Bài1. Cho hàm số: y = -x
3
+ 3mx
2
+ 3(1 - m
2
)x + m
3
- m
2
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên khi m = 1.
2) Tìm k để phơng trình: -x
3
+ 3x
2
+ k
3
- 3k
2
= 0 có 3 nghiệm phân biệt.
3) Viết phơng trình đờng thẳng đi qua 2 điểm cực trị của đồ thị hàm số trên.
Bài 2. Cho hàm số: y = mx
4
+ (m
2
- 9)x
2
+ 10 (1)
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1.
2) Tìm m để hàm số (1) có ba điểm cực trị.
Bài 3. Cho hàm số: y =
( )
1
12
2
x
mxm
(1) (m là tham số)
1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) ứng với m = -1.
2) Tính diện tích hình phẳng giới hạn bởi đờng cong (C) và hai trục toạ độ.
3) Tìm m để đồ thị của hàm số (1) tiếp xúc với đờng thẳng y = x.
Bài 4. Cho hàm số: y = x
3
- 3x
2
+ m (1)
1) Tìm m để đồ thị hàm số (1) có hai điểm phân biệt đối xứng với nhau qua gốc toạ độ.
2) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 2.
Bài 5. Cho hàm số: y =
xxx 32
3
1
23
+
(1) có đồ thị (C)
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1).
2) Viết phơng trình tiếp tuyến của (C) tại điểm uốn và chứng minh rằng là tiếp tuyến
của (C) có hệ số góc nhỏ nhất.
Bài 6. Cho hàm số y = x
3
- 3mx
2
+ 9x + 1 (1) (m là tham số)
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 2.
2) Tìm m để điểm uốn của đồ thị hàm số (1) thuộc đờng thẳng y = x + 1.
Bài7. Gọi (C
m
) là đồ thị hàm số: y =
3 2
1 1
3 2 3
m
x x +
(*) (m là tham số)
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (*) khi m = 2
2. Gọi M là điểm thuộc (C
m
) có hoành độ bằng -1. Tìm m để tiếp tuyến của (C
m
) tại điểm
M song song với đờng thẳng 5x - y = 0.
Bài 8. Khảo sát sự biến thiên và vẽ đồ thị của hàm số: y = 2x
3
- 9x
2
+ 12x - 4
Tìm m để phơng trình sau có 6 nghiệm phân biệt:
3
2
2 9 12x x x m + =
Bài 9. Cho hàm số y = x
3
- 3x + 2
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.
2. Gọi d là đờng thẳng đi qua điểm A(3; 2) và có hệ số góc là m. Tìm m để đờng thẳng d
cắt đồ thị (C) tại ba điểm phân biệt.
Bài 10. Cho hàm số: y = -x
3
+ 3x
2
+ 3(m
2
-1)x - 3m
2
- 1 (1) m là tham số
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1
2. Tìm m để hàm số (1) có cực đại, cực tiểu và các điểm cực trị của đồ thị hàm số (1)
cách đều gốc toạ đọ O.
Bài 11. Cho hàm số: y =
2
1
x
x +
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.
Tìm toạ độ điểm M thuộc (C), biết tiếp tuyến của (C) tại M cắt hai trục Ox, Oy tại A, B
và tam giác OAB có d
Bài 12. Cho hàm số: y = x
4
- mx
2
+ m - 1 (1) (m là tham số)
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 8.
2) Xác định m sao cho đồ thị của hàm số (1) cắt trục hoành tại bốn điểm phân biệt.
2. iện tích bằng
1
4
bài 13. Cho hàm số: y =
3
1
22
3
1
23
+
mxmxx
(1) (m là tham số)
1) Cho m =
2
1
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1)
b) Viết phơng trình tiếp tuyến của đồ thị (C), biết rằng tiếp tuyến đó song song với đờng
thẳng d: y = 4x + 2.
Bài 14. Cho hàm số: y = (x - m)
3
- 3x (m là tham số)
1) Xác định m để hàm số đã cho đạt cực tiểu tại điểm có hoành độ x = 0.
2) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m = 1.
3) Tìm k để hệ bất phơng trình sau có nghiệm:
( )
+
<
11
3
1
2
1
031
3
2
2
2
3
xlogxlog
kxx
Bài 15. 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số: y =
xxx 32
3
1
23
+
2) Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số (1) và trục hoành.
Bài 16. Cho hàm số: y = (x - 1)(x
2
+ mx + m) (1) (m là tham số)
1) Tìm m để đồ thị hàm số (1) cắt trục hoành tại ba điểm phân biệt.
2) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 4.
Bài 17. Cho hàm số: y =
1
12
x
x
(1)
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (C) của hàm số (1).
2) Gọi I là giao điểm của hai đờng tiệm cận của (C). Tìm điểm M thuộc (C) sao cho tiếp tuyến
của (C) tại M vuông góc với đờng thẳng IM.
Bì 18. 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (C) của hàm số: y = 2x
3
- 3x
2
- 1
2) Gọi d
k
là đờng thẳng đi qua điểm M(0 ; -1) và có hệ số góc bằng k. Tìm k để đờng thẳng d
k
cắt (C) tại ba điểm phân biệt.
Bài 19. Cho hàm số: y =
12
1
x
x
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số.
2) Tìm các điểm trên đồ thị hàm số có toạ độ là các số nguyên.
Bài 20. Cho hàm số: y = x
3
- 3mx + 2 có đồ thị là (C
m
) (m là tham số)
1) Khảo sát sự biến thiên và vẽ đồ thị (C
1
) của hàm số khi m = 1.
2) Tính diện tích hình phẳng giới hạn bởi (C
1
) và trục hoành.
3) Xác định m để (C
m
) tơng ứng chỉ có một điểm chung với trục hoành.
Bài 21. Cho hàm số: y = x
3
- mx
2
+ 1 (C
m
)
1) Khi m = 3
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số.
b) Tìm trên đồ thị hàm số tất cả các cặp điểm đối xứng nhau qua gốc toạ độ.
2) Xác định m để đờng cong (C
m
) tiếp xúc với đờng thẳng (D) có phơng trình
y = 5. Khi đó tìm giao điểm còn lại của đờng thẳng (D) với đờng cong (C
m
).
Bài 22. 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số: y =
2
1
+
x
x
2) Tìm các điểm trên đồ thị (C) của hàm số có toạ độ là những số nguyên.
3) Tìm các điểm trên đồ thị (C) sao cho tổng khoảng cách từ điểm đó đến hai tiệm cận là nhỏ
nhất.
Bài 23. Cho hàm số: y = x
3
- 3mx
2
+ 3(2m - 1)x + 1 (1)
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 2.
2) Xác định m sao cho hàm số (1) đồng biến trên tập xác định.
3) Xác định m sao cho hàm số (1) có một cực đại và một cực tiểu. Tính toạ độ của điểm cực
tiểu.
Bài 24. Cho hàm số: y = x
3
- (2m + 1)x
2
- 9x (1)
1) Với m = 1;
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1).
b) Cho điểm A(-2; -2), tìm toạ độ điểm B đối xứng với điểm A qua tâm đối xứng của đồ thị
(C).
2) Tìm m để đồ thị của hàm số (1) cắt trục hoành tại ba điểm phân biệt có các hoành độ lập
thành một cấp số cộng.
Bài 25. Cho hàm số: y = x
3
+ 3x
2
+ 1 (1)
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1).
2) Đờng thẳng (d) đi qua điểm A(-3 ; 1) có hệ góc là k. Xác định k để (d) cắt đồ thị hàm số (1)
tại ba điểm phân biệt.
Bài 26. Cho hàm số: y =
( ) ( )
431
3
1
23
+++ xmxmx
(1) (m là tham số)
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 0.
