1
................................................................................................................. i
................................................................................................................. ii
....................................................................................................................iii
........................................................................................................................... 1
....................................................................................... 3
........................................................................................................ 4
................................................................................................ 5
.............................................................................................. 5
........................................................................................... 5
........................................................... 6
....................................................................................................... 6
............................................................................................................ 7
............................... 9
.............................................................. 9
..................................................... 10
....................................................................................... 10
.................................................................................... 11
............................................................................... 12
........................................................................... 13
....................................................................................................... 13
2
............................................................ 14
..................................................................................... 23
2.1.
........................................... 23
.................................................................. 32
............................ 39
........................................................... 43
..................................................... 49
....................................................... 54
................................................................................ 62
............................................. 80
............ 99
.................. 113
................................................................................................................ 118
........................................................................................ 119
3
: Suy ra.
: Vô cùng.
;
; , ;
;
THPT:
GV: Giáo viên.
SGK: Sách giáo khoa.
4
I.
Môn Toán
giúp
HS)
môn
Toán,
HS
.
trong hai
p chúng ta
:
lý do nêu trên
.
5
II.
.
III.
+
HS.
IV.
6
1.
1.1.1.1.
.
(a, b) và x0
lim
x x0
(a, b).
f ( x) f ( x0 )
x x0
x0 ,
y '( x0 )
f '( x0 )
lim
x x0
f ( x) f ( x0 )
x x0
1.1.1.2.
f '( x0 )
lim
x x0
f ( x) f ( x0 )
x x0
x0
f
x, tính y
x0
x
y
f '( x0 )
[9]
lim
x
x0
y
.
x
f ( x0
4
x)
f ( x0 )
f '( x0 )
7
1.1.2
cao.
y
y'
x
f x
a; b
a;b)
f' x
x
y'
y'
f' x
y
f x
x và kí
f ''( x).
y ''
Chú ý:
y
f '''( x)
f
3
x .
n 1
y
n 1
f x có
y
f
là y '''
f x
f
n 1
x
n
f ( x) , kí
n
x
n
,n 4 .
f
n
x .
f
n
x
f
n 1
x '
1.2. Ý
1.2.1.1
y
a;b) và
f ( x)
y
M 0 x0 ; f x0 . [9]
f ( x)
x0
x0
(a, b).
M 0T
(C )
(C )
8
1.2.1.2. Bài
liên quan:
M x0 ; y0 .
A
1.2.2.1.
.
.
t0
t0 : v t0
s ' t0 .
Q Q t
Q
àm
Q Q t
Q Q t
t0
t 0 : I t0
Q ' t0 .
t.
t
t
v.
v(t )
t.
v t
f' t .
v
t
v '(t )
t. Vì
lim
t
0
v
t
(t ),
nên
9
,...
quan
,
có
.
Q(t
Q'(t
t1, t2
Q(t 2) Q(t1 )
10
I tb
I(t
sau: I
lim
t1
t2
1
Q(t 2) Q(t1 )
t2 t1
.
R(t ) 5t 2 7t
90
160 m3
2.
Các
Q(t 2 ) Q(t1 )
t2 t1
11
Tuy nhiê
2.2
2.2
.
.
2.2
.
2.2
.
2.2
2.2
.
12
[2].
g
+
+
[2]
13
:
[2]
,
,
14
.
y
Câu 1:
f ( x)
x 2 3x
x0
A. f (3) 6
C. f (3) 3
B. f (3) 0
D. f (3)
y
Câu 2:
A. x0
C. y0
B. x x x0
D. y
Câu 3:
x0 là?
f x0
C. y
f x
D. y
f x0
x
B. y
f
f x0
y
A. f ( x0 )
f ( x)
f ( x) f ( x0 )
x x0
x
f x
x
x0
f x0
y
C. lim
f ( x) f ( x0 )
x x0
D. lim
f ( x) f ( x0 )
x x0
x
B.
y
y y0
f ( x)
f x0
Câu 4:
y0
y
A. y
x
6
x0 là?
f ( x)
x
x0
3 là?
x
0
x0
f ( x)
x0 là?
15
Hoàn thành các câu
.
Câu 1:
y
f ( x)
x 2 3x
Câu 2:
y
f ( x)
x 2 3x
y
f (3
x)
x0
2
f (3) 3 x
y
Câu 3:
x0
y
f '(3) lim
x 3
x
lim
x
x0
2
3 x
x
x
3
Câu 4:
3
3
x2 2 x 1
x0
f (1) 0
...(1)...
lim
x2 2 x 1
0
x 1
x 1
( x 1) 2
1
x 1
lim
x
lim( x 1) 0
x 1
.
