bên.
- Đối với khối lăng trụ xiên, do hai mặt đáy song song với nhau nên khi lấy
một đỉnh kết hợp với mặt đáy đối diện ta sẽ được một khối chóp sau đó việc xác
định chân đường cao cũng dựa theo các hướng trên.
2. Phƣơng pháp tính
2.1. Thể tích khối lăng trụ đứng
Nhiệm vụ 1: Thể tích khối lăng trụ đứng có độ dài các đoạn thẳng
Ví dụ 1: Cho hình lăng trụ đứng ABC. A ' B ' C ' có đáy ABC là tam giác vuông cân
tại A, Biết BC = a 2 và A'B = 3a. Tính thể tích khối lăng trụ ABC. A ' B ' C ' .
* Phân tích đề bài để vẽ hình
Dựng đáy ABC hay A'B'C' . Dựng các cạnh bên của hình lăng trụ đứng.
* Định hướng lời giải
- Tính diện tích tam giác vuông cân ABC tại A khi biết cạnh huyền.
- Tính chiều cao AA' của lăng trụ theo định lý Pitago.
Lời giải:
16
+) Vì tam giác ABC vuông cân tại A và BC = a 2
nên AB = AC = a.
+) ABC. A'B'C' là lăng trụ đứng AA' AB
Xét tam giác vuông ABA' có
A'
C'
B'
AA'2 A'B2 AB2 8a2 AA' 2a 2
Vậy V = SABC .AA' = a3 2 .
A
C
B
Ví dụ 2: Cho hình lăng trụ tứ giác đều ABCD.A'B'C'D' có cạnh bên bằng 4a và
đƣờng chéo 5a. Tính thể tích khối lăng trụ theo a.
* Phân tích đề bài để vẽ hình
- Vẽ đáy là ABCD hay A'B'C'D' .
- Vẽ các cạnh bên của lăng trụ đứng.
- Vẽ đƣờng chéo BD' của lăng trụ .
* Định hướng lời giải
- Có chiều cao AA' = 4a.
- Sử dụng định lý Pitago để tính BD, từ đó có diện tích đáy.
Lời giải:
+) Vì ABCD.A'B'C'D' là lăng trụ đứng nên
D'
C'
2
2
2
2
BD = BD' - DD' = 9a BD 3a
B'
+) Vì ABCD là hình vuông nên
A'
9a2
1
2
SABCD = BD =
2
2
3
Vậy V = SABCD.AA' = 18a .
D
A
C
B
Bài tập đề nghị (8 bài)
Nhiệm vụ 2: Thể tích khối lăng trụ đứng có góc giữa đƣờng thẳng và mặt
phẳng
Ví dụ 3: Cho hình lăng trụ đứng ABC. A'B'C' có đáy ABC là tam giác vuông
tại A với AC = a , ACB = 60o biết BC' hợp với (AA'C'C) một góc 300. Tính AC'
và thể tích khối lăng trụ ABC. A'B'C' theo a.
* Phân tích đề bài để vẽ hình
- Vẽ tam giác ABC hay A'B'C' và vẽ các cạnh bên của hình lăng trụ đứng.
- Vẽ BC'.
* Định hướng lời giải
- Tìm hình chiếu của BC' trên (AA'C'C). Suy ra góc giữa BC' và (AA'C'C).
17
- Tính AB để có AC'.
- Áp dụng định lý Pitago để tính chiều cao.
Lời giải:
*) Xét tam giác vuông ABC ta có
AB AC.tan60o a 3 .
+) AB AC;AB AA' AB (AA'C'C)
AC' là hình chiếu vuông góc của BC' trên
C'
A'
B'
30
mp(AA'C'C). Vậy góc BC'A = 30o .
+) Xét tam giác vuông ABC' có AC' AB o 3a
t an30
*) Xét tam giác vuông AA'C có:
a
A
60
C
AA' AC'2 A'C'2 2a 2
B
a2 3
+) SABC
. Vậy V = SABC.AA' = a3 6 .
