Tải bản đầy đủ (.doc) (1 trang)

Đề thi HSG huyện môn toán

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (89.69 KB, 1 trang )

PHÒNG GD&ĐT THANH CHƯƠNG
ĐỀ THI CHỌN ĐỘI TUYỂN DỰ THI HỌC SINH GIỎI - CẤP TỈNH. NĂM HỌC 2008-2009
MÔN THI: TOÁN (Thời gian làm bài 150 phút)
Bài 1 (2,5 điểm) Giải các phương trình sau:
1. 3x
2
+ 4x + 10 = 2
2
14 7x −
2.
2 4 2 2
4 4
4 16 4 1 2 3 5x x x x y y y− − − + + + + − − = −
3. x
4
- 2y
4
– x
2
y
2
– 4x
2
-7y
2
- 5 = 0; (với x ; y nguyên)
Bài 2: (2.5 điểm)
1. Tìm số tự nhiên
n
để
18n


+

41n

là hai số chính phương.
2. Căn bậc hai của 64 có thể viết dưới dạng như sau: 64 6 4= +
Hỏi có tồn tại hay không các số có hai chữ số có thể viết căn bậc hai của chúng
dưới dạng như trên và là một số nguyên? Hãy chỉ ra toàn bộ các số đó.
Bài 3: (3,25 điểm)
Cho đường tròn (O; R) và đường thẳng d không đi qua O cắt đường tròn (O) tại
hai điểm A và B. Từ một điểm M tùy ý trên đường thẳng d và ở ngoài đường tròn (O)
vẽ hai tiếp tuyến MN và MP với đường tròn (O), (P, N là hai tiếp điểm).
1. Chứng minh rằng
2 2
.MN MP MA MB= =
2. Dựng vị trí điểm M trên đường thẳng d sao cho tứ giác MNOP là hình vuông.
3. Chứng minh rằng tâm của đường tròn đi qua 3 điểm M, N, P luôn chạy trên
đường thẳng cố định khi M di động trên đường thẳng d.
Bài 4: (1,5 điểm)
Trên mặt phẳng tọa độ xOy lấy điểm P(0; 1), vẽ đường tròn (K) có đường kính
OP. Trên trục hoành lấy ba điểm M(a; 0); N(b; 0), Q(c; 0). Nối PM; PN; PQ lần lượt
cắt đường tròn (K) tại A; B ; C. Tính độ dài các cạnh của tam giác ABC theo a; b; c.
Bài 5: (0,75 điểm) Cho a, b, c > 0.
Chứng minh rằng:
3 3 3 3 3 3
2 2 2
19b - a 19c - b 19a - c
+ + 3(a + b + c)
ab + 5b cb + 5c ac + 5a


Hết./

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×