GV: Trần Mạnh Cờng Chuyên đề PTB2
Phần I: Phần mở đầu
I. lý do chọn đề tài.
- Phơng trình bậc hai một ẩn là một trong những phần kiến thức trọng tâm trong chơng
trình toán 9, đòi hỏi mỗi học sinh phải nắm đợc một số cách giải và công thức nghiệm của
phơng trình bậc hai để giải phơng trình bậc hai một ẩn một cách nhanh chóng và chính xác.
- Đối với những học sinh có học lực trung bình thì việc áp dụng phơng công thức
nghiệm của phơng trình bậc hai để giải các phơng trình bậc hai có hệ số là các số nguyên có
thể là đơn giản, nhng đối với những phơng trình bậc hai có hệ số là phân số hoặc có hệ số vô
tỉ thì việc giải các phơng trình này trở nên khó khăn, dễ gây nhầm lẫn cho học sinh khi giải.
- Khi làm việc trên những phơng trình bậc hai chứa tham số học sinh thờng lúng túng
trong việc tìm lời giải, hoặc thờng mắc phải những sai lầm khi biện luận về nghiệm của ph-
ơng trình, với những bài toán biện luận về sự tồn tại nghiệm của phơng trình học sinh lại cha
nắm đợc phơng pháp chung để giải.
- Việc nắm vững công thức nghiệm của phơng trình bậc hai có thể giúp học sinh vận
dụng vào những phơng trình chứa tham số để biện luận số nghiệm của phơng trình theo tham
số hoặc tìm điều kiện của tham số để phơng trình vô nghiệm, phơng trình có một nghiệm,
phơng trình có hai nghiệm phân biệt.
- Giải phơng trình bậc hai lại là cơ sở cho nhiều kiến thức rất đa dạng sau này nh áp
dụng hệ thức Viét vào phơng trình bậc hai, giả bài toán bằng cách lập phơng trình, áp dụng
phơng trình bậc hai để giải một số phơng trình quy về bậc hai, giải hệ phơng trình đa về ph-
ơng trình bậc hai, giải bài toàn bằng cách lập phơng trình,.............
- Với những lý do trên đây tôi xin đa ra chuyên đề Ph ơng trình bậc hai để khắc
phục một số khó khăn mà học sinh thờng mắc phải ở trên đồng thời với chuyên đề này tôi hy
vọng sẽ cung cấp cho học sinh và các độc giả một hệ thống khiến thức khá đầy đủ vè phơng
pháp giải phơng trình bậc hai và một số kiến thức có liên quan.
II. Phạm vi, đối tợng, mục đích của đề tài.
1. Phạm vi nghên cứu của đề tài:
1
GV: Trần Mạnh Cờng Chuyên đề PTB2
- Định nghĩa phơng trình bậc hai một ẩn.
- Công thức nghiệm và một số phơng pháp giải phơng trình bậc hai.
- Một số bài tập về gải phơng trình bậc hai.
- Một số bài tập về sự tồn tại nghiệm của phơng trình bậc hai.
- Một số bài tập về giải và biện luận phơng trình bậc hai
- Giải một số phơng trình quy về phơng trình bậc hai.
2. Đối tợng của đề tài:
- Học sinh đại trà lớp 9
- Các thầy cô giáo trong tổ toán của trờng.
3. Mục đích của đề tài:
- Cung cấp cho học sinh một cách hệ thống các kiến thức về phơng trình bậc hai: Định nghĩa
phơng trình bậc hai một ẩn, công tnhwcs nghiệm của phơng trình bậc hai và các cách giả của
phơng trình bậc hai một ẩn.
- Vận dụng công thức nghiệm của phơng trình bậc hai một ẩn để gải, biện luận các phơng
trình bậc hai một ẩn, tìm điều kiện của tham số để phơng trình vô nghiện, phơng trình có một
nghiệm kép, phơng trình có hai nghiệm phân biệt.
- áp dụng cách giải phơng trình bậc hai để giải một số phơng trình quy về phơng trình bậc
hai.