2
Bài tập đề nghị (10 bài)
Nhiệm vụ 3: Thể tích khối lăng trụ đứng có góc giữa hai mặt phẳng
Ví dụ 4: Cho hình lăng trụ đứng ABC. A'B'C' có đáy ABC là tam giác đều. Mặt
phẳng (A’BC) tạo với mặt đáy một góc 300 và diện tích tam giác A'BC bằng
8. Tính thể tích khối lăng trụ.
* Phân tích đề bài để vẽ hình
- Vẽ tam giác ABC hay A'B'C' và các cạnh bên của hình lăng trụ .
- Vẽ tam giác A'BC.
* Định hướng lời giải
- Xác định giao tuyến của hai mp( A'BC ) và mp(ABC) là BC. Từ đặc tính của
tam giác A'BC và ABC suy ra đỉnh của góc giữa hai mặt phẳng này nằm trên
trung điểm của BC.
- Đặt BC = 2x . Tính A'I. Từ diện tích tam giác A'BC suy ra x.
- Tính A'A.
Lời giải
18
+) Gọi I là trung điểm của BC.
Vì ABC đều AI BC mà AA' (ABC)
A'
C'
nên A'I BC (Định lý ba đƣờng vuông góc)
o
A'IA = 30
B'
2x 3
x 3.
2
+) Trong tam giác vuông A'AI, ta có :
+) Đặt BI = x AI
A
C
30
I
B
A ' I AI : cos300
3
2 AI
0
x
2x, A’A = AI.tan 30 = x 3.
3
3
+) Theo giả thiết: SA’BC = 2 SA’BC = BI.A’I = x.2x = 8 x 2
Do đó VABC.A’B’C’ = CI.AI.A’A = x3 3 = 8 3 .
Bài tập đề nghị (11 bài)
Nhiệm vụ 4: Thể tích khối lăng trụ xiên
Ví dụ 5: Cho hình lăng trụ tam giác ABC. A'B'C' có đáy ABC là tam giác đều
cạnh a. Hình chiếu vuông góc của A' xuống mặt phẳng (ABC) trùng với tâm O
của đƣờng tròn ngoại tiếp tam giác ABC, biết AA' tạo với mặt đáy ABC một
góc 600 . Tính thể tích khối lăng trụ ABC. A'B'C' theo a.
* Phân tích đề bài để vẽ hình
- Vẽ tam giác đều ABC và xác định tâm O của nó .
- Vẽ đƣờng cao OA'. Từ đó dựng các cạnh bên của hình lăng trụ.
* Chia nhỏ bài toán để từ đó xác định các yếu tố cần tính
- Xác định góc giữa cạnh bên AA' và mặt đáy ABC.
- Tính diện tích của tam giác ABC.
- Tính AA' trong tam giác vuông AA'O.
Lời giải
+) Ta có A'O (ABC) OA là hình chiếu
A'
C'
của AA' trên mp(ABC). Vậy OAA' 60o
+) ABC đều nên AO 2 AH 2 a 3 a 3
3
3 2
3
+) Xét tam giác vuông AA'O, ta có:
A'O AO.t an60o a
B'
A
60
3
C
Vậy V = SABC.A'O = a 3
4
O
B
Bài tập đề nghị (17 bài)
19
H
Tiểu kết chƣơng 2
Chƣơng 2 Sáng kiến kinh nghiệm đã xây dựng hoàn chỉnh một tài liệu tự học
chủ đề thể tích khối chóp, khối lăng trụ; với 8 nhiệm vụ ở 2 chủ đề cùng với 200
bài tập dạng trắc nghiệm để học sinh luyện tập.
Tài liệu tự học Toán đƣa đến cho học sinh phƣơng pháp tự chiếm lĩnh tri
thức, tự đánh giá kết quả học tập của mình theo hƣớng tăng cƣờng vai trò chủ
động của học sinh. Tài liệu giúp học sinh tự chuyển hóa các tri thức từ giáo
trình, tài liệu tham khảo thành tri thức của bản thân.