Câu 5:
f x
x
x0
f (0) 0
y ...(2)...
y
x
...(3)... ; lim
x
0
y
x
...(4)...
x
x2
x
0 . Ta có:
3
y
=......?
x
x0 1
x2 2 x 1
f x
f '(3) lim
x) 0
lim(3
x
f x
3
x
x 2 3x
f ( x)
3
x0
0
1 . Ta có:
16
(2) : f 0
x
f 0
x.( x 1)
x
(4) : lim x 1
2
x
0= x.( x 1)
x 1
(3) :
x
x
1
0
1.3.1.
toán 1:
x0
sau:
Cách 1:
x0 . Tính
x
y
f x0
x
f x0 .
y
x
y
x
lim
x
0
Cách 2:
y
Ta có: f '( x0 ) lim
x
x0
x0 .
f x
f ( x) f ( x0 )
x x0
f x
HD:
Cách 1:
2 x2 4x 1
x0 1.
17
x0 1 . Ta có:
x
f (1)
1
y
f 1
y
x
2
lim
x
0
x
21
x
2
x
41
1
( 1) 2
x
2
x
1 1 2
2
2
x
x
y
x
f 1
2 x
lim 2 x
x
0
0
Cách 2:
2 x2 4x 1
f x
f (1)
x0 1 . Ta có:
1
2x2 4x 1
f ( x) f (1)
lim
= lim
x 1
x 1
x 1
x 1
( 1)
2( x 1) 2
1
x 1
= lim
x
lim 2 x 1
0
x 1
.
f x
4x 7
3 x
x0
HD:
Cách 1:
x
f ( 2)
y
x
x
2
f
4 2 x 7
( 3)
3
2 x
2
1
lim
0
2 . Ta có:
3
f
y
x
x0
5
x
y
x
lim
x
f '( 2)
0
1
5
1
.
5
x
1
5
15 4 x
3
5 x
x
5
x
2.
18
Cách 2:
4x 7
3 x
f x
f ( 2)
2 . Ta có:
x0
3
4x 7
( 3)
lim 3 x
x
2
x 2
x 2
= lim
x
2 (x
2)(3 x)
f ( x) f ( 2)
lim
x
2
x 2
4x 7
3
lim
x
2
x
1
lim
x
23
x
3(3 x)
x
2
1
5
1
.
5
f '( 2)
f x
x2
x 1
x 1
HD:
Cách 1:
x
3 . Ta có:
x0
13
4
f (3)
y
f 3
y
x
4
x
f 3
3
x
3
2
3 x
x 1
1 13
4
4
2
x
15 x
4 x 16
2
x
15 x
x.(4 x 16)
y
lim
x 0 x
lim
x
f '(3)
4
0
2
x
15 x
x.(5 x 20)
4 x 15
0 4 x 16
lim
x
15
16
15
.
16
Cách 2:
f x
x2
x 1
x 1
x0
3 . Ta có:
x0
3.
19
13
4
f (3)
x2
f ( x) f (3)
lim
x 3
x 3
lim
x
3
x 1 13
x 1
4
x 3
4 x2 9 x 9
3 4 x 1 x 3
lim
x
4x 3
2 4( x 1)
15
16
lim
x
15
.
16
f '(3)
1.3.2.
f ( x)
toán 2:
f1 ( x)
x
x0
f 2 ( x)
x
x0
.
x0 .
f '( x0 )
lim
x
f '( x0 )
f '( x0 )
x0
f ( x) f ( x0 )
.
x x0
lim
x
x0
f ( x) f ( x0 )
.
x x0
f '( x0 )
f x
x 2 3x
x 1
x 1
x 1
x0 1.
HD:
f (1)
2
f '(1 )
lim
x 1
f '(1 )
f ( x) f (1)
x 1
f ( x) f (1)
lim
x 1
x 1
Vì f '(1 )
f '(1 )
lim
x 1
x 1 ( 2)
x 1
x 2 3x ( 2)
lim
x 1
x 1
1 nên
y
f ( x)
lim
x 1
lim
x 1
( x 1)
x 1
lim( 1)
1
x 1
( x 1)( x 2)
x 1
lim( x 2)
1
x 1
x0 1 và
.