- Rèn luyện cho học sinh kĩ năng giải phơng trình bậc hai một cách nhanh chóng và chính
xác, lựa chọn phơng pháp giả phơng trình bậc hai một cách phù hợp đối với từng bài.
- Rèn luyện cho học sinh biết vận dụng những kiến thức cơ bản về phơng trình bậc hai để áp
dụng vào giải một số bài toán liên quan đến phơng trình bậc hai.
- Hình thành cho học sinh khả năng t duy tìm tòi, sáng tạo khi giả toán, biết vận dụng các
kiến thức một cách linh hoạt trong những trờng hợp khác nhau.
- Góp phần chuẩn bị kiến thức cho học sinh cho học khi thi vào lớp 10.
- Là một tài liệu tham khảo cho học sinh và các giáo viên khi tìm hiểu các kiến thức về phơng
trình bậc hai.
- Là tài liệu tham khảo cho giáo viên tổ toán trong trờng khi dạy đại trà cho học sinh lớp 9 về
lĩnh vực phơng trình bậc hai.
2
GV: Trần Mạnh Cờng Chuyên đề PTB2
III. Tài liệu tham khảo:
- SGK toán 9 (tập 2)
- SBT toán 9 (tập 2)
- Để học tốt toán 9 (tập 2). Nhà xuất bản Hà Nội
- Bài tập nâng cao và một số chuyên đề toán 9 . Nhà xuất bản giáo dục
- Lời giải môn toán kỳ thi học sinh giỏi lớp 9 . Nhà xuất bản Đại học quốc gia thành
phố Hồ Chí Minh.
- 30 bộ đề ôn tập toán 9. Nhà xuất bản Thành phố Hồ Chí Minh.
Phần II. Nội dung nghiên cứu của đề tài
I.Định nghĩa ph ơng trình bậc hai:
Phơng trình bậc hai một ẩn là phơng trình có dạng ax
2
+ bx + c = 0 trong đó a, b, c là các số
cho trớc, còn gọi là các hệ số và a
0.
3
GV: Trần Mạnh Cờng Chuyên đề PTB2
VD: 2x
2
3x + 5 = 0
-x
2
+ 4 = 0 (còn đợc gọi là phơng trình bậc 2 một ẩn khuyết hệ số b)
5x
2
+ 2x = 0 (còn đợc gọi là phơng trình bậc hai một ẩn khuyết hệ số c)
-3x
2
= 0 (còn đợc gọi là phơng trình bậc hai một ẩn khuyết cả hệ số b và hệ số c)
II.Cách giải ph ơng trình bậc hai.
Để giải phơng trình bạc hai ta có thể sử dụng các phơng pháp sau:
Phơng pháp 1: Biến đổi phơng trình về dạng:
a(x + m)
2
= n
Phơng pháp 2: Biến đổi phơng trình thành phơng trình tích:
a(x + m)(x + n) = 0
Phơng pháp 3: Dùng công thức nghiệm của phơng trình bậc hai:
Ta có:
acb 4
2
=
1. Nếu
0
<
phơng trình vô nghiệm.
2. Nếu
0
=
phơng trình có nghiệm kép:
a
b
xx
2
21
==
3. Nếu
0
>
phơng trình có hai nghiệm phân biệt:
a
b
x
a
b
x
2
;
2
21
=
+
=
- Lu ý: Nếu b = 2b ta sử dụng công thức nghiệm thu gọn:
'
= b
2
ac
1. Nếu
'
< 0 phơng trình vô nghiệm
2. Nếu
'
= 0 phơng trình có nghiệm kép:
a
b
xx
'
21
==
3. Nếu
'
> 0 phơng trình có hai nghiệm phân biệt:
a
b
x
''
1
+
=
;
a
b
x
''
2
=
Phơng pháp 4: Trong trờng hợp đặc biệt:
+ Nếu a + b + c = 0 phơng trình có nghiệm x
1
= 1; x
2
=
a
c
+ Nếu a b + c = 0 phơng trình có nghiệm x
1
= -1; x
2
=
a
c
Phơng pháp 5: Ngoài ra ta có thể sử dụng hệ thức Viét để nhẩm nghiệm của phơng trình
trong trờng hợp có thể.