Với học sinh để sử dụng tốt tài liệu cần tuân thủ các bƣớc hƣớng dẫn sử dụng
tài liệu (mục I) có thể kết hợp với học nhóm để giải quyết các bài tập khó hơn.
Đối với giáo viên, tài liệu này cũng đƣợc xem nhƣ một tài liệu tham khảo
Giáo viên có thể sử dụng từng nôi dung trong tài liệu vào các mục đích khác
nhau. Nếu giáo viên sử dụng tài liệu này trogn các giờ lên lớp thì cần phải thay
đổi thiết kế giáo án và cách tổ chức hoạt động. Để tạo động lực cho việc học tập
với tài liệu hƣớng dẫn tự học giáo viên cần kiểm tra, đánh giá kết quả tự học của
học sinh thông qua hệ thống bài tập trắc nghiệm.
20
Chƣơng 3
HIỆU QUẢ CỦA SÁNG KIẾN
Chúng tôi tổ chức thực nghiệm sƣ phạm để đánh giá hiệu quả của sáng
kiến kinh nghiệm.
1. Mục đích thực nghiệm
Từ nội dung đƣợc xây dựng ở Chƣơng 2, chúng tôi tiến hành thực nghiệm
nhằm đánh giá về tính hiệu quả của việc sử dụng tài liệu hƣớng dẫn tự học tới
chất lƣợng học tập và tinh thần thái độ trong hoạt động tự học của học sinh.
2. Đối tƣợng, thời gian, địa điểm tiến hành thực nghiệm
2.1. Thời gian, địa điểm thực nghiệm
2.2.Đối tượng thực nghiệm
Căn cứ vào chất lƣợng đầu vào, kết quả kiểm tra định kì 1, chúng tôi tiến
hành chọn 2 lớp: Lớp thực nghiệm K42B4; Lớp đối chứng K42B2 có mức độ
tƣơng đƣơng: số lƣợng học sinh (41 HS); nền nếp học tập, ý thức tổ chức kỉ luật,
đạo đức tác phong. Đây là 2 lớp có xuất phát điểm về kiến thức là tƣơng đồng
nhau. Giáo viên giảng dạy tại 2 lớp này là các thầy cô giáo vững về chuyên môn
và có số năm công tác tại nhà trƣờng là tƣơng đƣơng nhau.
3. Nội dung thực nghiệm
* Thể tích của khối chóp:
+ Nhiệm vụ 2: Thể tích khối chóp có chân đƣờng cao nằm trên cạnh đáy
+ Nhiệm vụ 3: Thể tích khối chóp có chân đƣờng cao là điểm bên trong
hoặc bên ngoài đa giác đáy.
* Thể tích khối lăng trụ
+ Nhiệm vụ 4: Thể tích khối lăng trụ xiên
4. Tổ chức thực nghiệm
- Phát tài liệu tự học cho học sinh lớp thực nghiệm với 3 chủ đề thực
nghiệm, hƣớng dẫn và điều chỉnh quá trình tự học của học sinh vào các tiết học
trên lớp và hƣớng dẫn tự học trong các buổi tự học trên giảng đƣờng.
- Tổ chức đánh giá bằng kết quả tự học của học sinh sau mỗi nhiệm vụ.
- Lớp đối chứng thực hiện giảng dạy theo lịch trình và giáo án, phƣơng án
của giáo viên
- Tổ chức đánh giá lớp thực nghiệm và lớp đối chứng bằng bài kiểm tra.
5. Kết quả thực nghiệm
5.1. Phân tích, mô tả kết quả lĩnh hội kiến thức
- Đánh giá kết quả học tập của HS: đánh giá bằng kết quả bài kiểm tra sau
khi sử dụng tài liệu hƣớng dẫn tự học.
21
35
30
%
25
20
15
TN
10
ĐC
5
0
1
2
3
4
5
6
7
8
9
10
Điểm
Biểu đồ 3.1. Phân phối tần suất kết quả lĩnh hội kiến thức môn Toán của 2
lớp TN và ĐC
Từ Biểu đồ 3.1 cho thấy, ở lớp ĐC, số HS có điểm số ở mức độ trung
bình chiếm tỷ lệ khá cao, số HS ở mức độ khá trở lên chiếm lệ thấp, trong khi
đó, ở lớp TN mức độ đạt đƣợc kiến thức của HS trong cao hơn so với ĐC
(đƣờng tần suất của lớp TN nằm về bên phải so với ĐC).
