Tải bản đầy đủ (.doc) (1 trang)

ĐỀ THI TOAN 7 GIẢI LƯƠNG THẾ VINH QUẬN 9 - TP HỒ CHÍ MINH

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (47.99 KB, 1 trang )

ĐỀ THI GIẢI LƯƠNG THẾ VINH
QUẬN 9 - TP HỒ CHÍ MINH
* Môn thi : Toán lớp 7 * Thời gian : 120 phút * Khóa thi : 2002 - 2003
Bài 1 : (5 điểm)
Tìm x biết :
Bài 2 : (3 điểm)
Tính :
a) A = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + … - 1999 - 2000 + 2001 + 2002 - 2003.
b) B = (1/4 - 1)(1/9 - 1)(1/16 - 1)(1/25 - 1)...(1/121 - 1).
Bài 3 : (4 điểm)
a) Tìm a, b, c biết : 2a = 3b, 5b = 7c, 3a + 5c - 7b = 30.
b) Tìm hai số nguyên dương sao cho : tổng, hiệu (số lớn trừ đi số nhỏ),
thương (số lớn chia cho số nhỏ) của hai số đó cộng lại được 38.
Bài 4 : (6 điểm)
Cho tam giác ABC vuông cân tại B, có trung tuyến BM. Gọi D là một điểm
bất kì thuộc cạnh AC. Kẻ AH, CK vuông góc với BD (H, K thuộc đường
thẳng BD). Chứng minh :
a) BH = CK.
b) Tam giác MHK vuông cân.
Bài 5 : (2 điểm)
Cho tam giác ABC cân tại A, có góc A = 20
o
, BC = 2 cm. Trên AB dựng
điểm D sao cho = 10
o
. Tính độ dài AD ?

×