Nếu phơng trình có hai nghiệm x
1
, x
2
thì:
==
=+=
a
c
xxP
a
b
xxS
21
21
.
Từ đó ta tìm hai số thoả mãn hẹ thức này.
Chú ý: Khi giải phơng trình bậc hai thông thờng ta sử dụng công thức nghiệm hoặc công
thức nghiệm thu gọn để giải.
III. Một số dạng bài tập về ph ơng trình bậc hai:
Dạng 1: Giải phơng trình bậc hai.
4
GV: Trần Mạnh Cờng Chuyên đề PTB2
Các ví dụ
Ví dụ 1: Giải phơng trình:
x
2
+ 2x 3 = 0
Giải:
Ta có thể sử dụng theo các cách sau:
Cách 1: Ta có thể sử dụng kết qủa a + b + c = 0
Ta có a + b + c = 1 + 2 3 = 0
Suy ra, phơng trình có hai nghiệm phân biệt x
1
= 1, x
2
= -3
Cách 2: Sử dụng công thức nghiệm tổng quát:
Ta có:
416124)3(1.42
2
==+==
phơng trình có hai nghiệm phân biệt
3
2
42
,1
2
42
21
=
==
+
=
xx
Vậy phơng trình có hai nghiệm phân biệt x
1
= 1 , x
2
= -3
Cách 3: Sử dụng công thức nghiệm thu gọn:
Ta có:
2431)3(11'
2
==+==
phơng trình có hai nghiệm phân biệt
3
1
21
,1
1
21
21
=
==
+
=
xx
Vậy phơng trình có hai nghiệm phân biệt x
1
= 1 , x
2
= -3
Cách 4: Sử dụng phơng pháp phân tích đa thức thành nhân tử:
=
=
=+
=
=+=+=+=+
3
1
03
01
0)3)(1(0)1(3)1(033032
22
x
x
x
x
xxxxxxxxxx
Vậy phơng trình có hai nghiệm x
1
= 1 , x
2
= -3
Cách 5: Sử dụng phơng pháp biến đổi A
2
= m
=
=
=+
=+
=++=++=+
3
1
21
21
4)1(3112032
222
x
x
x
x
xxxxx
Vậy phơng trình có hai nghiệm x
1
= 1, x
2
= -3
Cách 6: Sử dụng hệ thức Viét để nhẩm nghiệm.
Theo hệ thức Viét ta có:
=
=+
3.
2
21
21
xx
xx
Hai số 1; -3 thoả mãn hệ thức trên
vậyphơng trình có hai nghiệm x
1
= 1; x
2
= -3
Ví dụ 2: Giải phơng trình:
- 6x
2
+ 7x 2 = 0
Giải:
Cách 1: Sử dụng công thức nghiệm tổng quát:
Ta có:
114849)2)(6.(47
2
====
Do đó phơng trình có hai nghiệm phân biệt
3
2
12
17
,
2
1
12
17
21
=
==
+
=
xx
5
GV: Trần Mạnh Cờng Chuyên đề PTB2
Vậy phơng trình có hai nghiệm phân biệt
3
2
,
2
1
21
==
xx
Cách 2: Sử dụng phép biến đổi trớc khi sử dụng công thức nghiệm
Ta có: - 6x
2
+ 7x 2 = 0
6x
2
- 7x + 2 = 0
1148496.4)7(
2
====
Do đó phơng trình có hai nghiệm phân biệt.
2
1
12
17
,
3
2
12
17
21
=
==
+
=
xx
Vạy phơng trình có hai nghiệm phân biệt:
3
2
,
2
1
21
==
xx
Ví dụ 3: Giải phơng trình:
035
3
4
2
=+
xx
Giải:
Cách 1: Sử dụng công thức nghiệm:
Ta có:
3916253.