Điều này cho thấy, mức độ đạt đƣợc kiến thức của lớp TN cao hơn ĐC.
Đƣờng tần suất của lớp TN phân bố gần đối xứng quanh giá trị mode =
6.5, trong khi đó, đƣờng tần suất của lớp ĐC phân bố gần đối xứng quanh giá trị
mode = 5,7.
Điều này chứng tỏ, học sinh đã sử dụng tốt tài liệu tự học Toán và tài liệu
tự học đã bƣớc đầu mang lại hiệu quả trong việc giúp học sinh học tập phần thể
tích của khối chóp, khối lăng trụ.
Bảng 3.2. Tần suất hội tụ tiến (f)- số HS đạt điểm Xi (%) trở lên
ở lớp TN và ĐC
% số HS đạt điểm Xi trở lên
Lớp Số bài
1
2
3
4
5
6
7
8
9
10
ĐC
41
100 100 97,6 92,7 82,9 53,7 31,7 17,1 7,3
TN
41
100 100 100
97,6 95,2 78
2,4
58,5 31,7 12,2 2,4
Dựa vào kết quả xử lý số liệu Bảng 3.2, xây dựng đƣợc Biểu đồ 3.2
22
%
120
100
80
60
TN
40
ĐC
20
0
1
2
3
4
5
6
7
8
9
10
Điểm
Biểu đồ 3.2 Tần suất hội tụ tiến số HS đạt điểm Xi (%) trở lên
Qua biểu đồ 3.2 cho thấy, đƣờng hội tụ tiến của lớp TN luôn nằm bên
phải và cao hơn lớp ĐC và có sự tịnh tiến về bên phải sau các lần KT. Trong khi
đó, đƣờng tần suất hội tụ tiến của lớp ĐC nằm bên trái so đƣờng tần suất của lớp
TN. Tần suất xuất hiện tỷ lệ HS đạt điểm ở mức khá (>7) trở lên ở lớp TN luôn
cao hơn ĐC, cụ thể:
Ở lớp TN số HS đạt điểm 7 trở lên là 58,5%, tỷ lệ này ở lớp ĐC 31,7%,
hai lớp tƣơng đồng nhau về mức độ HS từ khá trở lên ở thời điểm trƣớc TN.
5.2. Tinh thần, thái độ của HS trong quá trình tự học
Trong quá trình thực nghiệm sƣ phạm, chúng tôi thấy rằng, trƣớc khi thực
nghiệm sƣ phạm, HS tìm hiểu và nghiên cứu tài liệu toán trên mạng hoặc vở học
thêm đƣợc các em ghi chép từ khi còn học THPT. Tuy nhiên đa phần tài liệu các
em nghiên cứu là dạng tự luận.
Khi trao đổi với các em lớp TN về việc cung cấp tài liệu cho các em tự
nghiên cứu và trao đổi khi có thắc mắc về chủ đề thể tích khối chóp, khối lăng
trụ các em tỏ ra rất hào hứng đặc biệt là các em có dự định tham dự kì thi THPT
Quốc gia 2017.
Trong quá trình thực nghiệm sƣ phạm thời gian đầu chúng tôi hƣớng dẫn
các em sử dụng tài liệu, khuyến khích trao đổi với các bạn học để tìm ra hƣớng
giải quyết bài toán khi gặp khó khăn. Từ đó HS lớp TN đã cảm thấy hào hứng,
phấn khởi, vui vẻ với việc học tập. Đa số các thành viên trong lớp TN đã tích
cực, chủ động trong việc sử dụng tài liệu, cũng nhƣ việc sắp xếp thời gian tự
học.
6. Kết quả đánh giá tài liệu tự học của giáo viên tổ bộ môn
23