2) Xác định m để hàm số (1) đồng biến trong khoảng: 0 < x < 3
Bài 27. Cho đờng cong (C
m
): y = x
3
+ mx
2
- 2(m + 1)x + m + 3
và đờng thẳng (D
m
): y = mx - m + 2 m là tham số.
1) Khảo sát sự biến thiên và vẽ đồ thị (C
-1
) của hàm số với m = -1.
2) Với giá trị nào của m, đờng thẳng (D
m
) cắt (C
m
) tại ba điểm phân biệt?
Bài 28. Cho hàm số: y =
1
1
+
x
x
(1) có đồ thị (C)
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1).
2) Chứng minh rằng đờng thẳng d: y = 2x + m luôn cắt (C) tại hai điểm A, B thuộc hai
nhánh khác nhau. Xác định m để đoạn AB có độ dài ngắn nhất.
Bài 29. Cho hàm số: y = -x
3
+ 3x
2
- 2
1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2) Tìm t để phơng trình:
023
2
23
=+
tlogxx
có 6 nghiệm phân biệt
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số: y =
xx
x
32
3
2
3
+
2) Dựa và đồ thị (C) ở Câu trên, hãy biện luận theo tham số m số nghiệm của phơng
trình:
mee
e
xx
x
=+
32
3
2
3
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số: y = x
4
- 10x
2
+ 9
2) Tìm tất cả các giá trị của tham số m để phơng trình: x - 3mx + 2 = 0 có nghiệm duy nhất.
Bài 30. Cho hàm số: y =
2
52
x
x
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số.
2) Xác định m để hàm số (1) nghịch biến trong khoảng (1; +
)
Bài 31. Viết phơng trình Cho hàm số: y =
mx
mx
+
13
(1)
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1, gọi đồ thị của hàm số
này là (C).
2) Tìm hai điểm A, B thuộc (C) sao cho A và B đối xứng với nhau qua đờng thẳng (d): x
+ 3y - 4 = 0.
tiếp tuyến của đồ thị hàm số, biết tiếp tuyến đi qua điểm A(-2; 0).
Bài 32. Cho hàm số: y = x
3
- 3x
2
1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.
2) Tính diện tích của hình phẳng giới hạn bởi đờng cong (C) và trục hoành.
3) Xét đờng thẳng (D): y = mx, thay đổi theo tham số m. Tìm m để đờng thẳng (D) cắt đ-
ờng cong (C) tại 3 điểm phân biệt, trong đó có hai điểm có hoành độ dơng.
Bài 33. Cho hàm số: y = x
4
- 4x
2
+ m (C)
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số với m = 3.
2) Giả sử (C) cắt trục hoành tại 4 điểm phân biệt. Hãy xác định m sao cho hình phẳng
giới hạn bởi đồ thị (C) và trục hoành có diện tích phần phía trên và phần phía dới trục hoành
bằng nhau.
Bài 34. 1) Cho hàm số: y = 2x
3
- 3(2m + 1)x
2
+ 6m(m + 1)x + 1
a) Với các giá trị nào của m thì đồ thị (C
m
) của hàm số có hai điểm cực trị đối xứng nhau
qua đờng thẳng y = x + 2.
b) (C
0
) là đồ thị hàm số ứng với m = 0. Tìm điều kiện của a và b để đờng thẳng y = ax + b
cắt (C
0
) tại ba điểm phân biệt A, B, C sao cho AB = BC. Khi đó chứng minh rằng đờng thẳng y
= ax + b luôn đi qua một điểm cố định.
Bài 35. Cho hàm số: y = f(x) = x
3
+ ax + 2, (a là tham số)
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi a = -3.
2) Tìm tất cả giá trị của a để đồ thị hàm số y = f(x) cắt trục hoành tại một và chỉ một
điểm.
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số y =
3
2
+
x
x
2) Tìm trên đồ thị của hàm số điểm M sao cho khoảng cách từ điểm M đến đờng tiệm
cận đứng bằng khoảng cách từ M đến đờng tiệm cận ngang.
Bài 36. Cho hàm số: y =
1
1
+
x
x