3
4
.4)5(
2
====
Do đó phơng trình có hai nghiêm phân biệt:
3
3
4
.2
35
;
4
3
3
4
.2
35
21
=
+
==
=
xx
Vậy phơng trình có hai nghiệm phân biệt: x
1
=
4
3
; x
2
= 3
Cách 2: Biến đổi rồi sử dụng công thức nghiệm:
(Nhận xét: Để phơng trình với hệ số là phân số thì khi tính toán biệt số
sẽ gặp phải khó
khăn khi thực hiện các phép tính. Để dẽ dàng hơn ta có thể đa phơng trình về phơng trình
có hệ số nguyên)
Nhân hai vế của phơng trình với 3 ta đợc:
09154035
3
4
22
=+=+
xxxx
Ta có:
9811442259.4.4)15(
2
====
Do đó phơng trình có hai nghiệm phân biệt
4
3
8
915
,3
8
915
21
=
==
+
=
xx
Vậy phơng trình có hai nghiệm phân biệt
4
3
,3
21
==
xx
Ví dụ 4: Giải phơng trình sau:
0212322
2
=
xx
Giải:
Cách 1: Sử dụng công thức nghiệm:
Ta có:
( )
3327243)2.12.(23'
2
==+==
> 0
Do đó phơng trình có hai nghiệm: x
1
=
62
2
34
2
333
==
+
; x
2
=
6
2
32
2
333
=
=
Vậy phơng trình có hai nghiệm phân biệt x
1
=
62
; x
2
=
6
Cách 2:Biến đổi rồi sử dụng công thức nghiệm:
Nhân cả hai vế của phơng trình với
2
ta đợc:
2x
2
- 2
6
x 24 = 0
6
GV: Trần Mạnh Cờng Chuyên đề PTB2
( )
6354486)24.(26'
2
==+==
> 0
Do đó phơng trình có hai nghiệm: x
1
=
62
2
64
2
636
==
+
; x
2
=
6
2
62
2
636
=
=
Ví dụ 5:
Giải phơng trình:
02)12(
12
1
2
=+
xx
Giải:
Cách 1: Thực hiện quy đồng mẫu số phơng trình có dạng:
0222)223(
0)12.(2)12(
2
22
=++
=+
xx
xx
Nhận xét hệ số của phơng trình: a - b + c =
0222)223(1
=+
phơng trình có hai nghiệm: x
1
= -1; x
2
=
222
1
222
+=
Cách 2: Thực hiện nhân biểu thức liên hợp:
02)12()12(
02)12(
)12).(12(
12
2
2
=++
=+
+
+
xx
xx
Nhận xét: Các hệ số của phơng trình: a b + c =
02)12()12(
=+
phơng trình có hai nghiệm: x
1
= -1; x
2
=
222
12
2
+=
+
Chú ý: Đối với những phơng trình khi sử dụng công thức nghiệm để giải việc tính biệt số
khó khăn ta có thể sử dụng một số các phơng pháp khác để giải:
Ví dụ 6: Giải phơng trình:
022)22()
2
=++
xxa
06
23
1
)
2
=+
+
xxb
02352)
2
=+
xxc
024)2332(26)
2
=+++
xxd
Giải:
a) Cách 1: Sử dụng công thức nghiệm.