20
sin x
0
tan x
f x
x 0
x 0
x 0
HD:
f (0) 0
f '(0 )
x
f '(0 )
f ( x) f (0)
x 0
lim
0
f ( x) f (0)
x 0
lim
x
0
f '(0 )
y
sin x 0
x
lim
x
0
x
tan x 0
x
lim
x
lim
0
0
lim
x
0
sin x
1
x
tan x
1
x
f '(0 ) 1.
f ( x)
0 và
x0
f x
2 x2 7 x 3
2x 1
x
a
x
1
2.
1
2
1
.
2
x0
HD:
1
2
f
a
2 x2 7 x 3
lim f ( x) lim
1
1
2x 1
x
x
2
lim
x
2
y
f ( x)
x0
y
1
2
2x 1 x 3
2x 1
f ( x)
1
,d
2
x0
f
1
2
lim f ( x)
x
1
2
x0
lim x 3
x
1
2
5
2
1
2
a
y
5
2
1
1
và f '
2
2
lim f ( x)
x
1
2
5
.
2
f ( x)
x0
0.
21
y
x2
;x 1
.
ax b ; x 1
f ( x)
x0 1.
Tìm
HD:
f (1)
lim f ( x) 1
x 1
lim f ( x)
a b
x 1
y
f ( x)
f (1)
x0 1 , d
f '(1 )
lim
x 1
f '(1 )
lim
x 1
y
f ( x) f (1)
x 1
f ( x) f (1)
x 1
lim f ( x)
lim f ( x)
x 1
x 1
lim
x 1
lim
x 1
x2 1
x 1
lim
x 1
ax b 1
x 1
f ( x)
a b 1
x 1 x 1
x 1
lim
x 1
b
f ( x)
1.3.3.
ax 1 a 1
x 1
lim
x 1
1
x0 1
a, b
f x
x
f x .
y
.
x
lim
x
0
b 1 a
lim( x 1) 2
toán 3:
y
f ( x)
x 1
x0 1
Thay a 2 vào b 1 a
y
y
x0 1
y
.
x
x
a( x 1)
x 1
a
22
y
f ( x)
x3
,
HD:
, ta có:
,
y
f x
x
x
x
f x
3
x3
x 3x 2 3 x x
y
x
3x 2 3x. x
lim
x
0
y
x
2
x
x
2
lim 3x 2 3x. x
x
x
0
2
3x 2
,
và f '( x) 3x 2 .
0,
HD:
, ta có:
0,
y
f x
x
x
y
x
3
0
2
5 x
x
x. 3 x 2 3 x. x
x
3x 2 3x. x
lim
x
x
f x
y
x
x
2
lim 3 x 2 3 x. x
x
0
y
f ( x)
2
2 x
x
3
x3 5 x 2 2 x 3
10 x 5 x 2
10 x 5 x 2
x
2
3x 2 10 x 2
10 x 5 x 2
0,
và f '( x) 3x 2 10 x 2.
23
2. Bài
.
.
Câu 1
y
f ( x)
f ( x)
A. f '( x) 0, x K
C. f '( x) 0, x K
B. f '( x) 0, x K
D. f '( x) 0, x K
Câu 2
y
f ( x)
f ( x)
A. f '( x) 0, x K
C. f '( x) 0, x K
B. f '( x) 0, x K
D. f '( x) 0, x K
Câu 3:
y
f ( x) :
A.
B.
C.
D.
f ( x)
f '( x) 0, x K .
24
Câu 4:
A.
C.
B.
D.
Câu 5:
A.
C.
B.
D.
Hoàn thành các
.
Câu 1: Cho hàm s y
f ( x)
x3 2 x 2 4 . T
f ( x)
x3 2 x 2 4
nh c a hàm s
D
Câu 2: Cho hàm s y
o hàm c a hàm s
f ' ( x) 3x 2 4 x
Câu 3:
-3
0
4
3
y
0
(2):
Câu 4:
0
(3):
25
4
0
f '( x)
+
f ( x)
1
(
(4;
;4) .
)
Câu 5:
y
T
f ( x) 2 x 3 6 x 1
nh D
y ' 6 x2 6 ; y ' 0
...(1)... 0
x 1
x
1
B ng bi n thiên:
5
y
3
V y hàm s
ng bi n trên kho
6 x2 6
ch bi n trên kho ng
(4): +
(2): 1
(5): +
(3): 1
(6):
, 1 và 1,
1,1 .