022)22(
2
=++
xx
Ta có:
22)22(24628224422.1.4)22(
22
===++=+=
Phơng trình có hai nghiệm:
2
2
2222
1
=
++
=
x
;
2
2
)22(22
2
=
+
=
x
Vậy phơng trình có hai nghiệm x
1
= 2 ; x
2
=
2
Cách 2: Phan tích thành nhân tử:
=
=
=
=
==
=+=++
2
2
02
02
0)2)(2(0)2(2)2(
0222)2(022)22(
22
x
x
x
x
xxxxx
xxxxx
Vậy phơng trình có hai nghiệm x
1
= 2 ; x
2
=
2
b) Cách 1: Sử dụng công thức nghiệm:
23)23(62236462236.1.4)23(
06)23(06
23
1
22
22
==+=++=+=
=+++=+
+
xxxx
7
GV: Trần Mạnh Cờng Chuyên đề PTB2
Phơng trình có hai nghiệm:
3
2
)23()23(
;2
2
)23()23(
21
=
+
==
++
=
xx
Vậy phơng trình có hai nghiện x
1
= -
2
; x
2
= -
3
Cách 2: Phân tích đa thức thành nhân tử:
Thực hiện nhân với biểu thức liên hợp ta đợc:
=
=
=+
=+
=++=+++
=+++=+++
2
3
02
03
0)2)(3(0)3(2)3(
062306)23(
22
x
x
x
x
xxxxx
xxxxx
Vậy phơng trình có hai nghiện x
1
= -
2
; x
2
= -
3
c) Cách 1: Sử dụng công thức nghiệm:
Ta có:
1242523.2.4)5(
2
===
Phơng trình có hai nghiệm:
2
22
15
;
2
3
22
15
21
=
==
+
=
xx
Vậy phơng trình có hai nghiệm: x
1
=
2
3
; x
2
=
2
Cách 2: Phân tích thành nhân tử:
=
=
=
=
==
=+=+
2
3
2
032
02
0)32)(2(0)2(3)2(2
02332202352
22
x
x
x
x
xxxxx
xxxxx
Vậy phơng trình có hai nghiệm: x
1
=
2
3
; x
2
=
2
d) Cách 1: Sử dụng công thức nghiệm:
Ta có:
3223)3223()23).(32.(2)23()32(
612)23()32(624612)23()32(24.6)2332('
222
22222
==+
+=++=+=
Phơng trình có hai nghiệm:
2
2
4
6
34
6
)2332()2332(
3212
6
26
6
)2332()2332(
2
1
=
=
=
+
=
==
=
++
=
x
x
Vậy phơng trình có hai nghiệm: x
1
=
32
; x
2
=
2
Cách 2: Phân tích thành nhân tử:
=
=
=
=
+
=+
=++=+++
=+++=+++
32
2
3
6
2
4
63
042
0)63)(42(0)42(6)42(3
02426346024)2332(26
22
x
x
x
x
x
x
xxxxx
xxxx
Vậy phơng trình có hai nghiệm: x
1
=
32
; x
2
=
2
Bài tập:
Bài 1: Giải các phơng trình:
a) 4x
2
6x + 7 = 0
b) 9x
2
6x + 26 = 0
8
GV: Trần Mạnh Cờng Chuyên đề PTB2
c) x
2
+ 4x 12 = 0
d) x
2
+ 8x 10 = 0
Bài 2: Giải các phơng trình sau:
0
2
1
2
1
)
2
=
xxa
01
6
1
3
1
)
2
=
xxb
0
48
5
7
10
5)
2
=+
xxc
0
15
1
3
1
5
2
)
2
=++
xxd
Bài 3: Giải các phơng trình sau:
02)16(3)
2
=
xxa
0
4
15
35
1
2
1
)
2
=+
+
xxb
012385)
2
=
xxc
01)25(6)
2
=++
xxd
Dạng bài 2: Điều kiện có nghiệm của phơng trình bậc hai:
Ph ơng pháp:
Với phơng trình: ax
2
+ bx + c = 0(a
0)
Tìm điều kiện của tham số sao cho:
Dạng 1: Phơng trình vô nghiệm: Điều kiện là:
0
<
hoặc
0'
<
Dạng 2: Phơng trình có nghiệm: Điều kiện là:
0
hoặc
0'
Dạng 3: Phơng trình có nghiệm kép: Điều kiện là:
0
=
hoặc
0'
=
Dạng 4: Phơng trình có hai nghiệm phân biệt: Điều kiện là:
0
>
hoặc
0'
>
1. Điều kiệm để phơng trình bậc hai có hai nghiệm phân biệt bao gồm:
- Điều kiện để phơng trình là một phơng trình bậc hai, tơng ứng với a
0
- Điều kiện để phơng trình bậc hai có hai nghiệm phân biệt tơng ứng với
0
>
hoặc
0'
>
.
Tóm lại ta có điều kiện:
>
0
0a
hoặc
>
0'
0a
2. Điều kiện để phơng trình bậc hai có nghiệm kép bao gồm:
- Điều kiện để phơng trình là một phơng trình bậc hai, tơng ứng với a
0
- Điều kiện để phơng trình bậc hai có ghiệm kép tơng ứng với
0
=
hoặc
0'
=
Tóm lại ta có điều kiện:
9